
GFD-I.121 D. Berry, NeSC
OGSA Data Working Group A. Luniewski, IBM
 M. Antonioletti, EPCC

December 5, 2007

OGSA
®
 Data Architecture

Status of this Document

This document provides information to the community regarding the specification of the data
architecture of the Open Grid Services Architecture (OGSA). It does not define any standards
or technical recommendations. Distribution is unlimited.

Copyright Notice

Copyright © Open Grid Forum (2006, 2007). All Rights Reserved.

Trademarks

OGSA is a registered trademark and service mark of the Open Grid Forum.

Abstract

The Open Grid Services Architecture (OGSA) presents a vision of a broadly applicable and
adopted framework for distributed system integration, virtualization, and management. OGSA
provides several capabilities, one of which is data management. This document, produced by
the OGSA Data Working Group within the Open Grid Forum (OGF), gives a high-level
description of the interfaces, behaviors, and bindings for manipulating data within the broader
OGSA architecture. The functionality described covers the storage, movement, access,
replication, caching and federation of files and databases.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 2

Contents

1 Introduction..4

1.1 Terminology..4

1.2 Services and interfaces ...4

1.3 Scope..5

1.4 Document structure ...6

2 Overview..7

2.1 Levels of abstraction..7

2.2 Client Libraries ...7

2.3 Virtualized Resources..7

2.4 Usage Patterns ..8

2.5 Moving data: Transfer and Replication ..9

2.6 Transfer Protocols .. 10

2.7 Higher-level services .. 10

2.8 Virtual Organizations .. 11

2.9 Policies .. 12

2.10 Storage .. 12

2.11 Denotation of Architectural Components .. 13

2.12 Summary ... 13

3 Architectural Context ... 14

3.1 OGSA Profiles... 14

3.2 Naming .. 15

3.2.1 WS-Addressing .. 16

3.2.2 WS-Naming.. 16

3.2.3 Directory Services: RNS ... 16

3.3 Management of distributed resources... 16

3.4 Security.. 17

3.5 Notification of Events.. 17

3.6 Resource Discovery ... 17

3.7 Policies and Agreements ... 17

3.8 Provisioning... 18

3.9 Execution Management Services .. 18

3.10 Reservation Services.. 18

3.11 Transactions.. 18

3.12 Sessions .. 19

3.13 Information Services... 19

4 Security... 20

5 Policies ... 24

6 Data Description .. 25

6.1 Format Description ... 25

6.2 Resource Description ... 26

6.3 Third-party descriptions.. 27

6.4 Provenance ... 27

7 Data Transfer ... 29

7.1 Data Transfer Interfaces... 30

8 Data Access ... 33

8.1 The Generic Data Access Interface .. 33

8.2 The Unstructured Data Access Interface .. 34

8.3 Structured Data Access Operations .. 35

8.4 Conclusions... 36

9 Storage Management .. 37

9.1 The Storage Resource and Service .. 38

9.2 Storage Service Interfaces... 39

9.3 Storage Service Properties .. 40

9.4 Storage Space Properties .. 41

9.5 Site and VO management.. 41

9.6 Security Discussion .. 42

9.7 Interaction of Storage and Transfer... 42

10 Cache Services .. 44

10.1 Cache Models ... 44

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 3

10.2 Creating Caches ... 44

10.3 Cache Consistency... 45

10.4 Cache Management ... 45

11 Data Replication... 47

11.1 Replication Modeling .. 47

11.2 Creating Replicas ... 48

11.3 Other Operations on a Replication Service .. 48

11.4 Discovering Replicas .. 49

11.5 Validation of Registered Replicas.. 50

11.6 Replica Consistency ... 50

11.7 Managing Replicas ... 51

11.8 Replication Properties .. 51

12 Data Federation ... 52

12.1 Creation of Federations.. 53

12.1.1 Data Transformation.. 53

12.2 Adding Input Sources to a Federation... 54

12.3 Other Changes to a Federation ... 55

12.4 Access to the Federation’s Data.. 56

12.5 Updates to Policy .. 57

12.6 Access to the State of the Federation ... 57

12.7 Security Considerations ... 57

12.8 Standardization Considerations... 58

13 Data Catalogs & Registries ... 59

13.1 A model for data catalogs .. 59

13.2 Publication... 60

13.3 Classification ... 60

13.4 Query ... 61

13.5 Currency .. 61

13.6 Security and Hierarchies .. 61

14 Conclusions and Future Work... 62

15 Appendix: Summary of General Interfaces .. 63

15.1 Policy Operations.. 63

15.2 Data Transfer Operations... 63

15.3 Data Access Operations... 63

15.4 Storage Operations... 64

15.5 Cache Service Operations ... 65

15.6 Replication Operations ... 65

15.7 Federation Operations.. 65

15.8 Registry Operations .. 65

16 Appendix: Interface Mappings to Existing Specifications ... 66

16.1 Data Access Mappings... 66

16.2 Storage Management Mappings ... 67

17 Appendix: Specifications referred to in this document .. 68

17.1 Data Access Specifications.. 68

17.2 Data Description Specifications ... 68

17.3 Data Transfer Specifications.. 68

17.4 Storage Specifications.. 69

17.5 Infrastructure Specifications... 69

17.6 Transaction Specifications ... 69

17.7 API Specifications... 69

18 Glossary.. 70

19 Contributors .. 74

19.1 Author Information .. 74

19.2 Acknowledgements... 74

20 Intellectual Property Statement... 75

21 Disclaimer... 75

22 Full Copyright Notice ... 75

23 References ... 76

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 4

1 Introduction

This document is a product of the OGSA Data Architecture Working Group (OGSA-D WG) of
the Open Grid Forum (OGF). It describes and guides a subset of the design of the data
management capability of the Open Grid Services Architecture (OGSA); it addresses the
storage, movement, access and manipulation of data within an OGSA framework. The
OGSA-Data WG has worked in conjunction with the OGSA WG, which guides the overall
development of OGSA.

This informational document is one component of a set of documents that, over time, will fully
define OGSA, both informatively and normatively. For an overview of the OGSA architecture,
see the Open Grid Service Architecture version 1.5 [OGSA]. The full document set, the
status, and the planned evolution of OGSA are described in Defining the Grid: A Roadmap for
OGSA Standards [OGSA Roadmap]. Of particular relevance is a companion to the current
document that will describe data architecture scenarios, which is currently work in progress1.

The authors intend that this data architecture will incorporate and integrate relevant insights
and documents from other groups, especially other OGF Working Groups. For example, it
already incorporates work from the Grid File System Working Group, the Database Access
and Integration Working Group, the OGSA ByteIO Working Group, the OGSA Data
Movement Interface Working Group and the Grid Storage Management Working Group.
However, the emphasis has been on producing a coherent architecture, so we do not
guarantee that everything produced by these other groups has been adopted.

1.1 Terminology

The OGSA Data Architecture Working Group is comprised of members from many different
organizations and communities within which it is common for a term to have many different
interpretations. Even the term “data” is interpreted differently or at least given different
emphases, as discussed in the “Scope” section below. Thus, the OGSA Data WG has taken
great care to define the terms that it uses. In this document, as in other OGSA documents,
italicized terms are defined in a glossary; see Section 18. For particularly common terms,
such as “service” or “interface”, only the first few occurrences are in italics. Many of these
entries also appear in the main OGSA Glossary document [OGSA Glossary].

In this document the phrase “this architecture” refers to the OGSA Data Architecture
described in this document.

The authors have noted that the term metadata is one that causes particular confusion in
discussions about data. So, to avoid any confusion about the term, we note that its primary
meaning is “data about data”, which can include descriptions of data structure, provenance
information (i.e. where the data came from and how it was obtained) and third-party
annotations. In the context of service-oriented architectures, the term is also used to describe
properties of services or of the resources that they provide.

In this document, we attempt to minimize the use of the term “metadata”. Instead, we prefer
to use more precise terms such as “data description”, “service description” or “resource
description”.

1.2 Services and interfaces

In OGSA terminology, services are software components, participating in a service-oriented
architecture, that provide functionality and/or contribute to realizing one or more capabilities.
The operations that a service offers are specified by its interface. The OGSA architecture
defines common interfaces for similar types of service, thereby hiding differences in their
properties and operations, allowing them to be viewed and/or manipulated in a common way.
These common interfaces virtualize the resources provided by the services to the clients of
those services. Figure 1 presents a schematic overview of the inter-relationship between
these terms.

1 https://forge.gridforum.org/projects/ogsa-d-wg/

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 5

Figure 1: Services, interfaces and resources

This document primarily describes the interfaces that virtualize the services managing the
transfer, storage, access and federation of data resources. It also describes interfaces for
data location management services such as the staging, caching and replication of data. It
discusses some of the underlying relationships that must be maintained by services
implementing OGSA data capabilities. It also demonstrates how appropriate combinations of
data services can realize these capabilities.

Virtualization also allows data functionality to be provided by computational resources or other
types of resource. For example, a service might implement a query by calculating a result
value on the fly - it is not relevant to the data access virtualization whether the data is
generated on the fly or whether it is materialized and stored (although this may be revealed
by a corresponding management interface or properties that describe the currency of that
data).

If a data service is associated with more than one data resource, it may be necessary to
disambiguate the data resource at which messages are targeted. The OGSA naming scheme
can be used to name each resource provided by a service. Many existing data resources,
such as database management systems, already have established names and lifetimes which
may not be controlled by the service layer, for example the names of databases and tables in
relational database management systems. This may require alternative means for exposing
the names of data held in these resources.

1.3 Scope

The OGSA Data architecture presents a “toolkit” of data services and interfaces that can be
composed in a variety of ways to address multiple scenarios. These services and interfaces
include data access, data transfer, storage management, data replication, data caching, and
data federation.

The components of the data architecture can be put together to build a wide variety of
solutions. A companion document on data architecture scenarios will describe a number of
such uses. This set of scenarios is intended to be indicative, not all inclusive. However, it is
a goal of the current document to describe the data architecture in sufficient detail and
specificity that interoperable data architecture implementations are the norm, rather than the
exception.

Client

Interface 1

Interface 2

Resource I

Resource II
Interface 1

Service A

Interface

Service

Resource

An interface of a
service

A service

A data resource A service using a
resource

Client

An API or service
calling an interface

Key: A client application
or service

Service B

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 6

When reading this document, it is important to note that the term “data” might fall under many
categories including the following:

• A sequence of bytes, without name or interpretation of structure;

• Files or sets of files, without interpretation of their contents;

• Structured data, which may be contained within files, streams or database
management systems.

The scope of topics needed for a complete data architecture is enormous. To cover the entire
scope of data would take far longer than is reasonable. Thus, this initial version of the
document and the architecture that it describes is limited in its scope. The primary focus of
this version of the architecture is for data that is held in file systems and data that is held in
database systems. The document does not discuss queries and transformations over data
streams – a very important data source but one whose definition and incorporation is beyond
the scope of this initial version. We also do not address sensor data, a very important sub-
case of data streams.

Similarly, this initial version of the document does not describe all the data-oriented services
that may be required to build more advanced Data Grid functionality. The omissions include
common systems such as distributed file systems, “metadata” management systems, and
distributed personal space management systems. We also do not discuss session
management, integration with notification mechanisms, workflow systems or provisioning
services.

The interfaces and services described in this document are intended to form part of the larger
OGSA architecture. We rely on related working groups to describe many key parts of the
architecture, including naming, notification mechanisms, provisioning, security and others.
These dependencies will be sketched in Section 3.

We expect this document to evolve over time, with future versions extending the scope of
topics covered and the range of services described. For a further vision of how data services
could form part of a comprehensive Grid solution, from a database-centric viewpoint, see
[DAIS].

1.4 Document structure

The rest of the document is structured as follows. Section 2 gives a brief overview of the
various aspects of the data architecture. Section 3 provides background for readers
unfamiliar with the OGSA architecture in general, by describing the non-data parts of the
OGSA architecture that are built upon, referred to or used by the capabilities presented in this
document. Readers familiar with the OGSA architecture should feel free to skip this section.

Section 4 discusses security issues, highlighting those that particularly apply to data, and
Section 5 describes operations for setting policies. Section 6 discusses how data is
described within the architecture. This includes the description of data formats and data
resources by the properties of a data service. It also includes third-party descriptions that
may be stored in a registry.

Sections 7 to 13 each describe in detail one of the capabilities that are realized by this data
architecture. For each of these capabilities, the relevant section starts with a summary table
of the operations provided by this capability and then explains how the capability is realized
and gives a detailed description of the relevant services, operations and virtualizations.

The description of capabilities begins with the transfer of data between services or resources,
moves on to the accessing of data in resources, and then follows with the management of
storage resources. Further sections discuss caching, data replication and federation
services, and data catalogs.

Section 14 is a brief conclusion. Appendix 15 summarizes the interfaces described in this
document. Appendix 16 maps some of these interfaces to items in existing specifications.
Appendix 17 gives a guide to the specifications referenced in this document. Finally, the
glossary gives definitions of the terms used in this document.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 7

2 Overview

In this section we briefly discuss key aspects of the data architecture to give the reader an
overview. In many cases these aspects are discussed in greater detail in sections 4 to 12. In
some cases, however, the aspect is discussed only here.

2.1 Levels of abstraction

A distributed system may contain a variety of data resources. These resources may use
different data models to structure the data, different physical media to store it, different
software systems to manage it, different schema to describe it, and different protocols and
interfaces to access it. The data may be stored locally or remotely; may be unique or
replicated; may be materialized or derived on demand. OGSA data services can provide
different levels of virtualizations over these data resources. Virtualizations provide abstract
views that hide these distinctions and allow the data resources to be manipulated without
regard to their nature.

Conversely, although the data services allow the clients to ignore these distinctions, some
clients may prefer to exploit them. For example, a client may wish to make use of a particular
query language for a given database, or to specify the location of a particular data resource to
use. One client may require native access to the data, while another needs to tune the
performance parameters of the data resource. To support such diverse clients, a data service
may provide multiple interfaces or offer several options for query languages, transfer
protocols, or such like. These layered interfaces allow clients to choose the combination of
performance and abstraction that suits them best.

We have found that different communities apply different emphases on the capabilities and
levels of abstraction that Grid data services must provide for the data they expose to Grids.
Some examples will be given in our companion scenarios document. For the OGSA
architecture to be truly general, it must be able to operate under all of these example
scenarios and more. Fortunately, there are several commonalities among the required
functionalities that allow us to propose an integrated architecture. These are outlined in the
remainder of this section.

2.2 Client Libraries

While access to data resources is possible using the service interfaces directly, we also
expect that OGSA data services will be accessed via APIs. Libraries for use by client
applications could map these APIs to the corresponding messages in the Service Oriented
Architecture (SOA) framework. Often these libraries will implement existing, legacy, APIs.
This approach will allow easy integration of OGSA data services with existing applications for
backwards compatibility.

The key idea here is a front-end to the data supported by an implementation that speaks to
the service-oriented architecture. As examples, a Grid-aware NFS V3 library [NFS] will look
like a standard NFS mount point, a caching service could be used by NFS or CIFS libraries
[CIFS], a POSIX interface [POSIX] could make remote files seem local, and a JDBC [JDBC]
or ODBC [ODBC] interface will make Grid database resources appear local.

Other client libraries may be specifically written with Grids in mind. An example is Globus
XIO [XIO], which provides a portable API to swappable IO implementations. This advanced
interface can handle asynchronous operations in a threaded environment.

Although the architecture is designed to meet the needs of multiple client libraries, the
definition of the library services that map from APIs to service operations falls outside the
scope of this document.

2.3 Virtualized Resources

The basic entities of this data architecture are illustrated in Figure 2. Resources are managed
by data services that may:

• provide data access interfaces,

• provide data source or data sink interfaces for data transfer operations, and

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 8

• describe data via properties (data description).

Some resources, such as file systems and databases, are storage-based and this
architecture also includes interfaces for storage management.

Data access provides a means for a client to manipulate data (input or output) via a service,
data that is stored in a data resource. A client can specify the data that is of interest. For
example, a client might specify the subset of a file that is of interest or provide a SQL query to
select the data that is of interest. Data might be returned in the response message to a data
access operation if the amount returned is small. Alternatively, a data transfer service might
be used to move large amounts of data using transfer mechanisms such as GridFTP or
storage level data movement facilities.

