
GFD-E.154

Grid Storage Resource Management

https://forge.gridforum.org/projects/gsm-wg

Editors:

A. Sim

A. Shoshani

F. Donno

J. Jensen

8/18/2009

Storage Resource Manager Interface Specification V2.2 Implementations

Experience Report

Status of this Document
This document provides information to the Grid community regarding the adoption of the OGF specification GFD-

R-P-129 in the Storage Resource Manager Interface v2.2. It does not define any standards or technical

recommendations. Distribution of this document is unlimited.

Copyright Notice
Copyright © Open Grid Forum (2009). All Rights Reserved.

Abstract
A few groups have developed independent implementations of the Storage Resource Management (SRM) interface

specification v2.2. This document describes those implementations and experiences in interoperability testing. Issues

that were identified during the implementations of the specification and the production deplopyments of the

implementations in various projects help develop more robust specification in the next version.

GWD-E.154 8/18/2009

gsm-wg@ogf.org - 2 -

Table of Contents

1. Introduction ..3

2. SRM Server Implementations ...3

2.1. BeStMan (Berkeley Storage Manager) ... 3

2.2. CASTOR SRM .. 4

2.3. dCache SRM .. 5

2.4. Disk Pool Manager (DPM)... 6

2.5. SRM-SRB .. 7

2.6. StoRM (Storage Resource Manager) .. 8

3. SRM Client Implementations..9

3.1. FNAL SRM Clients.. 9

3.2. FTS (File Transfer Service) .. 9

3.3. LBNL SRM Client Tools.. 9

3.4. Grid File Access Library and LCG Utils... 9

3.5. SRM Java Client Library.. 10

3.6. S2... 10

3.7. SRM-Tester.. 11

3.8. Other SRM clients.. 11

4. SRM Compatibility and Interoperability Test.................................... 11

4.1. Demonstration.. 14

4.2. Implementation-dependent differences ... 15

5. SRM Deployments ... 15

6. SRM v2.2 specification issues and future directions 16

7. Conclusion .. 16

8. Security Considerations ... 16

9. Contributors.. 16

9.1. Editors information... 16

9.2. Contributors ... 17

9.3. Acknowledgement.. 17

10. Intellectual Property Statement ... 18

11. Disclaimer ... 18

12. Full Copyright Notice ... 18

13. References .. 18

14. Appendix A.. 19

GWD-E.154 8/18/2009

gsm-wg@ogf.org - 3 -

The Storage Resource Manager Interface Specification v2.2 (Open Grid Forum GFD-R-P-129)

[http://www.ogf.org/documents/GFD.129.pdf] specifies a common control interface to storage resource management

systems. Storage management is one of the most important enabling technologies for large-scale scientific

investigations. Having to deal with multiple heterogeneous storage and file systems is one of the major bottlenecks

in managing, replicating, and accessing files in distributed environments. Storage Resource Managers (SRMs)

provide the technology needed to manage the rapidly growing distributed data volumes, as a result of faster and

larger computational facilities. SRMs are Grid storage services providing not only interfaces to storage resources,

but also advanced functionality such as dynamic space allocation and file management on shared storage systems

[SSG03].

A Grid interface to storage is often known as a Storage Element, or SE. An SE usually provides SRM as a control

interface; in addition, it may publish information in the GLUE schema, and it provides GridFTP as a common

transfer protocol. Having a common schema and a common transfer protocol is an important requirement for

achieving interoperability. The GLUE storage schema and GridFTP are themselves standardized in other OGF

working groups. An SE providing an SRM control interface is often referred to as “an SRM”.

There are several SRM implementations for SRM servers as well as clients from independent institutions in different

languages. SRM systems are deployed throughout the world, and actively used in production. This document will be

of interest to anyone working with Grid storage, specifically in addressing common access to diverse storage

systems with interoperating implementations.

This document describes the implementions and their interoperability tests, largely based on MSS 2007 conference

paper [SHO07]. It is expected that additional documents will describe implementation aspects in more detail.

Additional background information is available in GFD.129 [http://www.ogf.org/documents/GFD.129.pdf].

Over the last 8 years, there were several implementations of SRM servers. The first implementations were based on

the v1.1 specifications [http://sdm.lbl.gov/srm-wg/], at several institutions in the US and Europe, including FNAL,

TJNAF, LBNL, and CERN. More recently, new implementation emerged that are based on the richer v2.2

specification described in this section. We briefly describe here six such server implementations having the standard

interface to a variety of storage systems. The underlying storage systems can vary from a simple disk, multiple disk

pools, mass storage systems, parallel file systems, to complex multi-component multi-tiered storage systems. While

the implementations use different approaches, SRM servers exhibit a uniform interface and can successfully

interoperate. Short descriptions of the SRMs implementation are presented (in alphabetical order) next.