Data source and data sink interfaces provide means for connecting data resources via a data
transfer, as described in Section 2.5.

All these interfaces are used by clients, which may be other services, or APIs such as those
contained in SAGA, POSIX and NFS specifications.

Figure 2: Basic entities in the data architecture

Figure 2 presents a schematic and abstract overview of the entities and interfaces in the data
architecture. In reality, some services may only support an access interface or a transfer
interface. Some operations may combine functionality from several interfaces, e.g. some
access operations might specify that the results should be transferred to another resource; for
particularly small transfers, operations might not require a separate data transfer service.

Generic management and provisioning interfaces have been omitted, as have security
services and their related permission decision points.

2.4 Usage Patterns

Services using access interfaces generally fall under one of the following interaction patterns:

• Request-response: a client sends an access request and any data generated is sent
back to the consumer either via a response message or via a data transfer
mechanism. Alternatively, the request may contain data which is to be added to the
resource and the response will return the status of this operation back to the client.

Storage

Access
Sink/

Source
Description

Access
Sink/

Source Description

Data
Service

Data
Service

Storage
Manageme

Managed Storage

Stored Data
Resources

Other Data
Resources

Other services or client (non-OGSA) APIs

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 9

• Third party delivery: a data request includes instructions for delivering the data to a
third party via some data transfer mechanism, such as the Data Transfer mechanism
described in this document. This allows large amounts of data to be transferred
efficiently through some suitable protocol.

• Factory: a request sent by a client produces a new resource that is populated by the
results of the request. The new resource is created by the service and is maintained
by the service. The data in this new resource may be collected at some later stage by
the same client or a third party. This forms an indirect form of third party delivery.

• Bulk load: data is uploaded to a data resource through a service by a client or third
party, using a data transfer mechanism.

In this version of the architecture we predominantly concentrate on the first three patterns.

2.5 Moving data: Transfer and Replication

The data architecture has to be able to handle the transfer of large amounts of data to and
from resources. Large-scale data can be transferred using dedicated protocols, as using
SOAP messages would be far too slow. Data transfer implementations must transfer data in
as efficient a manner as is practical.

Figure 3 shows how data transfer fits within the data architecture. One use of data transfer is
to return the result of a data access operation when the result is (or is expected to be) too
large for SOAP to handle efficiently. This is indicated in the diagram below by the data
transfer arrow between the two data resources. This allows the client to access the data from
a local resource.

Figure 3: Transfer and replication in the data architecture

Dedicated transfer services can be used to control the transfer of data between resources.
These services invoke operations on the data source and data sink interfaces to set up and

Transfer

Access
Sink/

Source
Description Access

Sink/
Source

Description

Transfer

Additional

Key:

Data
Service

Data
Service

Transfer of data
to/from
resources

Data Resource Data Resource

Replication

Replication

Other services or client (non-OGSA) APIs

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 10

initiate the transfer. Transfer operations are not restricted to linking resources that are
managed by data services.

Thus Data transfer provides an explicit and controllable means by which data may be moved
from a data source to a data sink (i.e. a consumer). Data transfer services control the transfer
of data between resources and/or consumers and provide a transfer control interface.

Data that is encoded in a defined syntax is called a data set. For example a data set might be
used for externalization from a resource, ready for transfer. So, for example, a data access
operation could select data which is then encoded as a data set, and then a data transfer
mechanism is invoked to manage the transfer from the resource to the client or another
consumer. Actual transfer of data uses an appropriate protocol and takes as expeditious a
path as possible.

Data replication services can use transfer services to maintain replicas of data in multiple
locations, to improve availability and/or performance. They also need to maintain registries of
these replicas; these registries are not shown here.

2.6 Transfer Protocols

There are many places in the data architecture where protocols will be used, typically “on the
wire”, to allow components of the data architecture to communicate, interact and to move
data. The data architecture is, in general, agnostic about the choice of communication
protocol.

The protocols used for sending operations and notifications between components are those
specified in the general OGSA architecture. For data transfer, rather than specifying a single
protocol, this document allows services to offer a range of protocols. Clients can specify or
negotiate which protocols to use for a given transfer operation. (The details of the negotiation
mechanism are not discussed in this document).

However, some of the standards that the data architecture is built on may choose to specify
specific protocols of interaction, either for performance or interoperability reasons. In general,
the data architecture views such specificity as being undesirable but should a group defining
a standard decide to be so specific, we do not preclude the use of such a standard in the data
architecture.

2.7 Higher-level services

The data architecture allows extra layers of virtualization to be built using the same interfaces
as the basic services to hide more complex behaviors as shown in Figure 4. Cache services
can collaborate with other services to provide better performance when accessing remote
data. Data federation services combine access to data from several data services. Clients
may access these composite services in the same way as any other data service without
needing to know the details of how they access the underlying data.

Figure 4: Composite entities in the data architecture

Access
Sink/

Source
Description

Data
Federation

Access
Sink/

Source
Description

Cache

Access
Sink/

Source
Description

Data
Service

Access
Sink/

Source
Description

Data
Service

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 11

As with the previous diagrams, this is necessarily schematic and abstract. For example, it
does not show the data transfer operations between the services involved in a data federation
or between a cache service and its source. Nor does it show how a data federation service
will handle a call to its data sink or data source interfaces. Some services may not offer all
these interfaces. As before, generic management and provisioning interfaces have been
omitted, as have security services and their related access decision points.

It is worth noting that some resources may natively provide capabilities such as caching, data
replication or data federation, outside the OGSA data architecture. For example, several
commercial database vendors provide their own replication or federation functionality. To a
client of the corresponding OGSA service, it may not be relevant whether the capability is
provided in a proprietary manner or by the composition of OGSA services; the implementation
details are hidden behind the appropriate OGSA interfaces.

2.8 Virtual Organizations

The OGSA Glossary [OGSA Glossary] defines a virtual organization as follows:

A virtual organization (VO) comprises a set of individuals and/or institutions having
direct access to computers, software, data, and other resources for collaborative
problem-solving or other purposes.

VOs are a concept that supplies a context for operation of a Grid that can be used to
associate users, their requests, and a set of resources. The sharing of resources in a
VO is necessarily highly controlled, with resource providers and consumers defining
clearly and carefully just what is shared, who is allowed to share, and the conditions
under which sharing occurs.

Virtual organizations are one of the core concepts of Grids. Data architecture components
are there to help construct VOs. A VO might consist of an entire institution (e.g., a company
or a university), a subset of that organization or be composed of many individuals from many
disparate institutions. These individuals may be explicitly named or they may be associated
with the VO by being part of an organization (e.g., a division of a company, a department in a
university) that participates in the VO. The data architecture must be able to support these
different types of hierarchies used to construct possible VOs.

Here we briefly mention some areas of the data architecture where VOs must be taken into
consideration. The remainder of this document provides details on these and other aspects
of the architecture from a VO perspective where appropriate.

• Security. Security, and privacy, of data is critical to the proper operation of a Grid and
to its acceptance as a computing infrastructure. Classically, security has had its
primary focus on security within an institution. The emergence of VOs as a critical
component of Grids makes it clear that security must be addressed both within an
organization as well as within cross-organizational VOs. This has implications both
for the architecture of security within a Grid as well as how that security architecture
interacts with the native security mechanisms of legacy components of the Grid and
to the security policies enforced within an institution. At the core of these concerns
are cross-organizational authentication and authorization. Security is discussed
further in Section 4

• Policies. The policies that control the operation of a Grid must be able to express the
needs of a VO. This implies that policies must be institutional, vendor and
implementation neutral.

• Storage. The data within a Grid has its permanent home within storage. All
participants in a VO have a vested interest in that data. Thus the storage architecture
must meet the needs of those participants. This has implications on security (see
above) as well as how data is moved into and out of storage. Issues of storage
management, accounting/charging must also be properly supported within a VO.
These are normally handled within a storage system to meet the needs of a particular
institution. The VO imposes the need to deal with these issues in contexts that may
be larger, or smaller, than those classically handled by storage.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 12

2.9 Policies

Policies are documents that describe or configure the behavior of a service. For data
services, policies may specify the availability, performance, consistency or other aspects of
the services. They may specify who can access data, the kinds of access allowed and any
restrictions on the transfer of that data.

The quality of service provided by data services is an important subset of the policies that
must be reflected in the data architecture. They include those related to performance,
reliability, and data consistency.

Performance is a critical requirement for effective use of the Grid by real world applications.
Performance properties include, but are not limited to: expected response time to an access
or update request, throughput for data transfers, and number of access requests that can be
handled per second.

Reliability properties reflect the ability of the data service to operate over long periods of time.
For instance, what is the expected time between outages of the data service, the expected
time a service will be down, the amount of data that might be lost if an outage occurs and the
ability of the data service to continue operation in the face of disaster (e.g., the data center
holding the data service is vaporized).

Security is a key consideration in Grid systems. Security policies specify who may access
particular data, the locations to which it may be moved and under what constraints. Section 4
discusses security considerations in more detail.

Finally, there are many cases in which changes to one data service may need to be reflected
in an associated service. Examples discussed within this document include data replication
services, cache services and data federation services. The system will automatically maintain
some degree of consistency between the data stored in the base service and the data
presented by the derived data services with this consistency maintained in the presence of
updates to the base service. The properties that describe the degree to which base and
derived data services are kept in synchrony are called the data consistency properties.

We suggest the following list of policies to govern data service operation. These policies will
need to be formally defined and specified by an as yet to be determined standards body.
Some of these are static aspects of the data service; others may fluctuate with time.

• Throughput: the number of access requests that can be satisfied per unit time.

• Response time: the time allowed to satisfy an access request.

• Availability: the percentage of time that the service must be up.

• Recovery time: time allowed for the service to recover from a failure.

• Data resiliency: a specification of the effort the service should make to ensure that
data is not lost in the face of failures.

• Access accuracy: if the primary source of some data is not available, how should the
service act? Report an error? Find an alternate source (with potentially stale data)?
Return partial answers? Another term for this policy might be degradation of
answers.

• Currency of data: can the data used by the service, and the data returned, be out of
date? If so, by how much?

Services that support one or more of these policies are responsible for enforcing these
policies. Note that this list must be extensible so this list is necessarily incomplete.

2.10 Storage

Data resources, data services and other services described in this architecture will use
storage. This storage might be used to hold data that represents the temporary, dynamic
state of the resource. This storage might be used to hold long lasting, persistent, data of
interest to users of the Grid. This storage may hold long lasting data that represents
persistent state maintained by and for the operation of the service.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 13

It is up to each service to describe what requirements it has on the storage it will use for its
transient and persistent storage. A service may choose to provide means as part of its
creation and management interface to allow client control of the storage spaces used by the
service.

2.11 Denotation of Architectural Components

There are a number of places in this document where it is necessary to name non-
addressable entities that are part of the architecture. For example, there needs to be a
means to name the query languages supported for access to a data service, or the protocol
used by a data transfer service, or the access interface to be provided by a newly created
service. These entities will be named by URIs (Universal Reference Identifiers [URI]). We do
not mandate how these URIs are generated aside from insisting that each URI should denote
a unique entity. We recognize that URIs will be generated in a distributed manner by different
standards groups, by different vendors and even by different clients of the data architecture.
To avoid duplication of these names, and to foster reuse of previously named entities, we
encourage OGF to create a centralized registry of URIs where the URIs for architecturally
significant entities can voluntarily be registered.

2.12 Summary

This section has provided an overview of some key aspects of the data architecture. The next
section provides an overview of the OGSA architecture which is the context for the data
architecture. These two chapters provide the background for reading the remainder of this
document.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 14

3 Architectural Context

The data architecture presented in this document works within the framework provided by the
Open Grid Services Architecture (OGSA), which is a service oriented architecture built on
Web Services. This section is intended for readers who are not familiar with the basic ideas
of the OGSA architecture. It gives a brief overview of the elements of the OGSA architecture
and underlying Web Service specifications that are particularly relevant to the data
architecture. For more information about these areas, readers should consult the OGSA
architecture document [OGSA].

The OGSA architecture sets out to construct interoperable, portable, and reusable
components and systems used to construct VOs in dynamic and heterogeneous
environments. Thus, the architecture supports resource virtualization, common management
capabilities, and resource discovery, all using standard protocols and schemas. It also aims to
achieve resource sharing across organizations, to which end it supports a global naming
system, metadata services, site autonomy and the collection of resource usage data. It also
makes explicit quality of service requirements and agreements.

Web Service specifications provide the default messaging layers and service specification
languages for a service-oriented architecture. The OGSA architecture builds on these
foundations with specifications for, amongst others:

• Naming and addresses
• Management of distributed stateful resources
• Security
• Notification of events
• Resource discovery
• Policies and agreements
• Reservation and scheduling

The OGSA data architecture describes particular data-oriented interfaces to resources and
services within this overall framework. It also specifies dependencies on, and specializations
from, other interfaces in the general architecture.

3.1 OGSA Profiles

The OGSA WG follows the lead of the Web Services Interoperability Organization (WS-I)2
organization by defining normative interoperability profiles. These documents are guidelines
for ensuring consistent and interoperable use of selected specifications. By developing a
comprehensive and consistent set of OGSA Profiles that together address all of the required
Grid capabilities, the OGSA WG will eventually produce a normative definition of the OGSA
architecture.

The first Profile is the OGSA WSRF Basic Profile [OGSA WSRF], which is based on the Web
Services Resource Framework (WSRF) and Web Services Notification (WSN) family of
specifications. These describe mechanisms for defining and accessing properties, managing
lifetimes, and sending notifications. Equivalent profiles based on the WS-Management
specifications [WS-Management] may be developed as a parallel activity. Interface
specifications of OGSA services treat the underlying mechanism as orthogonal to the
properties that are exposed. Thus each service interface could replace the plumbing
mechanism without affecting the specification of what information is made available. The
architecture may be implemented on different underlying infrastructures simply by varying the
choice of profile – although of course this will restrict interoperation between such
implementations.

The OGSA WG is also specifying the OGSA Security Profiles [OGSA-BSP-Core] [OGSA-SP-
Secure]. As the OGSA WG agrees other such basic profiles, we expect that future versions
of the data architecture will embrace them. Indeed, in the future we expect to see normative
OGSA Data Profiles to complement the current document, which is an informational
document. The OGSA Profile Definition [OGSA Profile Definition] provides guidelines to be
used when developing Profiles.

2 http://www.ws-i.org.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 15

3.2 Naming

There are many reasons why we need to name entities in a Grid. For example, we need to
uniquely identify services that we interact with; to log operations for auditing purposes, to map
data objects to storage, to map abstract names to (possibly multiple) physical locations, to
persist entities in long-term storage, to record the provenance of data, to catalog and search
for entities, and many other tasks besides.

Within the OGSA Data Architecture a large number of entities, such as services, resources,
databases, results, etc. require naming. These may include, but are not limited to, the types
of entities in Table 1:

caches namespaces roles

catalogs naming schemes schemas

content identifiers networks schema mappings

data formats people security contexts

data streams policies security tokens

database tables queries service level agreements

databases query result row sets service types

file directories references services

file locations registries storage (space)

files replicas transactions

identities repositories transformations

languages resolvers transport protocols

locales resource locations user defined entities

metadata resources vocabularies

Table 1: Nameable entities

The OGSA work on naming recognizes three levels of name: human-oriented, abstract
names, and address. From the OGF OGSA Glossary [OGSA Glossary]:

• Name – is an attribute used to identify an entity. In OGSA naming, there are three
types of names: human-oriented names, abstract names, and addresses:

o Human-oriented name – is based on a naming scheme that is designed to
be easily interpreted by humans (e.g. human-readable and human-parsable).

o Abstract name – is a persistent name suitable for machine processing that
does not necessarily contain location information. Abstract names may be
dynamically bound to addresses.

o Address – specifies the location of an entity.

From a data services point of view, the ability to attach names (where possible both human
readable and globally unique) to data resources is of key importance. It enhances readability
of Grid applications and commands, provides flexibility of use and configuration of
applications, and enhances the user experience.

There are a number of requirements on a naming scheme. For example, it should be
autonomous, scalable, distributed, secure, reliable, trusted, and have global scope. In
addition it is desirable that the naming scheme (and name resolution service) should be fast,
efficient, extensible and be capable of being internationalized. It should also be remembered
that there will be a requirement to name data that is being generated on the fly, as well as
data that has already been materialized and stored. A naming scheme that is not practical to
use and does not include these properties is less likely to gain widespread use.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 16

3.2.1 WS-Addressing

The lowest level of naming in the OGSA scheme is the notion of an endpoint address. The
OGSA architecture mandates the use of WS-Addressing endpoint references (EPR) [WS-
Addressing-core] to refer to a specific Grid endpoint. Because these endpoints can be highly
dynamic in time and space (changing as resources migrate, fail and restart, etc.), thus
changing the mapping from abstract name to EPR, it is expected that a naming scheme or
any other binding agent will also include some sort of run-time bind and rebind semantic on
top of this. WS-Naming [WS-Naming] (see below) provides such a mechanism for rebinding
EPRs, as well as a mechanism for including abstract names within EPRs.

As noted in Section 1.2, many existing data resources, such as database management
systems, have established names and lifetimes that are not necessarily accessible via the
OGSA naming scheme. This may lead to an alternative mechanism for naming these
resources.

3.2.2 WS-Naming

The OGSA architecture recommends the use of WS-Naming [WS-Naming] for implementing
abstract names. WS-Naming is a profile on top of the WS-Addressing specification, where
additional elements EndpointIdentifier and an optional ReferenceResolver are included in the
WS-Addressing Endpoint Reference. EndpointIdentifiers provide a globally unique and static
way of talking about specific entities, allowing Grid applications to compare and identify
entities for the lifetime of those entities and beyond. It should be noted that the set of entities
to be named by abstract names is enormous and constantly growing. Thus it is imperative
that the mechanism used to generate abstract names scales appropriately.

Note that a WS-Name may specify a resolving service or their syntax may imply a resolving
service. This name resolution service provides the mapping from the abstract name to the
address (or addresses).

3.2.3 Directory Services: RNS

At the topmost level are “human-oriented names” and as the term suggests these are
intended to be read and used by people, and contain structure that is meaningful to humans.
They are a primary interface for users and applications. Many of the names will be chosen by
people; services may also generate human-oriented names. These names are not
guaranteed to be either unique or static.

The Resource Namespace Service (RNS) addresses this human-readable level of naming
[RNS]; the OGSA architecture says that this may be used where suitable. It encompasses a
multi-faceted approach for addressing the need to access resources within a distributed
network or Grid by way of a context-specific name that ultimately resolves to a meaningful
address, with a particular emphasis on hierarchically managed names that may be used in
human interface applications. Its inception is largely based on the naming schemes used in
file systems but it is also intended to facilitate namespace services for a wide variety of Grid
applications and can be employed to manage the namespace of federated and virtualized
data, services, or effectively any resource capable of being referenced in a Grid/web
environment.

Mappings between the human names and EPRs are maintained and accessed by the RNS
services. These EPRs may be abstract names, if they include EndpointIdentifiers (i.e. they
conform to the WS-Naming specification), or they may simply be addresses.

3.3 Management of distributed resources

OGSA is in the process of defining an information model and data model that describes a
wide range of resources that may make up a Grid. These include databases, storage
systems, files, catalogs and data sets, as well as jobs, processors, networks and others. This
information model and data model form the basis of the OGSA management services.

These management services will be built on suitable Web Service specifications. They will
provide operations for querying the status of resources and updating them as necessary.
There are two proposals for management of resources in a Grid. The WS-DM standards from
OASIS [WS-DM] provide one set of management interfaces and protocols. The WS-

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 17

Management proposal from DMTF [WS-Management] provides a second. Management
facilities depend upon an information model to describe the services being managed. The
information model for data services needs to be defined by an as yet to be determined
working group, so that the OGSA management services can manage data services.

3.4 Security

Security is a key aspect of Grid systems. Businesses demand it, customers and consumers
increasingly expect it and there is a growing set of government regulations worldwide that
mandate security. Thus the data architecture must support security and privacy mechanisms
that meet client needs in these areas. The OGSA architecture uses and extends security
specifications for encrypting data, authenticating users, identity mapping, authorizing
operations, delegating access rights, secure logging and maintaining privacy.

Throughout this document we discuss security as it applies to data services. Section 4 will
cover general security issues, describing existing work that we build on and also identifying
areas where work remains to be done. Security as it applies to specific parts of the
architecture is discussed in the relevant sections.

3.5 Notification of Events

In a dynamic Grid environment it is critical that components can request and receive timely
notification of changes in one another’s states. The OGSA architecture specifies the use of
suitable web service specifications that provide this functionality.

These services may be used by data services in many ways. For example, they may be used
to notify clients and other services about management events, performance and resource
issues, and to implement data consistency mechanisms. They may also be used to
externalize database triggers.

3.6 Resource Discovery

Discovery services are vital to the data architecture. The data services may use the
discovery services not just for registering services themselves, but also for registering the
data that are stored by those services. This requires languages or ontologies for describing
data. Discovery services may also register the locations of schema definitions. Discovery
services may be built upon metadata repositories – repositories that contain information about
other entities in the Grid such as resources and services. Some discovery services may
return the name of the service and some may return an EPR to the service. Some discovery
services may take a description (e.g., much like a query) of the desired data as input and
return the data itself.

3.7 Policies and Agreements

As described in section 2.6, policies are documents that describe or configure the behavior of
a service or resource. The OGSA architecture will specify a suitable format for the definition
of policies, perhaps using WS-Policy [WS-Policy]. The details of the policies that a service
accepts are part of the specification of that service.

Policies are used in two ways in the OGSA architecture. A policy can be provided by a data
service to describe its Quality of Service (QoS) properties. This allows clients to choose
services according to their needs. Alternatively, some data services may allow a client to use
a management interface to request that the service provide a QoS according to a policy of the
client’s choosing. The service may abide by that policy, reject that policy or engage in a
negotiation with the client to find a mutually agreeable policy to govern the service’s
operation. In both cases the same policy description applies.

Agreements are time-limited contracts between a service and a client, or between a group of
services and/or clients. They may, for example, state that a certain policy will apply to a given
operation. The OGSA architecture will specify a format and negotiation protocol for
agreements. A possible candidate is the proposed WS-Agreement [WS-Agreement] standard.

Quality of Service is a key area where policies and agreements are used in the data
architecture. QoS will typically be specified via policies that are at the heart of the

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 18

agreements that will be agreed to between clients and data services to govern the interaction
of the client and the data service.

3.8 Provisioning

To automate the complicated process of resource allocation, deployment, and configuration, it
must be possible to deploy the required applications and data to resources and configure
them automatically, if necessary deploying and re-configuring hosting environments such as
the operating system and middleware to prepare the environment needed for job execution. It
must be possible to provision any type of resource not just compute resources, for example,
network or data resources.

3.9 Execution Management Services

The Execution Management Services (EMS) in OGSA control the scheduling and placement
of units of work on appropriate services and thus the resources they represent. Their
functionality generalizes the notion of executing a compute job; suitable implementations may
schedule any unit of work, such as a database query or a data transfer. EMS services use
data services in order to stage the necessary data to the execution server or to access that
data remotely. Data services may also be required to provide necessary information to
enable these services to produce satisfactory schedules.

An Execution Planning Service is a service that builds mappings (“schedules”) between jobs
and resources. The service will typically attempt to optimize some objective function such as
execution time, cost, or reliability.

A Candidate Set Generator determines the set of resources on which a unit of work can
execute. It typically provides input to an Execution Planning Service.

A Job Manager is a higher-level service that encapsulates all of the aspects of executing a
job, or a set of jobs, from start to finish. Examples include instances of the OGSA Basic
Execution Service specification [OGSA BES], queue managers, portals or workflow
enactment engines. Jobs are specified using the Job Specification Description Language
[JSDL].

Currently, more work is needed to integrate the scheduling services with data services.
Scheduling services can use monitoring information such as bandwidth, utilization patterns
and packet size to choose the best approach for moving a given data set to suit the agreed
quality of service. Conversely, the EMS may need to request that data services reserve
capacity to ensure that a job will be able to execute and achieve its (optimization) goals.

3.10 Reservation Services

A Reservation Service presents a common interface to all varieties of reservable resources
on the Grid. Reservable resources could include (but are not limited to) computing resources
such as CPUs and memory, graphics pipes for visualization, storage space, network
bandwidth, special-purpose instruments (e.g., radio telescope), etc.

Currently, OGSA describes the reservation service as one of the EMS services. This may
need to be generalized in order to cover other OGSA services. Data services are likely to
need to reserve certain resources in order to operate. For example, a data transfer operation
will require storage space and network bandwidth, while a data federation service may require
compute power in order to perform join operations. Conversely, the EMS may need to
request that data services reserve capacity to ensure that a job will be able to execute and
achieve its (optimization) goals. Similar considerations apply when the provision of a data
service must be scheduled for a certain time.

3.11 Transactions

The OGSA data architecture does not define a mechanism for distributed transactions per se.
We expect this functionality to be provided by other developments in the Web Services
community. Currently there are two families of specifications under development. On the one
hand, there is WS-Coordination [WS-Coordination] and two of its coordination types,
WS-AtomicTransaction [WS-AtomicTransaction] and WS-BusinessActivity

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 19

[WS-BusinessActivity]. On the other hand is the WS Composite Application Framework
family (consisting of WS-Context [WS-Context], WS-Coordination Framework
[WS-Coordination Framework] and WS-Transaction Management
[WS-TransactionManagement]).

Although we do not define a transaction mechanism, nor do we choose from existing ones,
we do need to ensure two things. First, that the transaction mechanism satisfies the needs of
data. Second, we must ensure that whatever transaction mechanism(s) we endorse properly
flows through the architecture.

Both transaction systems noted in the first paragraph of this section meet the known needs of
data. They have been developed by the relevant communities and have been endorsed by
various database vendors; this endorsement gives us assurance that they have adequate
functionality for the purposes of data.

In both cases, the transaction specification depends upon carrying a transaction context along
with every port call. It is the responsibility of the implementation of each port to honor the
transaction context, or to ignore it. There is no need to explicitly change the signature of a
port to accommodate transactions. Thus, for the purposes of the data architecture, we assert
that transactions layer on top of the basic data architecture in a transparent fashion. We
strongly suggest that the descriptive information for the implementation of a port include
information on how it handles this transaction context.

Finally, it must be observed that it is up to clients accessing a particular port to decide if the
decision of a particular implementation of that port to honor transactions, or not, is sufficient
for the needs of that client.

3.12 Sessions

Operations on data tend to be asynchronous. Applications also tend to issue sequences of
operations against data sources. Both of these considerations argue for the creation of the
notion of a session to contain the context for the interactions between a client and a (set of)
data services.

A session should allow a client to start an operation at a data service and have control
immediately return to the client. At a later time, the client can use the session to ask the data
service about the status of its previously issued request(s).

Sessions can also be used to optimize certain sequences of interaction between a client and
a (set of) data services. For example, security requires that every requestor of an operation
on a data service be authenticated and that the particular operation being requested be
authorized for that requestor. Doing this on every operation request could be quite expensive
in terms of time and/or resource consumption. A session provides a means for performing
this authentication and authorization once and, in essence, caching the result for the duration
of the interaction between the client and the service. Other examples might include quotas on
uses of resources at the data service and reservation of resources at the data service.

These examples show that the notion of session will be vital to creating a well performing data
architecture. At the moment we are not aware of any work going on in OGF or other
standards bodies to define a session mechanism.

3.13 Information Services

A deployed Grid system contains many resources and services. Effective operation and use

of a Grid system requires means to find a resource or service in the Grid that meets the needs

of the clients of the Grid system. This is provided by the Grid information service. An

information Service provides a registry service which allows Grid resources and services to be

registered. Entities within the Grid system, including data services, can then query the

registry service to find resources and services of interest. An information service may be

distributed or centralized and will typically be built upon data services to store the contents of

the registry and may use other aspects of data services as described later in this document.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 20

4 Security

Security is pervasive and must be addressed at all levels of a Grid system, both within an
organization and in each Virtual Organization (VO) that the organization participates in. Every
organization that is a member of a VO will have its own security policies. It is important that
the Grid that is used as the fabric to compose a VO does not weaken any of the existing
security policies of any of its members. Failure to properly support security at any level of a
Grid system raises the prospect of compromising the security in other parts of that Grid
system. Therefore to ensure security of the data architecture, security must be ensured in all
parts of a Grid system.

Some environments, such as those within an organization, are secure. Inside these
environments it may not be necessary to impose security on: communications, authentication
of users, authentication of requestors of services or the enforcement of access checks.
However, in many organizations, and in almost all VOs, it is still necessary to impose these
security controls.

A VO is an important case from a security perspective. Within a VO, the security of the VO is
only as strong as its weakest member. An organization participating in a VO should make
security checks at the boundary of the organizational environments. This is necessary since
one must treat the external environment as being inherently insecure, see Figure 5.

The remainder of this section describes the mechanisms needed to achieve privacy and
security goals both within an organization and within a VO. It should be noted that there may
be environments that are partially secure. For instance a VO may be such an environment if
security enforcements are carried out at the VO’s boundary. In such environments, some or
all of the security mechanisms may not be needed to achieve specified security and privacy
goals.

dais-telcon -20061211.txt

Insecure Environment

Virtual Organization

Insecure Environment

Universe

Organization 1

Secure Environment

Organization 2

Secure Environment

Figure 5: Representation of the different domains and the possible security
implications

Security begins at the communication level of the system. This is important to secure
communications within an organization, between organizations within a VO and with
organizations outside the VO. The “OGSA Basic Security Profile – Secure Channel 1.0”
[OGSA BSP-Secure] describes a security profile that ensures secure, authenticated
communication between clients of web services and the web services. The OGSA WG is
also preparing an alternate security profile that is applicable in environments where secure
communication is not necessary. We would expect any OGSA profile for data services to
require compliance with one of these profiles.

Authentication of users is normally a prerequisite for proper authorization to use a data
facility. The secure channel profile (see above) ensures that services are properly
authenticated. A data service requires that clients of the data facility be properly

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 21

authenticated. Thus use of a standard authentication mechanism such as that specified by
the OGSA Basic Security Profile is essential.

Each organization or resource may have its own authentication system. In communicating
with the outside world, it may be necessary to map between the shared identity of the VO and
the corresponding identity within the resource or organization. For example, an X.509 digital
certificate may be mapped to a local username. Translation of the identity of an invoker of an
operation to an identity known to the internals of a data service, the data resource, will be a
key requirement in many data service implementations. The identity federation and
translation mechanisms provided as part of the overall Grid security mechanisms should be
designed so that they can be used to address this need.

Once a user is authenticated, the user must be authorized to perform the task being
requested. This authorization has two aspects:

• Is the user allowed to invoke the operation to perform this task at all?

• Is the user allowed to perform the indicated task on the data denoted, directly or
indirectly, by the parameters to the operation?

The former is no different for data than for other aspects of the overall Grid architecture. Any
security mechanisms defined for controlling access to operations applies to the data
architecture with no additional requirements.

Authorization to perform a task on a specific set of data is a requirement that is above and
beyond the authorization requirements for operation invocation. For instance a user may be
allowed to query some tables in a relational database but not all. A user may be able to open
some files for reading, some for read/write and some not at all. Due to the generality of
operations in the data architecture, the implementation of a particular operation must be able
to use the authentication information supplied as part of the operation invocation and basic
Grid system authorization mechanisms as input to a decision making process to determine if
a particular operation on a particular set of data is permissible. For example, it may be the
case that the VO authorizes a user to invoke a particular operation but the resource then
blocks access to particular data. The resource always has the final say in whether a particular
action is permitted.

Authorization must also take into account user roles. A particular user may be able to
perform administration operations when acting as a system administrator but would not be
able to access certain data. That exact same user, when acting as, say, a payroll specialist
would be able to access payroll related data but would not be allowed to perform system
administration functions. Thus the basic Grid system authentication and authorization
mechanisms should support roles.

In some environments (e.g., government) there is a requirement for non-discretionary, multi-
level, access controls (e.g., categorizing data as public, secret, and top-secret). Many data
systems support this class of access control today. The authorization and authentication
mechanisms of a Grid system must, at a minimum, be compatible with this class of access
control. Direct support of non-discretionary access control may be required in some
environments and would impose yet more requirements on the authentication and
authorization mechanisms of a Grid system.