BeStMan [http://sdm.lbl.gov/bestman] is a java-based SRM implementation from Lawrence Berkeley National

Laboratory for disk based storage systems and mass storage systems such as HPSS [http://www.hpss-

collaboration.org/hpss/index.jsp]. Its modular design allows different types of storage systems to be integrated in

BeStMan while providing the same interface for the clients. Based on immediate needs, two particular storage

systems are currently used. One supports multiple disks accessible from the BeStMan server, and the other is the

HPSS storage system. Another storage system that was adapted with BeStMan is a legacy MSS at National Center

for Atmospheric Research (NCAR) in support of the Earth System Grid (ESG) project

[http://www.earthsystemgrid.org].

Figure 1 shows the design of BeStMan. The Request Queue Management accepts the incoming requests. The Local

Policy Module contains the scheduling policy, garbage collection policy, etc. The Network Access Management

module is responsible for accessing files using multiple transfer protocols. An in-memory database is provided for

storing the activities of the server. The Request Processing module contacts the policy module to get the next request

to work on. For each file request, the necessary components of the Network Access Management module and the

Storage Modules (the Disk Management and the MSS Access Management modules) are invoked to process the

data.

GWD-E.154 8/18/2009

gsm-wg@ogf.org - 4 -

BeStMan supports space management functions and data movement functions. Users can reserve space in the

preferred storage system, and move files in and out of their space. When necessary, BeStMan interacts with remote

storage sites on their behalf, e.g. another gsiftp server, or another SRM. BeStMan works on top of existing disk-

based Unix file system, and has been reported so far to work on file systems such as NFS, PVFS, AFS, GFS, GPFS,

PNFS, HFS+, NGFS, Hadoop, XrootdFS and Lustre.

The SRM implementation for the CERN Advanced Storage system (CASTOR) [http://castor.web.cern.ch/castor/] is

the result of collaboration between Rutherford Appleton Laboratory (RAL) and CERN. Like that of other

implementations, the implementation faced unique challenges. These challenges were based around the

fundamental design concepts under which CASTOR operates, which are different from those of other mass storage

systems. CASTOR trades some flexibility for performance, and this required the SRM implementation to have

some loss of flexibility, but with gains in performance.

CASTOR is designed to work with a tape back-end and is required to optimise data transfer to tape, and also to

ensure that data input to front-end disk cache is as efficient as possible. It is designed to be used in cases where it is

essential to accept data at the fastest possible rate and have that data securely archived. These requirements are what

cause differences between the CASTOR SRM implementation and others.

The need to efficiently stream to tape and clear disk cache for new incoming data leads to two effects:

• the SURL lifetime is effectively infinite and

• the TURL, or pinning, lifetime is advisory.

In fact the latter is merely a modified garbage collection algorithm which tries to ensure those files with a low

weighting are garbage collected first.

Also, space management in the CASTOR SRM is significantly different to those of other server implementations.

Since the design of the MSS is to optimise moving data from disk to tape, there is no provision for allowing

dynamic space allocation at a user level. The CASTOR SRM does support space reservation, but as an

asynchronous process involving physical reallocation of the underlying disk servers. Other implementation

designed to work with only disk based Mass Storage Systems, or a combination of disk and tape, often allow for

dynamic space reservation. Another difference is that spaces are directly used to select storage with desired

capabilities: for example, when a file is transferred across the WAN, it can have a space token description pointing

at GridFTP servers visible to the WAN. When later the file is processed from a local cluster, it can be read with

another space token description, which causes it to be copied (or staged in to) a disk pool accessible with the local

protocol (RFIO).

The architecture of the CASTOR SRM, shown in Figure 2, includes two stateless processes, which interact through

a RDBMS. A client-facing process (the ‘server’) directly deals with synchronous requests and stores asynchronous

requests in the database for later processing. The database is therefore used to store all storage-oriented requests as

well as the status of the entire system. A separate process (the ‘daemon’) faces the CASTOR backend system, and

updates the status of the ongoing requests, allowing for a more fault resilient behaviour in the event the backend

system shows some instability, as the clients will always be decoupled from the CASTOR backend.

GWD-E.154 8/18/2009

gsm-wg@ogf.org - 5 -

This architecture leverages the existing framework that has been designed and developed for the CASTOR mass

storage system itself [BGL07]. The entire Entity-Relationship (E-R) schema has been designed using the UML

methodology, and a customized code generation facility, maintained in the CASTOR framework, has been used to

generate the C++ access layer to the database.

For data transfer and access, CASTOR supports GridFTP (via more than one implementation, some more mature

than others), and the local protocol, RFIO. Newer versions of CASTOR such as v2.1.8 have improved support for

xrootd.