Authorization must also take into account sequences of access requests. It is possible that
individual access requests are allowed but the result of a sequence of operations results in
unauthorized access to information. Every data service implementation must be able to
prevent this release of unauthorized information not only from a security perspective but also
from a privacy perspective.

Privacy is related to security. There is an increasing body of government laws and
regulations around the world that mandate privacy. The data architecture in particular and the
Grid system in general, must adhere to these privacy requirements. Some of the
issues/examples that need to be addressed include:

1. The set of access requests from a user may need to be private to that user. This
affects the logging of those queries by the data service.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 22

2. Privacy of data needs to be assured when at rest (e.g., on disk or tape). This may
require encryption of data when it is at rest.

3. Privacy of data in transit (e.g., the result of a data access request) must be ensured.
This may require encryption in the communication channel.

4. A data service should advertise the degree of privacy that it supports. We are not
aware of any work being done presently for a vocabulary to express this.

If a data service needs to access a data resource, be it another data service or a non-service
data resource, that access will be governed by security and privacy mechanisms. The
accessing data service will need to supply the required information so that the access can be
authorized. The accessing data service is responsible for determining what security
credentials to use for the access. These may be the credentials of the application calling the
data service or the credentials may be an inherent part of the state of the data service.

When a data service returns data, it must take measures to ensure that the security and
privacy characteristics of that data are noted. It will use an as yet to be determined
mechanism to attach this information to the returned data. It is beyond the scope of the data
service to ensure that this security information is honored. It is the responsibility of the Grid
security infrastructure to provide suitable mechanisms for ensuring that these security and
privacy controls are honored.

In some environments, the physical location of the entity receiving data is crucial (e.g., areas
that are allowed to hold top secret data). This may restrict the ability of the data service to
return data to an otherwise authorized requestor. We are not aware of any standards work
that addresses this requirement.

Finally, the ability to log and audit actions is an inherent part of a secure system. Thus, not
only must a data service enforce security and privacy concerns, it must also take measures to
ensure that its actions are auditable (and this usually means that they are logged). A data
service must also ensure that the requests received from its clients are auditable. Again, this
usually means that the requests are logged. The OGSA architecture will specify secure,
tamper-proof logging services. These may in turn use data services to store and query the
logs. Existing standards work in the logging and auditing areas may need to be extended.

These aspects of security impose requirements in every component of the data architecture.
Ideally, every service in an actual realization of the data architecture would actively support
and implement the standards that exist, or will exist, for these requirements. However, we
recognize that some services may not provide this support. Recognizing this, we strongly
suggest that all services:

• Advertise the degree to which they adhere to security requirements.

• Accept security related information in their interfaces. We anticipate that much of
such information will come as part of a standard header that is part of every service
invocation.

• Include security related information such as security credentials in all service
requests from this service. This security information may be held within the service or
may have been provided as part of an invocation of this service.

The above considerations identify a number of areas where we are not aware of work being
done. To provide a secure data architecture, working groups need to define the following
areas:

• The syntax and semantics of security policies need to be defined. These policies
need to be attached to data and also need to be the subject of negotiation between
data services and their clients.

• A mechanism is needed to attach security policies to data in motion.

• A means to specify the geographical location of requester and resource is needed.
Geographical location must be an optional part of security policies.

• A specification of the reason for access to data needs to be defined. This reason
needs to be part of security policies.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 23

• A means to specify authorization of sequences of access requests is needed. As
noted above, there are situations where individual access requests are valid but a
sequence of requests results in unauthorized release of information.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 24

5 Policies

Policy Operations Description

ReplacePolicy Replaces the entire policy governing the
operation of the service with the policy supplied
as an argument.

UpdatePolicy Updates part of the policy governing operation of
the service.

Table 2: Policy operations

The details of policy are specific to each (class of) service within the data architecture. There
are, however, operations that are common to all services within the data architecture and
which should be supported by all of these services (see Table 2). Within this document we
assume that all of the services described here provide these operations.

During the lifetime of a service, there may be need to update the policy controlling the
execution of the service. We require two operations to change this policy – one to change the
entire policy and one to change a subset of the policy. In this formulation, the service may
either agree to the changes, or choose to not accept them. In the longer term we would
expect that some services would support negotiation of these changes via a standard OGSA
agreement negotiation mechanism.

ReplacePolicy () – replaces the entire policy governing the operation of the service
with the policy supplied as an argument. Upon successful return from this operation,
the old policy governing service operation will have been discarded and the service
operation is solely governed by the policy supplied in ReplacePolicy. It may require a
sophisticated policy engine to allow the service to determine if the requested policy
can be met. If the new policy cannot be used by the service, an error will be raised
and the policy governing service operation will be unchanged. The service must
specify the effect of changing policy on operations that are currently executing.

UpdatePolicy () – updates part of the policy governing operation of the service. It
takes a set of policy terms to be updated as an argument. Upon successful
completion of this operation, any policy terms provided as part of the input replace the
same terms previously governing service operation. An error will be raised if any of
the new policy terms cannot be honored and none of the policies governing service
operation will be changed. . The service must specify the effect of updating policy on
operations that are currently executing.

One difference between these operations is that ReplacePolicy requires the caller to specify
the entire replacement policy, whereas the caller of UpdatePolicy may have only partial
information about the policy. In the latter case, the caller can still update known parts of the
policy.

The ReplacePolicy operation can be used to delete the entire policy by specifying a null policy
as a replacement. Similarly, the UpdatePolicy can delete parts of a policy by specifying null
replacements for those parts. In all cases, the service may choose to reject the requests, as
with any invocation of these operations.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 25

6 Data Description

The OGSA Data Architecture supports heterogeneity in data types and in the resources and
services that contain them. Effective discovery, interpretation and association of data in the
OGSA environment rely on the availability of suitable descriptive information. This aspect of
the architecture concerns the specifications available to describe data itself and the resources
that store data.

As previously explained (Section 2.2), the data itself is managed by a data resource that is
outside the scope of this architecture. Access to the data, to the capabilities of the data
resource and to the current status of the data resource and the data itself, is provided by a
data service and the operations and properties that it supports. It is the data service that
provides the architected interface to the data.

The capabilities of these entities are described by properties in the interfaces supported by
the service. There are two main classes of properties that describe the data provided by a
data resource:

• Properties that describe the data itself, such as its format, encoding, schemas, and
provenance.

• Properties pertaining to the data resource, e.g. status information, query languages
that it may support, etc., see Figure 6

Figure 6: Data description elements

Some of these properties will be read only; others may be set by clients. Changing a settable
property may affect the behavior of the service interface and thus the way that a client
interacts with that service. It is worth noting that the property values presented to a particular
client may be affected by the security credentials presented by that client.

The following sections discuss the description of data formats and the data resources
themselves. The data services that expose them to the Grid are described using the standard
OGSA mechanisms.

6.1 Format Description

In its electronic form data is ultimately stored as a series of 1s and 0s. In order to make use of
the data its encoding, structure, classification and organization must be understood. Here we
use the term data format in place of these various terms. Only by understanding the relevant
format can the data be usefully employed.

Data format descriptions must provide support for:

• Different encodings of data, e.g. binary, text, etc.

• Standard formats, (e.g. JPEG [JPEG], TIFF [TIFF]) and application-specific formats
(e.g., a list of comma-separated values in a particular order).

• Data which is stored using specific data models, e.g. relational, XML documents,
files, etc. within a storage infrastructure such as a DBMS, XML database, a file
system, etc.

There are almost as many data formats as there are data sets and often one format relies on
another. For example, an XML document that is valid with respect to an XML Schema must
also necessarily be well formed with respect to the XML specification [XML] and will be

Status and
Capabilities

Data Resource

Data
Format

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 26

presented in a specific character encoding, for example, UTF-8 [UTF-8]. We need URIs to
name these data formats, following the guidelines discussed in Section 2.11.

The format of data may be known in advance or discovered at run-time. Some data is
formatted in accordance with well known and accepted standards, For example, a Portable
Network Graphics (PNG) file is a binary file structured in accordance with the PNG
specification [PNG]. All that is required to describe the format of the file is a simple code. This
could take the form of a file name extension, a code in the header of the binary file itself or,
for example, a mime type (image/png). Knowing that the file is a PNG file allows the
appropriate software to be used in order to interpret the binary file in accordance with the
correct PNG standard.

Alternatively, while a well formed XML file abides by the rules of the XML specification, it is
only valid with respect to some schema. We might be able to tell an XML formatted file from
other file formats by, for example, its file name extension or by its mime type (text/xml). This is
not sufficient to understand the valid structure of the contents of the file. In the case of XML
we must also refer to the appropriate schema document. The name and location of the
schema document may be carried explicitly by the XML file. Alternatively this information may
be provided implicitly, for example, a WSDL file describes the schema of the XML messages
that pass to and from service endpoints. Given a message name the appropriate schema can
be implied by looking up the message name in the WSDL file.

In summary two pieces of information are required to describe the format of data. Firstly the
well known or static format of the data can be stated. Given this basis any optional dynamic
format information can be provided.

In some situations data services will provide this information as part of the resource
description, for example, a data service exposing an XML collection implicitly manages XML
formatted documents and may list the schemas to which its XML documents conform.

Alternatively a data service that exposes a file system may simply provide byte IO access and
rely on the service consumer to establish each file’s format based on factors such as the file
name extensions, the contents of the file itself or application domain knowledge.

6.2 Resource Description

The term data resource refers to the entity that holds the actual data. Data resources can
take many forms from file systems and computer memory to databases in database
management systems and messaging systems. In the OGSA data architecture data
resources may be exposed for management or access reasons by one or more data services.

The description of a data resource is embodied in a series of properties, or annotations.
These properties describe the capabilities and status that the data service makes available for
each resource. Some of these properties may be static for a given resource; others may vary
dynamically. If the dynamic descriptions are used for resource discovery, then the client
must be prepared to handle the case that the values have changed by the time it actually
uses the resource.

The following list suggests examples of resource description properties:

• Resource name and type

• Ownership and version information

• Capabilities, e.g. max capacity, query languages supported, behavior

• Structure of data within the resource, e.g. a database schema, XML Schema [XSD],
Data Format Description Language (DFDL)3

• State, e.g. lifetime, used and free capacity

There is work required here to define a set of generic data service properties. Currently some
work in this area is underway as joint work between the GSM and GLUE working groups of
the OGF. We are not aware of any other standards body looking into this area.

3 DFDL is being developed by the DFDL working group of the OGF. See
http://forge.gridforum.org/projects/dfdl-wg.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 27

6.3 Third-party descriptions

In addition to properties of a data service, some descriptive information may also be made
available by third parties such as a registry, see Figure 7. This is often the case when the
properties can change dynamically or are generated by consumers who do not own and
manage the original data service. The various descriptions may overlap or be distinct. They
may be kept in synchrony or be managed separately, depending on the design of the
particular system.

Examples of such annotations include;

• Descriptive information, e.g. human readable text

• Classification, e.g. Dublin Core [Dublin Core]

• Relationships, e.g. Resource Description Framework (RDF)4

This separation of concerns, between the registry and the data resource itself, is useful when,
for example, the data is classified by different people in different ways. In such cases, for
example, regardless of how many classification annotations are made, the size of the data will
remain constant.

Generally this architecture expects that these types of annotation are managed separately
from the fixed properties of the data resource. This is not, of course, a hard and fast rule.

Figure 7: Third-party description of data

When data is created, updated, transferred between resources or deleted, any corresponding
data descriptions may also need to be updated, depending on the policy in force at that time.
Scenarios that compose data services to implement a particular functionality must take
account of such constraints.

More details about the interface provided by a registry are discussed in section 12.

6.4 Provenance

Users of data services may also wish to see information about the provenance and quality of
the data provided by those services. Provenance properties reflect the history of the data.
Where did it come from? What processing was performed on it? What software was used to
perform the processing? Which human being requested the processing?

Provenance information may be stored at the level of the whole resource or of its component
parts, sometimes to the level of individual elements. This in turn requires the services or other
processes that generate the data to also maintain the consistency of the provenance
information. It also requires an architecture for maintaining this information. Complete
provenance information can allow the data to be reconstructed from its original data
(assuming that it is available) by following the workflow created it. Provenance information

4 Being developed within W3c, www.w3.org/RDF

Lookup

Description Data
Service

Data Resource

Data

Registry

Client

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 28

may be provided by the service itself, or it may be maintained in a data catalogue or a logging
service.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 29

7 Data Transfer

Table 3 summarizes the operations proposed in this section.

Factory Operation Description

CreateTransfer Initiates a transfer between a data source and a
data sink. Returns an EPR to a Transfer service
that is managing the transfer.

Data Resource Operations Description

GetHandle Returns a WS-Name for the transfer related
operations provided by that service.

GetSupportedProtocols Returns the set of transfer protocols supported
by this data resource.

SetupTransfer Returns a protocol-specific URI which can be
used to initiate and manage the transfer.

Transfer Service Operations Description

PauseTransfer Temporarily stops an in-progress transfer.

ResumeTransfer Resumes a paused transfer.

StopTransfer Stops an in–progress transfer. The Transfer
service is destroyed as part of this operation.

Table 3: Data transfer operations

The transfer of data is a key aspect of the data architecture. Data transfer is the movement of
data from a source of data to a consumer of that data (a data sink) – ultimately, the
movement of bytes of data from one computer to another over a network. Data transfer can
happen when a data access interface returns a result to a third party, when data is staged to
an execution server, when a data replication service copies data to a replica and in general
whenever multiple data services need to exchange data.

In the request-response pattern, as described in Section 2.4, the data to be returned will be
described in the message from the client to the data service and returned in the response
message from the data service to the client, using a protocol such as SOAP With
Attachments [SwA], DIME [DIME] or MTOM [MTOM]. This form of data access is described
by the basic message exchange and operation invocation standards. Typically such
exchanges will be used for small amounts of data.

In other cases, the amount of data to be transferred can be quite large. For example, a file
containing the results, perhaps terabytes in size, of an experiment at a particle accelerator
might need to be staged to a computational node where the raw data is to be analyzed. A
database might be hundreds of gigabytes, or even terabytes, in size and need to be
replicated to a second site to ensure availability. Whatever the reason, the amount of data
may be very large. This class of data transfers is the topic of this section.

OGSA uses Web Service mechanisms to communicate with services – effectively this means
using SOAP. However, SOAP is not a good transport protocol for large amounts of data.
Thus, a data transfer will employ an alternative means of delivering data. So, the data access
query-response pattern described in Section 2.4 could use an alternative data delivery
mechanism, thus coupling with data transfer, to implement the third party delivery. A special
case of this would be to deliver the data to the original client.

The data transfer mechanism should meet the following requirements:

1. Performance. Data transfers need to operate efficiently.

2. Protocol agnostic. The data transfer mechanism should be able to support various
transfer protocols where appropriate.

3. Data transfers may be controlled by a data transfer service when this is appropriate.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 30

4. Data services, other than those managing the transfer itself, should not be required to
understand the transfer protocols being used.

5. Data transfer should not be tied to the type of the data. Data might be in many forms
(e.g., flat files, relational databases, image files) and the data transfer mechanism
should handle the appropriate types without explicit knowledge of the form of the
data.

6. Data transfers should be manageable by the client requesting the transfer. The client
should be able to monitor status, adjust performance and terminate the transfer early
if needed.

7. Policies and agreements will govern the negotiated behavior of a data transfer
initiated by a client. An important aspect of this is the integrity of the delivered data.

8. Data in transit will be secured by the data transfer mechanism in accordance with
negotiated security goals.

9. A data transfer service may provide the ability to transform data as it moves from
source to sink.

The most basic level of data transfer operation simply transfers bytes across the network
without interpreting them. A more advanced data transfer operation might do on-the-fly data
compression and decompression. Higher-level transfer services may perform transformations
on the data in order to preserve the data semantics as it is transferred between services, e.g.
swap bytes in going from a little-endian to a big-endian machine.

As part of the data architecture, we require that all data services provide a set of interfaces
that allow for the standardized transfer of data between data services (the data source and
the data sink). In order to understand these interfaces, we first describe the interactions that
must occur between a data transfer service, a source of data and a sink (destination) for data.
The Data Movement Interface Working Group (OGSA DMI WG) in the OGF is working on a
specification for managing data transfer (just moving the bytes)5. The authors are
collaborating with the OGSA DMI WG to ensure that their specifications will fit into the OGSA
Data Architecture.

7.1 Data Transfer Interfaces

The data transfer mechanism will have the following aspects:

• Data Source: This denotes a data service that can act as the source of a data
transfer operation.

• Data Sink: This denotes a data service that can act as the recipient of a data transfer
operation.

• Transfer control: This instantiates and controls a data transfer operation.

• Transfer negotiation: This queries the sources and sinks of a potential data transfer
and brokers an agreement about which protocol to use.

Each potential source or sink for a data transfer must provide the following operations:

GetHandle () – returns a WS-Name for the transfer related operations provided by
that service.

GetSupportedProtocols () – returns the set of transfer protocols supported by this
data resource. It takes the following argument:

• SinkOrSource: an enumerated value indicating whether the data resource will
be used as a source or sink for the data transfer operation

SetupTransfer () – which takes the following arguments and returns a protocol-
specific URI which can be used to initiate and manage the transfer:

• Protocol: the URI of the protocol to be used for the transfer operation

5 https://forge.gridforum.org/sf/projects/ogsa-dmi-wg

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 31

• SinkOrSource: an enumerated value denoting whether the data resource will
be used as a source or sink for the data transfer operation

In addition a data service may provide protocol-specific operations to allow the
CreateTransfer operation to determine protocol-specific capabilities of the data resource.

There is a CreateTransfer factory operation that initiates a transfer between a data source
and data sink and creates a transfer service instance to manage that transfer:

CreateTransfer () – takes the following arguments and returns an EPR to a Transfer
service that is managing the transfer:

• Source: a WS-Name for the source of the transfer

• Sink: a WS-name for the destination (sink) of the transfer

• QOS: the quality of service required of the transfer operation. This might
indicate, for instance, the required time of delivery, desired transfer speed,
maximum bandwidth to be consumed and the maximum cost to be incurred.

This operation will use the GetSupportedProtocols operation to determine an
appropriate transfer protocol between the indicated sources. It will then use
SetupTransfer to create the actual transfer and begin the actual movement of data.
The fact that a source advertises a particular protocol does not guarantee that it will
actually work in a given scenario (e.g. across different networks or firewalls), so the
SetupTransfer operation may fail for this reason.

The sink for a transfer operation must be large enough to hold the data to be transferred. A
CreateTransfer realization may check that the sink provides enough storage for the data to be
transferred. For example, if a file is to be transferred, the amount of data to be moved is
known in advance. If there is insufficient storage, CreateTransfer may either raise a fault or
ask the sink to increase the size of the destination (if this fails, a fault will be raised). The
interfaces to perform these activities are not specified as part of this architecture as it is
inherently dependent upon the exact nature of the source and sink. We observe that for
some sources it may not be even possible to determine the size of the data to be transferred
before the transfer begins (e.g., data generated dynamically by computation), implying that
CreateTransfer may not raise an insufficient space fault. Even if the sink has enough storage
at the start of the transfer itself, the transfer may still fail due to insufficient space.

A Transfer service provides the following operations to allow clients to manage a transfer
operation.

PauseTransfer () – temporarily stops an in-progress transfer. A fault is raised if the
transfer is not currently in progress.

ResumeTransfer () – resumes a paused transfer. A fault is raised if the transfer is
not in a paused state.

StopTransfer () – stops an in–progress transfer. The Transfer service instance is
destroyed as part of this operation.

In addition, we suggest that a Transfer service provide operations to determine the current
state of a transfer, how much progress has been made and how much data/time remains for
the transfer.

A Transfer service should also provide properties describing the state of the transfer. The
following properties are suggested:

• Start and end times

• Amount of data transferred so far in units specified by the transfer instance.

• Total data to be transferred (if available) in units specified by the transfer instance.

• Transfer protocol being used.

• Average rate of transfer so far.

• Expected time to completion of transfer.

• Average network bandwidth consumed so far.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 32

• Maximum network bandwidth consumed so far.

In addition, we need URIs to name data transfer protocols, following the guidelines discussed
in Section 2.11. Some such work has been done by the OGF’s ByteIO working group,
producing URIs such as:

• http://schemas.ggf.org/byteio/2005/10/transfer-mechanisms/simple

• http://schemas.ggf.org/byteio/2005/10/transfer-mechanisms/dime

• http://schemas.ggf.org/byteio/2005/10/transfer-mechanisms/mtom

Further URIs are required for other protocols, such as FTP [FTP] and GridFTP [GridFTP]
among others.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 33

8 Data Access

Data access defines a generic set of service interfaces through which a client can extract data
from, or send data to, some underlying resource via that service.

Tables 4, 5 and 6 list different types of data access operations. These are divided into three
broad classes:

• A generic set of data access operations that can be used regardless of the underlying
data model. These use the factory pattern to create or associate a relationship
between a resource and a service with a specific interface.

• A set of data access operations that act on “unstructured” data, i.e. where the client is
only interested in reading or writing uninterpreted bytes.

• A set of access operations that act on structured data, such as that stored in
relational databases, which can be queried or modified using an appropriate query
language, e.g. SQL, XQuery, etc.

Factory Operation Description

Create Creates an association between a data service
and an underlying resource with a given service
interface. The underlying resource may be
created and populated as a result of this
operation.

Table 4: Generic data access operations

Access Operations Description

Read Takes an offset and a number of bytes to read,
and returns that number of bytes from the
resource.

Write Takes a fixed number of bytes of data which it
writes to the resource.

Table 5: Data access operations for unstructured data

Access Operations Description

ExecuteQuery Provides a means for querying a resource. This
could take an SQL, an XPath or XQuery
expression or any language type described by
the LanguageMap property which is then run by
the underlying resource.

BulkLoad Provides a means of inserting large amounts of
data into an underlying resource.

Table 6: Data access operations for structured data

These interfaces and properties are described in more detail below.

8.1 The Generic Data Access Interface

These operations facilitate the provision of data access and implement some of the access
patterns described in Section 2.4.

Create () – provides a means of associating a service with a resource with a specified
interface. The resource may be created and populated with data from another
resource, e.g. the result of a query to a relational database, data from files or data
pushed to the service by a client, etc.

• DataResourceAbstractName – the abstract name of the resource the
message is targeted at.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 34

• PortTypeQName (optional) – the QName of the service interface through
which the resulting data should be accessed. This must be one of the
QNames found in the ConfigurationMap (see below).

• ConfigurationDocument (optional) – a document that specifies the initial value
for the properties of the resource that is to be used to access the data.

• PreferredTargetService (optional) – the EPR of the preferred service that is to
act as the host for the new resource.

• Recipe (optional) – a means of describing the data that is to be used to
populate the resource. This could be a SQL query, an XPath expression, a
file name, etc. If the Recipe is not present then a service will be associated
with the interface specified by the QName

The response message should contain an EPR to the service through which the
given resource will be available or a fault will be included.

For each data resource accessible through a service the following properties will be available
through the service:

Readable – Boolean indicating whether the underlying resource is readable.

Writeable – Boolean indicating whether the underlying resource can be written to.

ConfigurationMap – an optional property which provides a means of enumerating
the supported interfaces, represented as QNames that can be used by a service to
access a derived resource. The desired QName can then be specified in the
arguments specified in the Create operation. This property must be present when the
Create operation is in the interface, otherwise it is optional

8.2 The Unstructured Data Access Interface

This interface has the following operations:

Read () – provides a means of reading a specified number of bytes of data from a
given offset and this sequence of bytes is returned to the client. The operation may
respond with fewer bytes than requested by the operation. Arguments:

• start-offset - the offset, in units of bytes, into the data resource at which the
client wishes to begin reading.

• bytes-per-block- the number of bytes in a single block that the client wishes to
read.

• num-blocks - the number of blocks that the client is reading.

• stride - the offset or delta, in units of bytes, describing how far apart the
beginnings of each block of data are inside the data source.

• encoding - a URI specifying the encoding to be used to return the data.

Write () – provides a means of writing a specified number of bytes after a given offset
and returns the status of the operation back to the client. Arguments:

• start-offset - the offset into the resource at which to begin writing the block of
data.

• bytes-per-block - the number of bytes of data that are to be written for each
block of data.

• stride - the number of bytes that separate the beginnings of each block in the
data sink. Blocks are considered to be written sequentially in the order
indicated by the stride (i.e., if the stride is positive, then the sequence is in
ascending absolute offset order whereas if the stride is negative, the
presumed order is descending absolute offset of the blocks). The implication
here is that the offsets of the blocks are calculated in isolation from the actual
block sizes. If the stride is larger than the block size, then the blocks will be
written to the file leaving holes in the middle (the behavior being that these
holes should retain any values present prior to the write request if applicable,
otherwise the values in the holes are undefined). If the stride is less than the
block size, then blocks will overlap and the final value of any given written

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 35

byte will be that of the last block in the sequence to overlap that byte.
Regardless of the stride value, blocks are assumed to be concatenated
directly together in the write requests data block (i.e., stride does not apply to
this block).

• encoding - a URI specifying the encoding to be used to send the data

The interface has the following properties:

Size - The total size (in bytes) of the resource.

DataEncodings - A list of URIs indicating the encodings supported by the service for
sending or returning the data. If an encoding is listed here, then the service must
support that encoding as described in the appropriate specification.

CreateTime - The timestamp for when this resource was created (relative to the
hosting environment). Creation time is loosely defined as the time at which a client
could first use any of the methods (or access any of the properties) on a resource via
the service and receive a valid, non-error response message. It is left up to the
implementer to determine what this time should be.

ModifiedTime - The timestamp for when this resource was last modified (relative to
the hosting environment). Modification time is defined as any time after which any
client having previously read a block of data (with the read method), or having
accessed the Size property, could now expect to receive different results were it to
call the read method or access the properties again.

LastAccessTime - The timestamp for when this resource was last accessed (relative
to the hosting environment). The last access time is defined as the last time when
any of the access methods in this specification were last called.

8.3 Structured Data Access Operations

This interface has the following operations:

ExecuteQuery () – provides a general form of performing query-like operations which
allows a set of criteria expressed in any of the query languages specified in the
LanguageMap property (see below). The query is passed through the interface and
run by the underlying resource. Data may also be passed to the underlying resource
in the message to insert into or update the resource. Arguments:

• DataResourceAbstractName – abstract name of the resource at which the
message is directed.

• DatasetFormatURI – An optional element that may be used to define the
format of the response dataset. This element, when present, must contain a
URI from the set that appears as DatasetMap property elements (see below).
When this element is omitted the format of the response message will follow
the format referenced by the first DatasetMap property.

• GenericExpression – the query expression document. The document may
contain a URI attribute indicating the language used to form the expression.
The URI of this attribute, if present, must be one of those specified in the
LanguageMap property described below. When no language attribute is
provided the first LanguageMap entry for GenericQuery is assumed.

BulkLoad () – provides a means of inserting large amounts of data into an underlying
resource. This operation may be used in combination with a data transfer operation to
optimize the transfer of the data from the client. A service may also provide this
operation to optimize the transaction locking mechanisms in the resource, such as
those used by relational database systems when inserting multiple data elements via
ExecuteQuery.

This interface has the associated properties:

• LanguageMap – a list of the valid query languages that can be used in the
ExecuteQuery interface. A query language is represented by a URI which is
mapped to a QName representing the language.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 36

• DatasetMap – an enumeration of the supported data formats in which data
can be returned to the client. The valid return data formats are represented
by URIs which are mapped to QNames. A client can thus specify the format
in which they want the data returned in the access operation by specifying the
corresponding QName.

8.4 Conclusions

These data access interfaces need to be flexible and be able to cope with data which varies
in its size and granularity, e.g. an item that is only a few hundred bytes long, an item that is a
gigabyte or a thousand items of a megabyte each. Moreover, when using web services and
non-trivial amounts of data alternative delivery mechanisms may need to be considered and
data transfer facilities coupled with the above primitives to transfer data to a resource or to
return data to a client or consumer. The usage patterns described in Section 2.3 may be used
to create composite entities that achieve this behavior.

In addition, access mechanisms may provide different levels of abstraction of the underlying
data model and formats used. The level of abstraction offered by a service to the underlying
data will vary according to the capabilities and performance required by a client, so if required
the user may not know whether the data that they are retrieving is stored in a relational
database or a file system – though clearly these considerations would have an impact on
performance. As a general principle though, the data access interfaces proposed here are not
intended to supplant existing native forms of access but rather to operate in conjunction with
and leverage them. It is important, if these access mechanisms are to be useful, that they
should add little overhead over native access mechanisms provided by the underlying
resource.

The data architecture currently describes two specifications for data access: WS-DAI and
ByteIO produced by the DAIS and OGSA ByteIO Working Groups of the OGF. How the
generic operations described in this section map to these specifications is considered in
Section 15.1 and 15.2 respectively. Other types of data access interfaces may be added as
the need arises.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 37

9 Storage Management

Space Management
Operations

Description

ReserveSpace Facilitates negotiation of space reservation.

GetSpace Returns space tokens for currently allocated
spaces.

ReleaseSpace Releases an occupied space.

Depending on local settings and policies, all files
may need to be released in the specified space
before the space can be released.

Directory Management
Operations

Description

ListFiles Returns a list of files and information about them.

ReleaseFiles Releases the files in a storage space.

The files are not necessarily deleted
immediately, but the space occupied by the
released files is eligible for removal if space is
needed.

RemoveFiles Removes files from a storage space.

CopyFiles Copies files, either within a storage space or
between (local) spaces.

MoveFiles Moves files either within a storage space or
between (local) spaces.

MakeDirectory Creates a directory in a local storage space.

DeleteDirectory Deletes a directory in a local storage space.

Transfer Management
Operations

Description

OrderTransferFromStorage Reorders a transfer request from a storage
resource based on the current known state of
that resource.

OrderTransferToStorage Reorders a transfer request to a storage
resource based on the current known state of
that resource.

Table 7: Storage management operations

Along with computing and networking resources, data storage resources are one of the basic
building blocks of a distributed computing infrastructure. There are many kinds of storage
resources to consider, ranging from a memory stick to a multi-petabyte tape silo. Different
storage resources offer different levels of Quality of Service and have different semantics for
data access, both for reading and writing.

In a Grid environment the data and its availability is managed by the Grid middleware. The
middleware interfaces to storage need to be rich enough to be able to take into account the
possible semantic properties of the underlying storage hardware. At the same time its usage
should be simple enough so that human users of the storage do not need to be experts in the
handling of storage.

The storage resource provides space to store data. That space may be used for storing files
or it may be used as a raw device that can be formatted and mounted or used as a block

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 38

device. The basic ‘resource’ that storage has to offer is therefore storage space. The space is
managed through the management interface provided by the storage service.

9.1 The Storage Resource and Service

Data is typically stored in storage hardware controlled by software. The combination of the
storage hardware and this controlling software is the storage resource. To make the storage
available in the data architecture, the storage resource is wrapped by a storage service. The
storage service provides the architected interface to the storage. This is depicted in Figure 8.

Figure 8: A storage resource wrapped by a storage resource service

The interface to data storage needs to address the common features of data stores while
allowing the usage of specific features that may be available only on a small subset of storage
resources. The three basic functional interfaces that are coupled to storage are basic data
access, transfer and storage management. A storage service may additionally provide a set
of optional interfaces (see below).

Data storage services on the Grid provide storage space for clients, and storage services
manage storage spaces for files. A storage space has the following basic attributes (see also
Storage Space Properties below for details)6:

• Total size.

• Allocated size.

• Unallocated size.

• Type. File storage, raw device or streaming device.

• Lifetime (in seconds say).

• Ownership and access control.

• Access properties (protocol, bandwidth, latency, etc).

• Data Retention (indicating what retention mechanism is applied to data in a given
storage space).