CASTOR in production at CERN supports 21 PB on tapes and 5 PB on disks for 100M+ files.

dCache [http://www.dcache.org] is a Mass Storage System developed jointly by FNAL and DESY which federates

a large number of disk systems on heterogeneous server nodes to provide a storage service with a unified

namespace. dCache provides multiple means of file access protocols, including FTP, Kerberos GSSFTP, GSIFTP,

HTTP, and dCap and xrootd, POSIX APIs to dCache. dCache can act as a stand-alone Disk Storage System or as a

front-end disk cache in a hierarchical storage system backed by a tape interface such as OSM, Enstore [http://www-

ccf.fnal.gov/enstore], TSM, HPSS [http://www.hpss-collaboration.org/hpss/index.jsp], DMF or Castor

[http://castor.web.cern.ch/castor].

dCache storage system, shown in Figure 3, has a highly scalable distributed architecture that allows easy addition of

new services and data access protocols. dCache provides load balancing and replication across nodes for “hot” files,

i.e. files that are accessed often. It also provides a resilient mode, which guarantees that a specific number of copies

Request

Handler

Database
Async .

Process

or

CASTOR

Clients

GWD-E.154 8/18/2009

gsm-wg@ogf.org - 6 -

of each file are maintained on different hardware. This mode can take advantage of otherwise unused and unreliable

disk space on compute-nodes. This is a cost-effective means of storing files robustly and maintaining access to them

in the face of multiple hardware failures.

The dCache Collaboration continuously improves the features and the Grid interfaces of dCache. It has delivered the

gPlazma element that implements flexible Virtual-Organization (VO)-based authorization. dCache’s GridFTP and

GsiDCap services are implementations of the grid aware data access protocols. But the most important step to

connect dCache to the Grid was the development of the SRM interface.

dCache has included an implementation of SRM Version 1.1 since 2003 and now has all protocol elements of SRM

v2.2 required by the Worldwide LHC Computing Grid (WLCG) [http://lcg.web.cern.ch/LCG]. The new SRM

functions include space reservation, more advanced data transfer, and new namespace and access control functions.

Implementation of these features in dCache required an update of the dCache architecture and evolution of the

services and core components of the dCache Storage System. Implementation of SRM space reservation led to new

functionality in the Pool Manager and the development of the new Space Manager component of dCache, which is

responsible for accounting, reservation and distribution of the storage space in dCache. SRM's new "Bring Online"

function, which copies tape-backed files to dCache online disk, required redevelopment of the Pin Manager service,

responsible for staging files from tape and keeping them on disk for the duration of the Online state. The new SRM

concepts of AccessLatency and RetentionPolicy led to the definition of new dCache file attributes and new dCache

code to implement these abstractions. SRM permission management functions led to the development of the Access

Control List support in the new dCache namespace service, Chimera.

dCache is deployed in a large number of institutions worldwide.

The Disk Pool Manager (DPM) [https://twiki.cern.ch/twiki/bin/view/LCG/DpmInformation] aims at providing a

reliable and managed disk storage system for the Tier-2 sites. It is part of the Enabling Grids for E-SciencE (EGEE)

project [http://www.eu-egee.org]. It currently supports only disk-based installations. The architecture is based on a

database and multi-threaded daemons as shown in Figure 4.

• The dpns daemon controls the hierarchical namespace, the file permissions and the mapping between SFN (Site

File Name) and physical names; An SFN is the file path portion of an SURL.

• The dpm daemon manages the configuration of disk pools and file systems. It automatically handles the space

management and the expiration time of files. It also processes the requests.

• The SRM (v1.1 and v2.2) daemons distribute the SRM requests workload (delete, put, get, etc);

GWD-E.154 8/18/2009

gsm-wg@ogf.org - 7 -

• The Globus [http://www.globus.org] gsiftp daemon provides secure file transfers between the DPM disk servers

and the client;

• The rfio daemon provides secure POSIX file access and manipulation.

In most cases, all the core daemons are installed on the same machine. However for large deployment, they can run

on separate nodes. Although not represented in Figure 4, https and xrootd [http://xrootd.slac.stanford.edu] protocols

can be used to access data.

A database backend (MySQL [http://www.mysql.com], Postgres [http://www.postgresql.org] and Oracle

[http://www.oracle.com] are supported) is used as a central information repository. It contains two types of

information:

• Data related to the current DPM configuration (pool and file system) and the different asynchronous requests

(get and put) with their statuses. This information is accessed only by the DPM daemon. The SRM daemons

only put the asynchronous requests and poll for their statuses.

• Data related to the namespace, file permissions (ACLs included) and virtual IDs, which allow a full support of

the ACLs. Each user DN (Distinguished Name) or VOMS (Virtual Organization Membership Service)

[https://twiki.cnaf.infn.it/cgi-bin/twiki/view/VOMS/] attribute is internally mapped to an automatically

allocated virtual ID. For instance, the user Chloe Delaporte who belongs to the LHCb group could be mapped to

the virtual UID 1427 and virtual GID 54. This pair is then used for a fast check of the ACLs and ownership.

This part is only accessed by the DPNS daemon.

The GSI (Grid Security Infrastructure) [http://www.globus.org/security/overview.html] ensures the authentication,

which is done by the first service contacted. For instance, if it is an SRM request, then the SRM daemon does the

authentication. The authorization is based on VOMS.

The load balancing between the different file systems and pools is based on the round robin mechanism. Different

tools have been implemented to enable users to manipulate files in a consistent way. The system is rather easy to

install and to manage. Very little support is needed from the developers’ team.