6 Of course, a storage space might have other attributes not suggested here.

Storage
Resource

Space
Management

Client

Source/Sink

Directory
Management

Transfer
Management

Storage Service

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 39

The storage space is negotiated between a data storage service and its clients using storage
related policies and agreements. Each storage space created is referenced by an abstract
name and an EPR

Storage is tightly coupled to all other aspects of the Data Architecture. Data access and data
movement needs to take the capabilities of the storage resource into account. Storage space
that is made available through storage services may be accessed through the mechanisms
described in the Data Access chapter (see Section 7). Or the data may be transferred
between Storage services using the Data Transfer mechanisms also described in this
document (see Section 6). The management interface for Storage Resources is described in
the current chapter.

It is important to note that the Storage Back-end considered here is limited to file storage –
the storage of containers (files) that consist of an ordered sequence of uninterpreted bytes of
data. Database storage management per se is not covered by a Grid storage resource.
Databases may use file based storage or they may have their own way of managing their
storage. These are private to the implementation of the database system and are not
standardized. However, file space or a raw storage device provided by a Grid Storage service
may well be utilized by a database to store its data. The database system may also directly
use storage provided by the storage resource.

Storage services are tightly coupled to Grid scheduling. Grid schedulers need to be able to
take the data requirements of a job into account: the amount of space needed for output, data
needed at the job execution site for input (e.g., copies of the data or cache space for input
data), data access properties, storage QoS, etc. In order for the scheduler to be able to do the
co-scheduling, the storage services need to publish their properties, perhaps into the OGSA
Discovery service, and make it available through the appropriate OGSA mechanisms.

And last but not least, like any other service, storage services need to be monitored, audited
and its usage has to be accountable in a standard way. Thus storage services must fit into,
and comply with, the overall OGSA architecture.

9.2 Storage Service Interfaces

There are 2 key sets of Storage Management interfaces:

Space Management Operations -

ReserveSpace () - facilitates space reservation.

GetSpace () - returns space tokens for currently allocated spaces.

ReleaseSpace () - releases an occupied space. Depending on local settings and
policies, all files may need to be released in the specified space before the space can
be released.

Directory Management Operations -

ListFiles () – returns a list of files and some or all of their properties.

ReleaseFiles () - releases the files in a storage space. The files are not necessarily
deleted immediately, but the space occupied by the released files is eligible for
removal if space is needed.

RemoveFiles () – removes files from a storage space immediately.

CopyFiles () – copies files either within a storage space or between spaces.

MoveFiles () - moves files either within a storage space or between spaces.

MakeDirectory () - creates a directory in a local storage space.

DeleteDirectory () - deletes a directory in a local storage space.

The directory management operations provide the mechanisms for clients to manage the
collection of files held within a storage space. We suggest that this management interface be
based upon a standard interface such as that provided by the Resource Naming Service
[RNS], with suitable extensions as required.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 40

The interfaces that a storage service may provide also include the basic OGSA interfaces for
managing properties and negotiating agreements, and interfaces for delegation of identity. A
storage service may therefore optionally provide the following management interfaces:

• Online space management interface, with agreement negotiation.

• Quota management interface, also with agreement negotiation.

• Permission (Authorization) management interface.

• User management interface.

• Request Administration Functions, such as abort, suspend and resume.

Each of these additional interfaces needs to be standardized by working groups in the OGF or
some other standards body. There may also be other specific interfaces that a storage
service implements and supports, which .should be discoverable through standard OGSA
mechanisms.

Transfer interfaces, to initiate the transfer of data to/from the storage, are described in Section
6 of this document.

Data Access interfaces are described in Section 7 of this document.

9.3 Storage Service Properties

The properties of data storage services are listed below.

Supported Space Types – Data storage offers storage space to clients. Storage
space may be requested in terms of size and type. At present three types of storage
are defined:

File space: The storage space contains files. It is a valid file system with
appropriate semantics. The possible types for the file system are TBD
but certainly include POSIX file systems.

Raw device: The storage space is provided in raw format. It may be formatted,
mounted, used as a block device, etc. The interfaces for doing this are
TBD.

Streaming: The space supports only streaming mode access, reading and
writing, to the data in the space. This interface needs to be defined
although the ByteIO streaming interface may be appropriate.

But this set of space types is extensible and additional types could be added at a later
time.

Lifetime Management – If the storage service does not support explicit lifetime
management, all returned space allocations are allocations of temporary space, the
default lifetime being defined by the resource properties of the storage service. If
lifetime management is supported, each allocated space will have properties that
define how its lifetime is managed.

Quota Support – If the storage service supports quota management agreements for
space allocation then space may be refused if the requestor or the requestor’s
organization is running out of quota.

Online Space Management Support – Indicates whether the storage service
exposes an interface to manage those files that are to be kept online in the given
space. This only applies to file space types as raw and streaming spaces are defined
to be always online. See below for a definition of online and nearline storage in this
context.

Security Support – Indicates whether spaces available from this storage service can
be requested as ‘secure’ spaces or not. The security semantics are governed by the
corresponding OGSA security profile. For file space types this may offer say basic
UNIX style security support, or a fine-grained ACL control of the files in the given
space and its corresponding namespace perhaps. For raw and streaming storage the
available operations to be controlled are only reading and writing.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 41

Before even starting to negotiate an agreement for space with the given data service, these
properties may be checked by clients to see whether the data service is actually capable of
offering storage with the necessary semantics.

9.4 Storage Space Properties

A particular Storage Service will divide its storage resources into a number of Storage
Spaces. Each storage space has a set of properties, as listed below. These are subject to
negotiation through the agreement mechanism.

Size – The size of the space in bytes.

Space Type – The actual type of the given space. This can be for example ‘file’,
‘raw’, or ‘stream’. The file space type can be considered as a block of (not necessarily
contiguous) file system space into which files can be copied to or retrieved from. An
additional parameter for file space type is the largest single file that may be put into
the given space. The raw space type is a block of space that can be used as a raw
device, formatted, mounted as a file system, etc. The stream space type offers
continuous streaming in or out of it (usually Write-Once Read-Many semantics).

Online – Indicating whether the space is always online (low latency) or whether it
may also be nearline (i.e. on tape where the access may involve some considerable
latency), or even offline (i.e. where operator intervention would be required).

Lifetime – If the space supports lifetime management then this property indicates the
time until which this space is assured to be available.

Retention Type – This property describes the behavior of the storage space when
the lifetime of the data expires. Either lifetime has no effect (the data is permanent), it
has the effect of the data being removed (volatile) or a notification is sent to the client
so that it can take some action (durable). If the client fails to take action after a
specified time out the space will be freed.

There are also many other possible properties such as Maximum Access Bandwidth, Average
Access Latency, Cost, etc. Plus, whether the space is being kept on a hierarchical storage
system (HSM), i.e. there may be considerable latencies in access times if the data has to be
staged in from tape say before access is possible. Some of these properties may be
negotiated upon space creation.

9.5 Site and VO management

Like any other service, data storage services need to take into account that they are managed
both by the site owning the service and by the Virtual Organizations that have access to it.
Usually sites providing storage services have the following needs and constraints while
running a service:

• Ease of provision. The site that provides a storage resource to be accessible by the
Grid via a storage service wants to be able to do so with minimal effort. It should be
easy to start and stop a Grid storage service.

• VO Management. Sites own the storage resource and service. When making
available the storage service to ‘the Grid’, sites need to be able to sign agreements
with VOs, assign quotas to VOs, restrict Quality of Service to a VO, etc.

• Local accounting. The sites have to be able to charge their users for the resource
usage or otherwise account for their resources, for which they usually need the
information locally. It is normally sufficient to account on a per VO basis, although
some sites have stricter policies.

• Transparent user management. A site may trust all users that are members of a
given VO with which it has an agreement to provide storage. It is possible for sites to
require that individual users be audited and accounted as well as individually banned
from using the site resources. Some sites have policies that require everyone using
their services to be personally registered (by getting an account and signing an
agreement form), so this has to be possible as well if needed.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 42

• Local access control. A site may have a local policy or even legal obligations to be
able to track who is accessing its services and resources and they need local control
to be able to control the access granted to specific users. This does not go against
the previous necessity of transparent user management – the possibility to blacklist
certain users and the ability to simply track access is usually enough.

• Quality of Service. The site is the defining authority for the quality of the data
storage service. It is up to the site to publish the actual policies for all aspects of the
storage service including data safety, data backup and availability.

Virtual Organizations are responsible for the following aspects of the storage resource
management and have the following constraints and needs:

• User Management. It is normally the responsibility of the VO to manage its users. It
must be able to propagate user information to the storage service, so that users are
properly authorized. The management of the actual user authorization information is
the responsibility of the VO.

• User Prioritization. Inside a VO some users have more rights than others. VOs need
to be able to assign different priorities, quotas and abilities to each user, depending
on the semantics of the actual storage service (these may be very different for a
database storage service and a simple file store).

• Data Sharing. It is up to a VO and its users to define with whom and what other VOs
the data stored in a given storage is allowed to be shared (if the data store is capable
of securing the data at all).

9.6 Security Discussion

As stated above, storage spaces may support different security mechanisms. In order to
enforce these, all storage interfaces to a given storage resource must be consistent in their
security semantics.

The security semantics between the Data Access interfaces and the actual underlying storage
space security has to be completely consistent. In some cases security can be handled by the
data access facility. In other cases, it is necessary to involve the security mechanisms of the
underlying storage system.

The storage services in a VO may provide many different security semantics for storage
spaces (file type). The owner of a VO must carefully consider whether to allow this diversity to
show to clients of the storage services of the VO or if a single set of security semantics should
be chosen. The former provides a great deal of flexibility but it may lead to problems. .For
instance, to provide transparent data replication, different replicas of the same file must have
the same access semantics on different sites. The scenario where the very same data is
accessible to a given Grid user at one site but inaccessible at another one should be avoided.
However, this is unavoidable if different security semantics are used for storage within the
same VO. For example, if a VO uses storage spaces at one site with POSIX ACL semantics
but has a storage space with no security at another site, then all data which are stored on the
insecure storage are de facto insecure at all other sites as well.

9.7 Interaction of Storage and Transfer

Storage resources play an important role in optimizing the transfers to and from a given
storage space. One important special case is when a space is linked to a Hierarchical
Storage Manager where all data is staged in and out to, e.g., tape or other media. In this
case, it matters greatly to performance in what order the files are being accessed or are being
transferred to tape.

Therefore it makes sense to define a transfer management interface for storage spaces. It
can be a very simple interface that simply reorders a transfer request based on the current
known state of the underlying storage. The interface has the following methods for storage
spaces that support files:

OrderTransferFromStorage () – Reorders a transfer request from a storage
resource based on the current known state of that resource.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 43

OrderTransferToStorage () – Reorders a transfer request to a storage resource
based on the current known state of that resource.

These take as parameters an array of File structures, each of which contains a name which
identifies the file on storage. The array is then ordered and ranked. The operations return an
array of RankedFile structures, each of which contains the name of the file as well as a
ranking value, i.e. with what priority the file should be transferred. Lower ranking values
indicate higher priority to transfer the file. Ranking values range from 0 to 10. Several files in
the return list may have of course the same ranking value. The same request may return a
different result at different times.

We expect that these operations will be used by the Data Transfer factory when it is creating
a Transfer instance that will be moving more than one file at a time. They may also be used
by applications that are directly managing the staging of files for access by those applications.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 44

10 Cache Services

Factory Operation Description

CreateCache Returns an EPR to a newly created cache
service.

Cache Service Operation Description

SynchronizeCache Forces (temporary) consistency of a cache.

Table 8: Cache service operations

A cache service maintains a local copy of remote data in order to improve performance. It
provides the same interface to the client as the remote service and most clients can access
the data without worrying about cache behavior. When the client accesses the data via the
cache, the read or write is made to the cache’s copy of the data. The cache maintains the
consistency with the remote data, propagating updates between them, according to a
specified policy. The cache service is also responsible for enforcing the security policies of
the remote data.

The interface presented to the client must match that of the remote data service. It follows
that there is no such thing as a generic cache service. Instead there may be many cache
services, each implementing a certain set of interfaces.

The remainder of this section discusses how cache services fit into the data architecture and
presents requirements on their design. These requirements need to be accepted by an as yet
to be determined standards working group as input into a cache service standardization effort.

10.1 Cache Models

There are two typical uses of a cache service. In the first, the cache service is created by the
remote data service to form a composite data service. The cache is purely an internal
building block of the composite service, there to improve its performance. This composite
service controls the cache parameters (i.e. it manages the cache). Unless the management
interface of the data service provides operations that affect the cache, the clients of the
composite service have no direct access to the cache at all. Thus, when a client accesses
the data service, the implementation of that service may choose to access the cache to
improve performance. The cache may be configured so that cache misses are automatically
directed by the cache to the actual data source

In the second use, the cache service is known to the client, which may be the hosting
environment, the application, a workflow enactment engine, or some other type of service. In
fact, a likely scenario is that the client created the cache. The cache parameters are set by
the client and the remote service will typically have no knowledge of the cache service. The
cache service is deployed to increase the performance of a particular workflow, host or
application. In this case the client will direct access requests to the cache service. The cache
service may be configured to automatically direct cache misses to the remote data service.

In either case, the existence of the cache may be registered with the appropriate registry or
discovery service. In both cases, the cache is a service and thus has its own name.

A cache service is similar in practice to a data replication service. The differences lie in
intention and in the size of the data element. A cache is purely about performance. A data
replication service is primarily for increasing the availability of the data or for creating
snapshots for off-line processing (as in a data warehouse). In practice, data replication
services may be used to enhance performance, but this is not their primary aim. Also, data
replication services typically replicate well defined sets of data such as entire files or database
tables. Cache services may maintain partial, dynamically changing, copies, storing just the
part of the data that has been (recently) accessed by the client.

10.2 Creating Caches

A cache may be created by a factory operation, CreateCache, which is defined as follows;

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 45

CreateCache () – takes the following arguments and returns an EPR to a newly
created cache service:

• The remote data source to be cached.

• The location(s) where the cache will be created. This might be a data
resource or one or more storage services. The create operation may need to
perform a provisioning operation at the remote location in order to create the
cache.

• The data consistency requirements between the cache and the remote data.

• A description of the policy used to refresh the cache contents (if the service
offers a choice).

• An indication of whether the cache is read-only or can be modified.

• An indication of the lifetime of the cache. A cache might have an indefinite
lifetime or it might be created with a known time when it will be destroyed.

The result of the factory CreateCache operation is to create a cache of the specified data in
the target location(s). The operation may fail, and errors will be returned, if the remote data or
target location cannot be accessed or if the desired data consistency cannot be maintained.

10.3 Cache Consistency

Updates are propagated from the remote data service to the cache according to a data
consistency policy. This may be predetermined by the cache service, be negotiated when the
cache is created or, if the service supports it, it may be selected using a management
interface.

This consistency policy has two aspects. The first is whether the cached data is up to date
(unless the data is read-only). The second is the policy used to refresh the cache contents.
The cache will usually only hold a subset of the remote data and the choice of refresh policy
will determine which subset is held at any given time.

In general, the cache service will support a number of policies either through its management
interface or agreement negotiation. These policies may allow control of cache placement,
data consistency strategy, how updates directed to the cache are handled and how the
contents of the cache are flushed. They may be predetermined by the cache service, be
negotiated when the cache is created or, if the service supports it, it may be selected using a
management interface.

There may also be times when an application needs to force (temporary) consistency of a
cache. This is done via the SynchronizeCache operation:

SynchronizeCache () – takes no arguments and returns no results. It will raise a
fault if the remote data source is either inaccessible or not responding.

SynchronizeCache forces synchronization of the data in the cache. This causes all writes
made to the cache to be applied to the remote data source. It also either updates or clears all
data in the cache. Note that by the time this operation completes, the data in the cache may
already be out of date.

10.4 Cache Management

The cache service is a manageable service that can be managed by the OGSA mechanism. It
must be possible to inquire about the state of the cache: what the current data consistency
requirement is, which resources the cache service is consuming, what the actual current
degree of data consistency is, etc. It must also be possible to control the operation of the
cache service. For instance, it may be possible to change the data consistency constraint
governing operation of the service. It should also be possible to control actions taken when
the cache service detects errors, inconsistencies or failure to meet data consistency
constraints. Other operations may be required by this document, while specific cache services
may provide operations not defined here.