The DPM is currently installed at roughly 190 sites for 224 supported VOs. For a given instance, the volume of data

managed ranges from a few TB up to 200 TB of data. So far no limit on the volume of data has been reported.

SRM-SRB [http://lists.grid.sinica.edu.tw/apwiki/SRM-SRB] provides the SRM interface for Storage Resource

Broker (SRB) [http://www.sdsc.edu/srb/index.php] so that SRB could interoperate with other Grid Middleware and

support the SRM alternative for SRB. The SRM implementation was developed at Academia Sinica, and has 3 main

components as shown in Figure 5. Web service component receives the request from users and transfers the SURL

into path used in the implementation. Core component gets the path from web service and communicates with the

file catalog to retrieve some information like host information and file information. Core can sometimes use data

server management to do operations on SRB server (or cache server). Data server management component does

operations on SRB server such as getting disk usage, permission checking, etc.

GWD-E.154 8/18/2009

gsm-wg@ogf.org - 8 -

StoRM [http://storm.forge.cnaf.infn.it] (acronym for Storage Resource Manager) is an SRM service designed to

manage file access and space allocation on high performing parallel and cluster file systems as well as on standard

POSIX file systems. It provides the advanced SRM management functionalities defined by the SRM interface

specification version 2.2. The StoRM project [CCD06] is the result of the collaboration between INFN – the Italian

National Institute for Nuclear Physics - and the Abdus Salam ICTP for the EGRID Project for Economics and

Finance research.

StoRM is designed to respond to a set of requests coming from various Grid applications allowing for standard

POSIX access to files in local environment, and leveraging on the capabilities provided by modern parallel and

cluster file systems such as the General Parallel File System (GPFS) [http://www-

03.ibm.com/systems/clusters/software/gpfs/index.html] from IBM. The StoRM service supports guaranteed space

reservation and direct access (by native POSIX I/O calls) to the storage resource, as well as supporting other

standard Grid file access libraries like RFIO (Remote File I/O) and GFAL

[http://www.gridpp.ac.uk/wiki/Grid_File_Access_Library].

More generally, StoRM is able to work on top of any standard POSIX file system providing ACL (Access Control

List) support, like XFS and ext3. Indeed, StoRM uses the ACLs provided by the underlying file system to

implement the security model, allowing both Grid and local access. StoRM supports VOMS

[https://twiki.cnaf.infn.it/cgi-bin/twiki/view/VOMS/] certificates and has a flexible authorization framework based

on the interaction with one or more external authorization services to verify if the user can perform the specified

GWD-E.154 8/18/2009

gsm-wg@ogf.org - 9 -

operation on the requested resources.

Figure 6 shows the multilayer architecture of StoRM. The are two main components: the frontend that exposes the

SRM web service interface and manages user authentication, and the backend that executes all SRM functions,

manages file and space metadata, enforces authorization permissions on files, and interacts with file transfer

services. StoRM can work with several underlying file systems through a plug-in mechanism that decouples the core

logic from the specific file system functionalities. The specific file system driver is loaded at run time.

To satisfy the availability and scalability requirements coming from different Grid applications scenarios, one or

more instances of StoRM components can be deployed on different machines using a centralized database service.

Moreover, the namespace mechanism adopted by StoRM makes it unnecessary to store the physical location of

every file managed in a database. The namespace is defined in an XML document that describes the different

storage components managed by the service, the storage areas defined by the site administrator and the matching

rules used at runtime to map the logical to physical paths. The physical location of a file can be derived from the

requested SURL, the user credentials and the configuration information described in the XML document.

In this section we describe briefly some SRM clients that adhere to the SRM v2.2. While these clients use different

approaches of handling user options, the SRM Clients are compatible to different SRM server implementations and

successfully interoperate. In addition, two testing programs have been developed independently and are running

daily to check the interoperability of these systems. Short descriptions of the SRM client implementations are

presented (in alphabetical order) next.

Fermi National Accelerator Laboratory (FNAL) developed a set of SRM clients

[https://srm.fnal.gov/twiki/bin/view/SrmProject/SrmcpClient] in Java for selective specification interfaces. These

SRM client command-lines cover most of common SRM client use cases, and include srmcp, srmmkdir, srmrmdir,

srmls, srmmv, srmrm, srmping, srm-reserve-space and srm-release-space. They are compatible to all SRM servers

that are available currently, and deployed worldwide.

gLite [http://glite.web.cern.ch/glite/] File Transfer Service (FTS) [https://twiki.cern.ch/twiki/bin/view/EGEE/FTS] is

a reliable data movement service that performs bulk file transfers between multiple sites of any SRM compliant

storage elements. It’s a multi-VO service and used to balance usage of site resources and to prevent network and

storage overload.

FTS interacts with SRM in two ways, UrlCopy transfer and SrmCopy transfer. UrlCopy calls srmPrepareToGet

function at the data source and srmPrepareToPut function at the data destination, and makes the 3
rd

 party GridFTP

file transfers. SrmCopy transfer uses srmCopy function. FTS is compatible to all SRM servers that are available

currently, and deployed in production.

LBNL developed SRM client tools [http://sdm.lbl.gov/wiki/Software/SRMClients/] in Java, implementing full

interfaces of SRM v2.2 specification as generic SRM v2.2 clients. It consists of 34 command line clients for

different functional interfaces. They are compatible to all current SRM v2.2 servers such as BeStMan, CASTOR,

dCache, DPM, SRM-SRB and StoRM, and deployed worldwide. They are continuously being tested for

compatibility and interoperability and optimized for performance.

To simplify user interaction with data management infrastructure, Grid File Access Library (GFAL)

[http://www.gridpp.ac.uk/wiki/Grid_File_Access_Library] and LCG-Utils

[http://www.gridpp.ac.uk/wiki/LCG_Utils] are developed at CERN. GFAL provides C and Python APIs for SRM

functions and POSIX-like functions for creating, reading, writing, and deleting files on the Grid. LCG-Utils are

high-level tools that are composed of command-lines, C and Python APIs. It hides the complexities of catalogue and

GWD-E.154 8/18/2009

gsm-wg@ogf.org - 10 -

SEs interaction, and minimizes the risk of grid files corruption. It covers most of common SRM client use cases, by

implementing selective specification interfaces such as srmPrepareToGet, srmPrepareToPut, srmLs, srmMkdir,

srmRmdir, srmRm, srmMv, and so on, with such client tools as lcg-cp, lcg-cr, lcg-del, lcg-rep, lcg-gt and lcg-sd.

LCG-Utils and GFAL are compatible to all SRM servers that are available currently, and deployed worldwide in

production.

LBNL developed SRM Client Java API [http://sdm.lbl.gov/wiki/Software/SRMClientJavaAPI] for selective

specification interfaces, enabling users to take benefits from the programming their own codes. It covers most of

common SRM client use cases. It is being used in Earth System Grid community and used by individuals

worldwide.

S2 [http://s-2.sourceforge.net] is a general-purpose test client, implementing SRM v2.2 interface specification. It is

developed at CERN and RAL. S2 interprets a tree-like language that was also called S2

[http://www.livejournal.com/doc/s2/], and uses PCRE (Perl Compatible Regular Expressions) library

[http://www.pcre.org]. S2 language has several attractive characteristics:

• It allows for the quick development of test programs that exercise a single test case each.

• It helps minimize human errors that are typically made in writing test cases.

• It offers an easy way to plug-in external libraries such as an SRM client implementation.

• It offers a powerful engine for parsing the output of a test, expressing the pattern to match in a compact and

fully descriptive way.

• It offers a testing framework that supports the parallel execution of tests where the interactions among

concurrent method invocations can be tested easily.

• It offers a “self-describing” logging facility that makes it possible to automatically publish the results of a test.

S2 tests have 5 test categories, availability tests, basic tests, cross-copy tests, use-case tests ad stress tests. It is being

used in WLCG community for testing registered storage sites. These tests run daily and results are reported on the

web [https://twiki.cern.ch/twiki/bin/view/SRMDev/WebHome], as shown in section 4.

GWD-E.154 8/18/2009

gsm-wg@ogf.org - 11 -

LBNL developed SRM-Tester [http://sdm.lbl.gov/wiki/Software/SRMTester/] in Java, implementing full interfaces

of SRM v2.2 specification. SRM-Tester has three test modes, one for manual testing for each interface, another for

automated testing for all interfaces and the other for stress testing. They are compatible to all current SRM v2.2

servers such as BeStMan, CASTOR, dCache, DPM, SRM-SRB and StoRM. It is being used in Open Science Grid

(OSG) [http://www.opensciencegrid.org] community for testing registered storage sites. These tests run daily and

results are displayed on the web [http://datagrid.lbl.gov], as shown in section 4.

There are a few other SRM client implementations, such as BeStMan GUI SRM diagnostic tool, DPM clients, and

StoRM clients. They have not yet been tested fully for interoperation among the collaboration and users. Although

these SRM client implementations are available, their usage is limited so far.

An important aspect in the definition of the SRM v2.2 protocol is the verification against existing implementations.

The verification process has helped understanding if foreseen transactions and requirements make sense in the real

world, and identifying possible ambiguities. It uncovered problematic behaviors and functional interferences in an

early stage of specification development to allow for the protocol specification to be adjusted to better match

existing practices. The verification process showed if the protocol adapted naturally and efficiently to existing

storage solutions. In fact, it is crucial that a protocol is flexible and does not constrain the basic functionality

available in existing services. As an example we can mention the time at which a SURL starts its existence in the

namespace of an SRM. Server Implementations like dCache mark a file as existent in the namespace as soon as a

client starts a transfer for the creation of the file. This is to avoid the need for cleanup of the name space when the

client never gets to write the file. Other server implementations, instead, prefer to reserve the name space entry as

soon as possible, to present a consistent view to all concurrent clients, or to simplify the interfacing with the MSS

backend.