The following are the properties of a cache service:

• Source – the remote source of data.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 46

• Locations – the storage space(s) used to hold the cached data.

• Data Consistency – a specification of the degree of consistency to be maintained
between the remote data source and the cache.

• Refresh policy – a description of the policy used to refresh the contents of the cache.

• Read/write – an indication of whether the cache is read only or not.

• Lifetime – the lifetime of the service. A cache may have finite lifetime or indefinite
lifetime.

• Security Policy – the security policy enforced on access to the cache.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 47

11 Data Replication

Factory Operation Description

CreateReplica Returns an EPR to a newly created data
replication service.

Replica Service Operations Description

ValidateReplica Returns an indication of whether or not the
replica is identical with the primary data source.

ModifyReplicatedContents Change the set of data being replicated.

SynchronizeReplica Forces (temporary) data consistency of a replica.

Table 9: Data replication operations

Data items may be replicated in Grids for at least three reasons:

• fault tolerance,

• load balancing and

• to create a copy of data so that it can be processed off-line.

There are a variety of different data replication services that may be deployed in a Grid
depending on the publication, discovery and data consistency requirements.

The remainder of this section discusses how replication is modeled in the data architecture
and presents requirements on data replication. These requirements need to be accepted by
an as yet to be determined standards working group as input into a data replication
standardization effort.

11.1 Replication Modeling

Data replication has three logical components in a real world system. There is the primary
data source. This is the actual data, managed by a data service, commonly known as “the
truth”. Then there are one or more replicas. These are copies of some or all of the data in
the primary data source. A replica will typically reflect the state of the primary data source at
some point in the past. Finally there is a data replication service that is responsible for
moving data between the primary data source and the replicas to ensure that agreed upon
degrees of data consistency are maintained between the primary and replicas. The OGSA
data architecture will model all three components. Each of these will be discussed later in this
section.

Another model for data replication is a peer-to-peer environment in which there are no
primary data sources, but, rather, all replicas are considered equivalent. In this model, a data
replication service creates new replicas from existing data sources and maintains the required
level of data consistency among replicas.

A replica should maintain the security policies of the source data. That is, when the data
replication service creates a replica it must ensure that the proper security controls are in
place (which is not to say that an administrator of the machine holding the replica could not
make “inappropriate” changes to the security properties of the replica). We distinguish
between managed replicas of data and copies. If an application creates a copy of the data
that is not managed as a replica, then the application owns that data and can enforce
whatever security it desires. Note that in a non-discretionary security environment, the
system may impose restrictions on what access the copy may permit.

The discussion in the remainder of this section considers two possible scenarios for the data
replication service. In the first scenario, the data replication service is only responsible for
creating the replicas of data; it is independent of other functionality, such as replica discovery
services. In the second scenario, the data replication service hides other logic for replica
creation, discovery, etc., and offers a more opaque interface to users that handles all replica
creation and access.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 48

11.2 Creating Replicas

Replicas are created via a factory operation, CreateReplica, which is defined as follows:

CreateReplica () – takes the following arguments and returns an EPR to a newly
created data replication service. Creation of a replica requires specification of the
following:

• Primary data source. In the case of peer to peer replication, this will be any
one of the pre-existing replicas of the data.

• Target location(s) where the replica(s) will be created. This might be a data
resource, a data service or a storage service. In all cases it denotes the
place where the replica will be stored. Note that replication may need to
perform a provisioning operation at the remote location in order to create the
replica.

• List of the data items to be replicated. This may be all or a subset of the data
in the primary data source. Different types of sources may have different
capabilities for defining subsets. The items to be replicated might include
files, databases or subsets of those. Most, but not all, data sources will
support replication as sources or targets. If a primary or target does not
support data replication, an error will be returned.

• Data consistency requirements between the primary and the replica(s) (or, in
the peer-to-peer case, data consistency requirements among the replicas).
These will be discussed in detail in a later section. There is no guarantee
than a given data consistency requirement can be met. If it cannot, an error
may be returned by the creation service.

• An indication of whether the replica is read-only or can be modified.

• An indication of the lifetime of the replica. A replica might have an indefinite
lifetime or it might be created with a known time when it will be destroyed.

• Should the replica be created synchronously or asynchronously?

• Replica catalog(s), if any, where the newly created replica should be
registered. This may default to a well known replica registry. It is possible to
declare that the replica should not be registered in a catalog. Note that the
best way to name complete and partial replicas is an open issue.

The result of the replica factory CreateReplica operation is to create replicas of the specified
data from the primary in the target location(s). For synchronous creation, the replica has
been populated with all required data from the primary when the factory operation returns.
For asynchronous creation, a handle to a replica creation service is returned to allow
management of the creation process. Finally, if required, a replication process has been
created to ensure that the specified data consistency between the primary and replica(s) is
maintained. The operation may fail, and errors will be returned, if the primary or target cannot
be accessed or if the desired data consistency cannot be maintained.

For asynchronous creation, the replica creation service will support operations to inquire
about the state of an in-progress replication creation, to cancel the creation, or to modify the
list of data items to be replicated or the data consistency requirements. Once creation of the
replica has been achieved, these modification operations will always return an error.

11.3 Other Operations on a Replication Service

The data to be replicated may need to be changed. This is done via the
ModifyReplicatedContents operation:

ModifyReplicatedContents () – Change the set of data being replicated.

• Data to be removed from the replica, if any

• Data to be added to the replica, if any

• An indication of whether the newly added data should be added
synchronously or asynchronously

After this operation returns successfully, the indicated data will be part of the replica. If
synchronous addition has been requested then the indicated data has been initially loaded

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 49

into the replica. If asynchronous addition has been specified then the data replication service
may be queried to determine when the added data is available. If the data to be added
cannot be added given the data consistency requirements enforced by the replica, a fault will
be raised. If the data is not accessible, a fault will be raised. If removal of the indicated data
results in a replica with no data in it, a warning indication will be returned.

A data replication service autonomically maintains an agreed upon degree of data
consistency among the replicas and the primary data source, if any. However, there may be
times when an application needs to force (temporary) data consistency of a replica. This is
done via the SynchronizeReplica operation:

SynchronizeReplica () – takes no arguments and returns no results. It will raise a
fault if the primary data source is inaccessible or not responsive.

SynchronizeReplica forces synchronization of the data in the replica(s). There are two cases
to consider:

• If there is a primary data source, updates in the replica are applied to the primary and
the replica is updated with the latest data from the primary before this operation
returns. Note that by the time this operation the data in the replica may already be
out of date. It should also be observed that this operation does not, in and of itself,
update any data in any other replicas that may exist.

• In the case of peer to peer replication, all of the replicas are updated to have the
same data before this operation. In this case, the data replication service may hold
all access operations until the synchronization completes. Again, upon return the
data in the replica may be out of date and the various replicas temporarily
inconsistent.

11.4 Discovering Replicas

Replica discovery services are used to query for the existence of replicas in a Grid
environment. These services might be integrated with other general data discovery services,
but they may have additional attributes that are specific to replica management.

In Naming, we discussed three types of names for data items: human-oriented names,
globally unique abstract names, and low-level addresses that specify where to access a data
entity. Data discovery services maintain mappings among these different names to allow
discovery and access of data replicas. The discovery service must be capable of registering
and searching for replicas that represent subsets of original data sources. As already
mentioned, the best way to name and discover these partial replicas is an open issue.

A typical scenario for file-oriented data has two levels of discovery catalogs. The first is a
data catalog (also known as a “metadata catalog”) that allows clients to discover the globally
unique name of the data item of interest. In simple cases this might just maintain
associations between human-oriented names and globally unique names. More complex
examples may maintain complex descriptions of data and allow clients to query these
descriptions. The second level of discovery is a replica catalog (also known as a “replica
location service”) that maintains associations between globally unique names and physical
addresses for data items. Discovery services may support the use of standard WS-names,
which can be resolved to EPRs for specific data items.

• Operations to create or update mappings between globally unique names and
physical addresses for data items.

• Query operations to discover the physical addresses of data items associated with a
globally unique name.

• Query operations to discover the globally unique name(s) associated with a physical
address of a data item.

• Operations to associate attributes with globally unique names or physical addresses
of data items.

• Query operations to discover globally unique names or physical addresses of data
items with specified attributes.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 50

11.5 Validation of Registered Replicas

For many scientific applications, published data is accessed in a read-only fashion. Since
replicas never change, no updates to data contents need to be propagated in the Grid.
However, data items registered as replicas may become corrupted over time, either because
of data transfer errors during replica creation, faults in the storage media that cause
corruption after the data are stored, or because data items are modified on a remote storage
system by a user or administrator in ways unknown to the publishers of the data.

For other applications that do perform data updates, these updates must be propagated to
replicas by the data replication service. If errors occur during update propagation, replicas
may become inconsistent with the primary data source. It is necessary to detect these
inconsistencies and resolve them.

To detect replicas that become corrupted or inconsistent, it is useful to have a validation
operation that can be used to check replicas and verify that they are truly replicas according
to the definition of data replication imposed by the Virtual Organization. For example, the VO
may require that all registered replicas have the same MD5 checksum. If the validation
service discovers that a registered replica is not valid, then it can repair the replica or destroy
the replica, perhaps removing it from replica catalogs.

The ValidateReplica operation performs this check on the replica:

ValidateReplica () – takes no arguments and returns whether or not the replica is
identical with the primary data source. If the replica is writable, this operation returns
a fault.

ValidateReplica checks that the data in the replica is identical to that in the primary and
returns an indication of the validity.

In some cases it might be desirable to have replicas checked on a regular and automatic
basis. This can easily be done using ValidateReplica as the heart of a repetitive process
defined outside of the data replication service described here.

11.6 Replica Consistency

Applications accessing replicas of data need to know the degree of data consistency between
the replica(s) and the primary (or among replicas in a peer-to-peer system). The key problem
is updates to the data.

For some data resources, updates to the data do not ever happen. In this case, the read only
situation, data consistency is trivial – it is identity. Once the replica has been created, there is
no need for any activity to maintain data consistency since the data does not change.

A second class of data resource allows the data to be updated. In this case, the degree to
which the primary and target must be consistent needs to be specified. For this purpose, the
data replication service must propagate updates among replicas and ensure that replica
contents are valid with respect to the agreed data consistency requirement. For example, a
data consistency requirement might specify that all replicas should reflect all changes that
have been applied to the primary data source before a specified point in time, for example, all
changes within the last ten seconds.

The data replication service is responsible for maintaining data consistency between a
primary data source and one or more replicas (or among replicas in a peer-to-peer system).
One possible implementation of a data replication service is to use data versioning. Updates
to a data item are made at the primary data source and the data is assigned a new version
number. The new version is propagated to all replica locations by the data replication service.
It is necessary to specify the allowable latency between the time that changes are received by
the primary and when the updated versions of the data are available at the replica sites. Note
that in this case, old versions need not be deleted, but may, instead, be deprecated in favor of
later versions.

Another alternative is to have a master-slave model in which a primary replica (or the primary
data source) receives any updates to a data item and the data replication service then
updates the other replicas to reflect these changes. In a Grid environment, these updates are
typically performed asynchronously, since synchronous updates using, for instance, a two-

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 51

phase commit protocol are likely to be extremely heavy-weight and slow in the wide area
network. In addition, some replicas may be unavailable for update at a given time, making a
two-phase commit impossible. Asynchronous updates require the specification of data
consistency constraints. In particular, it must be possible to specify the allowable latency
between changes being made to the primary and those same changes being seen at the
replica.

If updates are allowed at the replica(s), data consistency constraints must be specified to
control the speed and manner with which these updates are propagated to the primary.
Updates to the replica may be applied there and then propagated asynchronously to the
primary. Updates may be applied to the primary first then to the replica before the update is
acknowledged to the application. Or, the updates may be required to be applied
simultaneously to the primary and the replica (e.g., via a two phase commit protocol). Finally,
these options must be specified in an environment of a single primary and multiple replicas.

In a peer-to-peer environment, updates must be propagated to all the replicas. Maintaining
data consistency in these environments can be challenging, since conflicting updates can be
made to multiple replicas simultaneously, and the data replication service must detect and
resolve these conflicts. If the system acquiesces, then the data replication service can identify
conflicts and possibly force replicas into a consistent state.

11.7 Managing Replicas

As described in Replication Modeling, data replication consists of two or more end points and
a data replication service that is responsible for maintaining the replicas. The data replication
service is a manageable service that can be managed by the OGSA mechanisms. It must be
possible to inquire about the state of the replicas: what is the current data consistency
requirement, what resources is the data replication service consuming, what is the actual
current degree of data consistency, etc. It must also be possible to control the operation of the
data replication service. For instance, it must be possible to change the data consistency
constraint governing operation of the replicas. It should be possible to control actions taken
when the data replication service detects errors, inconsistencies or failure to meet data
consistency constraints. These operations are examples. Others may be required by this
document, while specific data replication services may provide operations not defined here.

11.8 Replication Properties

The following are the properties of a data replication service:

Source – the primary source of data. This is set to null in a peer to peer replication.

Target(s) – the replicas, the services/data resources that hold the replicated data.

Replicated data – a specification of the data being replicated.

Data consistency – a specification of the degree of data consistency to be
maintained between the primary data source and the replicas. In the case of peer to
peer replication this indicates the degree of data consistency among the peer
replicas.

Read/write – an indication of whether the replicas are read only or not.

Lifetime – the lifetime of the replica. A replica may have finite lifetime or indefinite
lifetime.

Security Policy – the security policy enforced on access to the replica(s).

Security Policy Propagation rules – an indication of how security policies should be
propagated to new replicas and to the data accessed form a replica.

Replica catalog used (optional) – the set of replica catalogs that the data replication
service has registered these replicas with. Note that there is no guarantee that the
catalog service still has this registered data nor that the replicas have not been
registered in other catalogs.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 52

12 Data Federation

Factory Operation Description

CreateFederation Returns an EPR to a newly created, empty, data
federation service.

Federation Service
Operations

Description

AddSourceToFederation Adds one or more new input sources to a data
federation.

AddAccessMechanism Adds a new access mechanism to a data
federation.

UpdateFederationAttributes Changes the various attributes of a data
federation.

RemoveSourceFromFederation Removes one or more input resources from a
data federation.

RemoveAccessMechanism Removes a specified access mechanism from a
data federation.

Table 10: Data federation operations

In OGSA, we define data federation to be the logical integration of multiple data services or
resources so that they can be accessed as if they were a single data service.

A data federation is a set of services that consists of:

• A collection of potentially distributed input data resources or data services. For
instance a federation might federate a relational database, an XML database and a
data service that provided a SQL interface.

• A set of filters on the data from those sources. For example, when including
information from an employee database, it might be desired to exclude salary
information.

• A set of transformations of that data. For example, if the federation were combining
information from two geographical databases, one in France and the other in the
United States, it might be necessary to do an English/Metric units conversion on one
set of data or the other to ensure that distances were in the same units.

• A means to combine that data. For example, the federation might do a relational join
across two of its data sources.

• A filter on the resulting data. There might be a need to exclude some of the data that
results from combining the data. For example it might be necessary to exclude
information about employees who live in Kansas and make more than $200,000 per
year.

• A set of access mechanisms as described in 7 (Data Access), specified by URIs, that
can be used to access the data provided by the federation. It is explicitly permitted for
a federation to support multiple access mechanisms.

• A requested quality of service policy and a set of policies that govern the operation of
the federation. A federation is responsible for managing QoS as negotiated with its
clients. QoS might include specified response times, guarantees on availability,
currency of data, and resilience to disasters (e.g., recovery time objective, recovery
point objective). Other policies might control aspects of operation such as resources
consumed and security.

• An optional set of storage spaces where the federation may store either temporary
data or data that represents the persistent state of the data federation service.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 53

The implementation of the federation is responsible for providing the specified access
mechanisms, with the specified QoS, to its clients while accessing, filtering and transforming
data from the input sources as specified. Each of these aspects is represented by a property
of the federation.

The specification of a data federation must include the means to combine input data, filters on
the output data and the access mechanisms to be supported. These aspects of a federation
will define the basic way in which data from the input sources is combined and then presented
to the federation client. These aspects thus effectively define the data provided by the
federation.

The output access mechanisms are the set of data access interfaces, as defined in the data
access section of this document, that are available to clients of the federation. All access to
the data provided by the federation is through one of these access mechanisms.