The verification process also has helped proposing and refining a conceptual model behind the protocol, with an

explicit, clear and concise definition of its underlying structural and behavioral concepts. This model has made it

easier to define the service semantics, helped implementation developers, and provided for a more rigorous

validation of implementations. The model is a synthetic description of a user’s view of the service, with the basic

entities such as space and file, their relationships, and the changes they may go through. The model is described in

some details in [5].

The analysis of the complexity of the SRM interface through its formal model shows that a high number of tests

need to be executed in order to fully check the compliance of the server implementations to the specifications.

Therefore, an appropriate testing strategy has to be adopted in order to reduce the number of tests to be performed to

a manageable level, while at the same time covering those aspects that are deemed to matter in practice.

Testing activities aim at finding differences between the actual and the intended behavior of a system. In particular,

[MSB04] gives the following definition: “Testing is the process of executing a program with the intent of finding

errors.” A test set is defined to be exhaustive if and only if it fully describes the expected semantics of the

specifications, including valid and invalid behaviors.

In order to verify the compliance to a specification of available implementations of SRM v2.2, 5 categories of tests

have been designed. Furthermore, many hypotheses have been made in order to make the model simpler and to

reduce the total number of tests, while keeping the test sets valid and unbiased. The 5 families of tests are the

following:

• Availability: the srmPing function and a full put cycle for a file are exercised (srmPrepareToPut,

srmStatusOfPutRequest, file transfer, srmPutDone). This family is used to verify availability and very basic

functionality of an SRM endpoint.

• Basic: the equivalence partitioning and boundary condition analysis is applied to verify that an implementation

satisfies the specification when it has a single SRM call active at any given time. Basic tests, in turn, can be split

into categories that depend only on each other and on earlier groups:

 permissions,

GWD-E.154 8/18/2009

gsm-wg@ogf.org - 12 -

 directory functions,

 advanced permissions and directory functions,

 recursive ls,

 the put operations cycle (srmPrepareToPut, etc.),

 file management (including srmPrepareToGet),

 srmCopy,

 request suspension,

 basic space functions,

• Use cases: cause-effect graphing, exceptions, functional interference, and use cases extracted from the

middleware and user applications are exercised.

• Interoperability: remote operations (servers acting as clients for some basic SRM functions) and cross copy

operations among several implementations are executed.

• Stress: the error guessing technique and typical stress situations are applied to verify resilience to load.

The S2 families of tests run automatically 5 times a day. The results of the tests are published on a web page

[https://twiki.cern.ch/twiki/bin/view/SRMDev/WebHome]. In particular, the data of the last run together with the

history of the results and their details are stored and made available to the developers through the web. Plots can be

produced every month on the entire period of testing to track the improvements and detect possible problems.

The testbed that we set up includes five different implementations: CASTOR, dCache, DPM, BeStMan, and StoRM.

It currently has 23 available endpoints located in Europe and the US. In particular, 5 endpoints are where the main

development happens. These endpoints have been tested for over a year and a half. The other endpoints have been

added recently. They are used to verify that the implementation can accommodate different specific needs at

different sites and help smooth the installation and configuration process.

The test suite is built as a perl wrapper gluing all of the 36 individual test modules, corresponding almost one to one

to the 38 SRM v2.2 interfaces. Each test module is a small C application, and is built on top of gSOAP 2.6. It was

written mainly to allow DPM srmv2.2 implementation, but has also been used to crosscheck some features of

BeStMan and dCache SRM v2.2 front-ends. It is most of the time used as a regression test to ease the development

lifecycle, and new use cases and specific tests are added as soon as new features become available on the DPM

SRM v2.2 server. It now includes about 400 different steps, and runs in about 500 sec. Transfers are achieved

through Secure RFIO or GridFTP when testing a DPM server, but are switched back to GridFTP only when testing

some other server. In Figure 8, the summary availability test [http://lxdev25.cern.ch/s2test/avail/s2_logs/] is shown.

Figures 9 shows the summary of basic [http://lxdev25.cern.ch/s2test/basic/s2_logs/] and use case

[http://lxdev25.cern.ch/s2test/usecase/s2_logs/] tests. Figure 10 shows the summary of cross-copy test results

[http://lxdev25.cern.ch/s2test/cross/s2_logs/]. While for the basic and use case families of tests the errors have

improved greatly in a relatively short time, we still have to do some work in terms of interoperability and cross copy

operations. Stress testing [https://twiki.cern.ch/twiki/pub/SRMDev/WebHome/StressTest_Description.txt] has just

started and some of the available endpoints are being equipped with more resources for that. The instabilities shown

in the results usually are caused by service upgrades (to deploy fixes in the code) or circumstances where the server

is too busy serving other requests (when the endpoint is a production system not dedicated to tests). Also,

underpowered hardware can limit the transaction rates.

GWD-E.154 8/18/2009

gsm-wg@ogf.org - 13 -

Another SRM test program [http://sdm.lbl.gov/wiki/Software/SRMTester/] was developed at LBNL, and is being

run several times daily, and the results published [http://datagrid.lbl.gov]. The testbed includes five different server

implementations: BeStMan, CASTOR, dCache, DPM, and StoRM. It currently has 24 available endpoints located in

the US and Europe. In particular, 5 endpoints are the main developmental endpoints. These endpoints have been

tested for over a year and a half. The other endpoints have been added recently.

In Figure 11, the summary of the test results [http://datagrid.lbl.gov/v22/] on testing sites is shown on the left figure,

and each functional testing result on different dates is shown on the right figure. Figures 12 shows the functional

testing results on the developmental endpoints [http://datagrid.lbl.gov/v22/index-dev.html].

S2 and SRM-Tester compliment each other in that S2 uses C/C++ clients while SRM-Tester uses java clients.

GWD-E.154 8/18/2009

gsm-wg@ogf.org - 14 -

GWD-E.154 8/18/2009

gsm-wg@ogf.org - 15 -

In the Super Computing 2007 and 2008 conferences, SRM implementations successfully demonstrated its

compatibility and interoperability [https://sdm.lbl.gov/bestman/docs/sc08/SC08-SRM.html]. In collaboration with

OGF GIN-WG, WLCG, EGEE, OSG and ESG, we have had multiple sites participating with all currently

implemented SRMs. Figure 13 shows the diagram of the demonstration.

Despite the uniform interfaces, implementation characteristics due to the underlying storage system occasionally

cause confusion to SRM clients and their usage as users sometimes have to take into account at runtime which

storage system at which site they are communicating with. They arise when the underlying storage system has either

different aspects of storage managements that do not map directly to the abstract SRM concepts and interfaces, or

different operational environements that cannot be mapped or exposed to the interfaces. One example is when

srmCopy is supported only in PUSH mode due to the design of the underlying storage system. Clients should know

this information for successful requests before they make an srmCopy request. Recommended way for unsupported

behavior is to handle SRM_NOT_SUPPORTED message as the return status from the server. This is in practice

used in most of SRM implementations.

Through LCG [http://lcg.web.cern.ch/LCG/] and EGEE [http://www.eu-egee.org/] projects, more than 250 SRM

deployments are in production in Europe, Asia, Canada, South America, Australia and Africa, managing more than

10PB (as of 11 Nov. 2008). There are roughly 194 DPM SRMs at 185 sites, 57 dCache SRMs at 45 sites, 6

CASTOR SRMs at 6 sites, 22 StoRM SRMs at 21 sites, and 1 SRM-SRB at 1 site, which is a relatively new

implementation.

In the US, about 70 SRM deployments of dCache SRM and BeStMan SRM are estimated in production through

OSG [http://www.opensciencegrid.org], ESG [http://www.earthsystemgrid.org] and other projects (as of 30 Apr.

2009).

During the extensive work on various SRM implementations and deployments, we have noticed a number of issues.

They have been collected and discussed [https://twiki.cern.ch/twiki/bin/view/SRMDev/WebHome] in the group.

GWD-E.154 8/18/2009

gsm-wg@ogf.org - 16 -

Issues were divided into those that could have been fixed and resolved for minor editorial changes and other

behavioral clarifications, and those feature requests that require new functionalities. Issues that require new

functionalities have been postponed for the next version of the specification. Some of the discussed issues are listed

in Appendix A.

Next version of SRM interface specification has been in discussion. The next version would accommodate issues

that have not been resolved so far and suggestions and features that would promise better storage interface on the

grid.

Other informational documents on topics such as the programmable details of an implementation and SRM testing

details on compatibility and interoperation are in progress as separate documents.

We have described the international collaboration that led to the Storage Resource Manager (SRM) protocol

standard, multiple implementations based on this standard, and the validation processes for checking adherence to

the SRM protocol. The key reasons for the success of adaptation of the SRM standard are: (a) an open protocol,

unencumbered by patents or licensing, (b) an open collaboration where any institution willing to contribute can join,

and (c) a well establish validation process. We have described five interoperating implementations, many of which

are open source. We have described how the SRM provides a standard interface to diverse storage systems to the

Grid, including file systems that support a single disk or disk pools, distributed file systems, as well as hierarchical

mass storage systems.

The SRM protocol supports advanced capabilities, such as dynamic space reservation, that enables advanced Grid

clients to make use of these capabilities. However, since storage systems are diverse, implementation of such

advanced capabilities is optional. On the Grid, SRM is the basis for the Storage Element (SE) specification in the

widely-used GLUE information schema, which allows clients to discover services supporting the desired

capabilities.

In this document, we also described our collaboration in developing and using test tools that have been crucial to the

validation and the interoperability of the implementations. A large range of tests was developed and used over

multiple implementations, from testing the correctness of individual functions in the API to testing complex use

cases and control flow. The testing tools helped in not only in discovering interoperability before the users do, thus

leading to improved experience of the SRM services in the users’ view, but also allowed advanced optional features

to be tested incrementally as they become supported by each implementation.

Security Issues are outside the scope of this document. For security considerations of the SRM specifrication, please

refer to the GRD-R-P.129 document.

Alex Sim

Lawrence Berkeley National Laboratory

1 Cyclotron Road, MS 50B-3238

Berkeley, CA 94720, USA

Email: ASim@lbl.gov

Arie Shoshani

Lawrence Berkeley National Laboratory

1 Cyclotron Road, MS 50B-3238

Berkeley, CA 94720, USA

Email: Shoshani@lbl.gov

Jens Jensen

Rutherford Appleton Laboratory

Harwell Science and Innovation Campus

GWD-E.154 8/18/2009

gsm-wg@ogf.org - 17 -

Oxon, OX11 0QX, UK

Email: jens.jensen@stfc.ac.uk

Flavia Donno

Geneva,

Email: Flavia.Donno@cern.ch

Authors of the SRM implementations are people who have been involved in SRM over the years. The list includes,

by institution:

Patrick Fuhrmann, Tigran Mkrtchan

Matt Crawford, Dmitry Litvinsev, Alexander Moibenko, Gene Oleynik, Timur Perelmutov, Don Petravick

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that might be

claimed to pertain to the implementation or use of the technology described in this document or the extent to which

any license under such rights might or might not be available; neither does it represent that it has made any effort to

GWD-E.154 8/18/2009

gsm-wg@ogf.org - 18 -

identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses to

be made available, or the result of an attempt made to obtain a general license or permission for the use of such

proprietary rights by implementers or users of this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other

proprietary rights which may cover technology that may be required to practice this recommendation. Please address

the information to the OGF Executive Director.

This document and the information contained herein is provided on an “As Is” basis and the OGF disclaims all

warranties, express or implied, including but not limited to any warranty that the use of the information herein will

not infringe any rights or any implied warranties of merchantability or fitness for a particular purpose.

Copyright (C) Open Grid Forum (2009). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on

or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole

or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included

on all such copies and derivative works. However, this document itself may not be modified in any way, such as by

removing the copyright notice or references to the OGF or other organizations, except as needed for the purpose of

developing Grid Recommendations in which case the procedures for copyrights defined in the OGF Document

process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors or

assignees.

[BGL07] O. Bärring, R. Garcia Rioja, G. Lo Presti, S. Ponce, G. Taurelli, D. Waldron, CASTOR2: design and

development of a scalable architecture for a hierarchical storage system at CERN, CHEP, 2007

[CCD06] Corso, E. and Cozzini, S. and Donno, F. and Ghiselli, A. and Magnoni,, L. and Mazzucato, M. and Murri,

R. and Ricci, P.P. and Stockinger, H. and Terpin, A. and Vagnoni, V. and Zappi, R., StoRM, an SRM

Implementation for LHC Analysis Farms Computing in High Energy Physics, CHEP, 2006

[DD07] A. Domenici, F. Donno, A Model for the Storage Resource Manager, Int. Symposium on Grid Computing

2007

[MSB04] G. J. Myers, C. Sandler (Revised by), T. Badgett (Revised by), T. M. Thomas (Revised by) The ART of

SOFTWARE TESTING 2 edition, December 2004

[SHO07] Arie Shoshani et al, Storage Resource Managers: Recent International Experience on Requirements and

Multiple Co-Operating Implementations, 24th IEEE Conference on Mass Storage Systems and Technologies (MSST

2007), September 2007, San Diego, California, USA. IEEE Computer Society 2007

[SSG03] A. Shoshani, A. Sim, and . Gu, Storage Resource Managers: Essential Components for the Grid, in Grid

Resource Management: State of the Art and Future Trends, Edited by Jarek Nabrzyski, Jennifer M. Schopf, Jan

weglarz, Kluwer Academic Publishers, 2003

Issues have been collected and discussed [https://twiki.cern.ch/twiki/bin/view/SRMDev/WebHome] in the group.

Issues were divided into those that could have been fixed and resolved for minor editorial changes and other

behavioral clarifications in the v2.2 specification, and those feature requests that require new functionalities. They

have been postponed for the next version of the specification.

Here’s a partial list of the discussed issues.

14.1 Fixed Issues

GWD-E.154 8/18/2009

gsm-wg@ogf.org - 19 -

These issues have been discussed and fixed in the current specification.

•

•

•

•

•

•

•

•

•

•

•

•

•

14.2 Deferred Issues

These issues have been discussed, and the discussion and/or the resolution have been deferred to the next version of

the specification due to the new functional requirements or production deployment schedules.

•

•

•

•

•

•

14.3 Clarified Issues

These issues have been discussed and clarified in the current v2.2 specification.

•

GWD-E.154 8/18/2009

gsm-wg@ogf.org - 20 -

•

•

•

•

•

•

•

•

•

•

•

GWD-E.154 8/18/2009

gsm-wg@ogf.org - 21 -

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

GWD-E.154 8/18/2009

gsm-wg@ogf.org - 22 -

•

•