The policy terms are a set of policies specified using a standard OGSA policy mechanism,
which represent the desired behavior of the data federation. Some of these policy terms will
be defined in the specification of a data federation service while others will be specific to the
particular federation being created (that is, they are defined by the service providing the
federation creation operation). These terms may include quality of service (e.g., transaction
rates, response times), currency of data (i.e., how stale the data returned by, or used by, the
federation may be), security, accounting and transactional characteristics. This list is
intended to be suggestive rather than all-inclusive. Enforcement of policies can be
complicated. Thus a data federation may need the services of a sophisticated policy engine
to enforce policies. This same policy engine might be used to determine if policies being
requested of the federation by the various federation operations can be met.

Security and privacy are issues. A federation will access its constituent data services using
normal Grid mechanisms. Consequently access will be governed by security policies. Thus
the federation will need to supply security information (e.g., identity, security tokens, etc.).
This may come from the security information provided by the application requesting service
from the federation, it may come from the creator of the federation or it may come from an
identity “owned” by the federation through some other means. Note that a federation may
need to perform activities asynchronously with respect to invocations of its operations (e.g., to
manage cached or replicated data). This would seem to mean that the federation would need
to have some identity or security information of its own.

12.1 Creation of Federations

A data federation consists of a collection of OGSA services. However, each federation is
initially created empty – that is with no input sources and it exports no data. Thus the creation
operation for a data federation is:

CreateFederation () – takes no arguments and returns an EPR to an empty
federation. It is possible that the storage spaces used internally by the federation
implementation could be specified in this operation.

The client then uses the AddResourceToFederation operation to create a federation that
“exports” data – see the next subsection.

It is of course also possible to create a data federation “out of band” and provide an OGSA
interface onto that federation as a simple service, but that is not considered further here.
Finally, there is the case of a data federation that combines both OGSA services and “raw”
data sources (that is, sources not wrapped with an OGSA service interface). Again, this is not
described as a formal part of the architecture.

12.1.1 Data Transformation

The input filters, data transformations, data combination mechanisms and output filters
represent a computational engine that takes data from the input sources and makes data
available via the federation’s output access mechanisms. This computational engine
performs, in general, an arbitrary computation. This computation will retrieve data from the
input sources and then transform that data into the data provided by the federation. This
computation may involve work required to bridge the differences in schema among the input
data sources. It may be necessary to filter the input data so that not all of it used by the

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 54

federation. Transformation of the input data (e.g., currency conversion) may be required prior
to it being used to create the federated data. An arbitrary computation may be performed on
the data that results from this schema transformation, filtering and transforming in order to
produce the data provided by the federation. Finally, it may be necessary to filter the data
resulting from this computation before exporting data from the federation. These
computations might be done statically at the time the federation is created, or a new input
source added, or they may occur dynamically when the federated data is accessed.

If the filtering and transformation of data is done statically, and not done dynamically on each
access to the federation, the issue of data consistency arises. What if the data in the source
data resource changes? The federation must have data consistency policies to govern how
this is handled. These policies may be inherent in the federation (and thus can not be
changed) or the federation may support multiple policies that can be chosen via management
operations on the federation.

It is tempting to try and specify the computational engine in a declarative manner. This,
however, does not appear to be technically possible, in the general case of a data federation,
due to the complexity of the potential transformations that arise from the diversity of potential
input sources, the large variety of schemas possible in the input sources, the difficulty of
defining how data provided by these schemas can be combined (either declaratively or by
relying on an automated mechanism to do the schema integration, which is an unsolved
research problem) and the diversity of potential access mechanisms that could be supported.
In the specific case where the input sources are suitably constrained (e.g., all relational
databases) and the access mechanism is also constrained (say, also, to be relational) then
one can imagine designing a declarative specification of the transformation from input to
output. Such a specification is, however, beyond the scope of this document. There will
certainly be specific (restricted classes of) federations for which a declarative specification is
possible and desirable.

It is also tempting to define the operations on a federation to take an executable piece of code
and embed that in some generic federation engine. Such an embedding would require the
specification of the programming interface between the engine and the embedded
transformation engine. The diversity of potential input and output sources makes it difficult to
define suitable interfaces to make the federation work correctly and with suitable
performance. Thus, we defer this to future work.

So, in the end, we are left with the need to leave the general creation of data federations
outside the scope of this architecture. Federation creation will be provided by services in
ways that are specific to that service.

12.2 Adding Input Sources to a Federation

The set of sources of data that a federation uses should be changeable. An administrative
client should be able to dynamically add, or delete, an input source from a federation.
Similarly, an administrative client should be able to add or remove an access mechanism
from the set of access mechanisms supported by the federation. Due to the generality of a
data federation, the operations are very generic:

The AddSourceToFederation operation is used to add one or more new input sources to a
data federation. Adding a new resource to a federation can require changes to many of the
aspects of the federation. It will take the following arguments:

AddSourceToFederation () – should take the following arguments:

• The input sources to be added, specified by EPR(s). The input sources are a
list of sources of data. They are OGSA services, as specified by the OGSA
naming mechanism. AddSourceToFederation may fail if an input source
either does not exist or does not support an access mechanism required by
the federation.

• The filters to be applied to the data from the new input sources.

• The transformations to be applied to the data from the new input sources.

• An update to the combination mechanisms to be used to combine all of the
data from the data resources now in the federation.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 55

• An update to the QoS requirements enforced by the federation.

• Update to the policies that govern the operation of the federation.

• An update to the set of access mechanisms provided by the federation.

• A specification of how the federation should incorporate the new data sources
into the federation. This specification is of a form that is specific to the
specific federation.

The federation will raise errors if any of the sources do not support an access mechanism
needed by the federation, if any of the sources cannot be used due to some restriction
imposed by the federation, if any of the sources could not be found or if there is a problem
with the requested way to incorporate the new sources into the federation.

If it is desired to add a primitive source to a data federation, that must be done in a federation-
specific manner and is not specified as part of this architecture. However, we anticipate that
such operations will have much the same form as that specified here.

Removing an input source from a federation is done via the RemoveSourceFromFederation
operation:

RemoveSourceFromFederation () – removes one or more input resources from a
data federation. It takes the following arguments:

• The input sources to be removed.

• Update to the filters used by the federation.

• Update to the combination mechanisms used by the federation.

• Update to the set of access mechanisms exported by the federation.

• Update to the QoS supported by the federation.

• Update to the policies that govern the operation of the federation.

It takes as input the source to be removed from the federation. It will raise a fault if the
sources are not part of the federation, if an attempt is made to remove the last input source
from a federation or if removal of the source would result in a federation that cannot be
supported by the federation or if the updated properties cannot be supported by the
federation.

Removal of a primitive source from a data federation must be done in a federation-specific
manner and is not specified here. However, we anticipate that such operations will have
much the same form as that specified here

12.3 Other Changes to a Federation

Other changes are possible to a data federation. They are described in this section.

It is possible to add a new access mechanism to a data federation. This is done via the
AddAccessMechanism operation:

AddAccessMechanism () – adds a new access mechanism to a data federation.
This addition may require other needed changes to the federation so that the
following arguments are required:

• The new access mechanism to be supported.

• Updates to the QoS requirements enforced by the federation.

• Update to the policies that govern the operation of the federation.

The above operation updates the policies that govern the operation of the data federation.
Upon successful completion of this operation, the federation will support the new access
mechanism. Thus the type of the data federation service has been extended in that it now
supports additional interfaces. A fault will be raised if the specified access mechanism cannot
be supported or if the updates to the federation properties cannot be supported. If the
operation fails, no changes are made to the access mechanisms provided by the federation.

The various properties of a data federation need to be updated at times. Thus there is an
UpdateFederationAttributes operation to change the attributes in a federation:

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 56

UpdateFederationAttributes () – Changes the various attributes of a data
federation:

• Update to the filters used by the federation.

• Update to the combination mechanisms used by the federation.

• Update to the set of access mechanisms exported by the federation.

• Update to the QoS supported by the federation.

• Update to the policies that govern the operation of the federation.

Note that in some cases not all of these will need to be updated so the various arguments are
all optional. UpdateFederationAttributes will raise a fault if the specified arguments are either
invalid or are not supported by the federation.

Updates to policies and QoS have some special considerations. There are emerging
standards for policy, such as [WS-Agreement] and [WS-Policy], that specify how a service
and its clients can determine, via an agreement negotiation, the policies, including QoS, that
govern the service’s operation. For the purposes of this version of the data architecture, we
only require that the federation either agree or disagree with a requested change to the QoS
and policies that govern its operation. The federation is not required to participate in any
agreement negotiation. As agreements and agreement negotiation are standardized, we
would expect this architecture, including federations, to be updated to reflect the standardized
agreement mechanisms.

Removing an access mechanism from an existing data federation is done via the
RemoveAccessMechanism operation:

RemoveAccessMechanism () – removes a specified access mechanism from a data
federation. This may require changes to some of the federation properties. This
takes the following arguments:

• The access mechanism to be removed

• Update to the QoS supported by the federation.

• Update to the policies that govern the operation of the federation.

A fault will be raised if an attempt is made to remove the last access mechanism from a data
federation or if the specified changes to the federation’s properties cannot be supported given
the set of access mechanisms that would result after removal of the specified access
mechanism. Upon successful completion of this operation, the federation will no longer
support access via the indicated access mechanisms. Applications that use this federation
via one of the removed access mechanisms will now fail with a suitable error raised by the
service infrastructure. If the removal attempt fails, no changes are made to the federation.

12.4 Access to the Federation’s Data

The data provided by the data federation is available to applications through the set of access
mechanisms supported by the federation. These access mechanisms are specified in section
8, Data Access, in this document.

A federation may choose to support partial results. That is if satisfying an access request
requires data from one or more input resources that are not currently available, the federation
may choose, if the policies governing federation operation permit it, to return a partial result.
In this case the federation must also return an indication to the requestor that partial results
have been returned as well as an indication of which resources were not available. The
requestor should have the ability to request, either as part of the access operation or by
changing the federation’s governing policies, that no partial results be returned. Note that
supporting partial answers may require extensions to standardized access mechanisms. Such
extensions are beyond the scope of this document. To support optimized data access,
including the important case of access via a query, we expect that the basic access
mechanisms provided by the input sources will be extended with additional operations to
facilitate this optimization. For instance, a federation that takes relational sources as input
might desire those sources to provide operations to describe available indices, sizes of tables
and estimations of the size of result sets. A federation that supports transactional semantics
might require facilities from its input sources that support distributed, two-phase commit.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 57

12.5 Updates to Policy

As with all services, a data federation will provide operations to replace and modify the
policies governing its operation. In considering the implications of these operations on a
service, it is important to note that the ability of a federation to follow a policy may be
dependent upon the capabilities of the services and resources that comprise the federation.
In some cases the federation may be able to take actions to follow a policy in spite of the
limitations of its constituent services and resources. In other cases the federation will not be
able to take such compensating actions and it will reject such policies.

12.6 Access to the State of the Federation

Clients may need to have access to parts of the state of a data federation. This section
enumerates those properties that are available. The actual mechanism for accessing this
state is specified in an OGSA profile.

The properties of the accessible state of a federation, as described earlier, are accessible via
standard OGSA mechanisms:

• Input sources: the set of input data sources for the federation.

• Access mechanisms: the set of access mechanisms currently supported by the
federation.

• Policies: the set of policies governing the operation of the federation.

A federation might choose to create replicas of data and cache data from one or more of its
input sources. A federation may choose to make the existence of these known to its clients
either as state provided by the federation or by registering a replica or cache with an
appropriate registry.

12.7 Security Considerations

A data federation must take suitable measures to ensure the security and privacy of the data
that it provides. Being a Grid service, the implementation of a data federation has its
operation limited by security and privacy considerations. The generality and complexity of a
federated environment, and the many potential federation patterns, makes it impossible to
explicitly discuss all the possible cases. Thus this section will outline general principles that a
data federation must adhere to.

A data federation will access the constituent data services using normal Grid. This means
that the access will be governed by security policies. Thus the federation will need to supply
security information (e.g., identity, security credentials, etc.) to the data source that it is
accessing. This security information may come from one of several sources:

• The security information may be provided by the client requesting service from the
federation.

• The identity of the requesting client might be used directly.

• The federation might have its own identity and use that to access the data sources.
This identity might have been supplied when the federation was created or it may
have been provided as a (changeable) property of the federation.

This security information will govern what data the federation can access. Note that if a
federation accesses its constituent data sources using non-OGSA mechanisms the security
issues, which remain relevant, are outside the scope of this document.

Note that a data federation will frequently perform activities asynchronously with invocations
of its operations. This would seem to imply that the federation must have some inherent
identity or security information in order to perform those operations when they involve access
to either other Grid services or to its input data sources.

The data federation is responsible for attaching security and privacy controls to the data that it
returns, using the normal Grid security and privacy mechanisms discussed in Section 4. The
nature of these controls (e.g., the access control lists for the data) may come from one or
more sources. The federation may have one or more properties that, in union, define the

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 58

access allowed to the data coming out of the federation. The federation may attach a security
policy to the exported data that is a function of the access controls on the data extracted from
its data sources. Clearly the data federation cannot, in and of itself, enforce these attached
security controls. This is the responsibility of the security mechanisms being used.

12.8 Standardization Considerations

The description above is of great generality. At this time it appears that the work required to
standardize data federations has considerable research content. Thus we recommend
formation of an OGF research group to explore data federation. This working group would be
responsible for identifying those parts of data federation that are ready for standardization, as
well as attempting to resolve the remaining issues. This research group should also attempt
to identify particular types of data federation that are of high value to the community and
which are well-enough understand to be amenable to standardization. For example, a
specialization that takes multiple relational sources as input and supports relational access to
the federation is likely to be both important and amenable to standardization. Such a
specialization can build upon the work of research projects such as OGSA-DAI and existing
products such as IBM’s WebSphere Information Integrator.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 59

13 Data Catalogs & Registries

Registry Operations Description

Publish Add an entry to the catalog.

Update Modify an existing entry.

Augment Add additional properties for an entry created by
someone else.

AddClassification Add a classification to the catalog.

Classify Specify how descriptions are classified according
to registered classifications.

Find Apply a query to the catalog and return matching
entries.

Table 11: Registry operations

A data catalog is a service that provides mechanisms for publishing and querying descriptions
of data services, their capabilities and the content they represent. Data catalogs are a
particular case of registries, as in principle a registry can store descriptions of arbitrary items.
In this section we describe the functionality required for data services, which need to be
accepted by an as yet to be determined standards working group as input into a
standardization effort. This hypothetical group may specify a standard for data catalogs in
particular; alternatively it may develops a standard for registries, with data catalogs as simply
a particular use case of that standard.

Data catalogs are often called “metadata catalogs”. In keeping with our principle of avoiding
the overloaded term “metadata”, we choose our term by the fact that the catalog contains
descriptions of data (much as a clothing catalog contains descriptions of clothing or a
component catalog contains descriptions of components).

13.1 A model for data catalogs

The descriptions stored in a data catalog for a particular service may originate from the data
service itself or from third parties. For example, the service may choose to register itself with
a registry so that clients may discover that service. Alternatively, the registry may be
populated by an automatic discovery mechanism such as a Gridbot. Third parties may also
store information about services such as assessments of quality or relationships with other
services. In both cases the descriptions are written in XML.

Figure 9: A model for data catalogs

 To satisfy the requirements of such a service, a registry should provide operations for:

• Managing the data descriptions.
• Publication and removal of data descriptions.
• Discovering services and resources and obtaining descriptions relating to them.

3rd

Client

Find Publish

Description

Registry

Service

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 60

• Annotation of existing data descriptions.
• Subscribing for notification of changes in data descriptions.

The registry may aid service discovery by providing for the standard categorization of the
descriptions that it holds.

13.2 Publication

It should be possible to publish metadata securely, where the publisher retains ownership of
the description and is the only person that can modify it or anonymously, where the
description has no owner. This is done via a Publish operation:

Publish () – Add an entry to a catalog.

• Name identifying the entity to be described.

• The description of that entity to be added.

• Security policy.

• Currency policy.

The result of the Publish() operation will be success or failure. Lifetime management
functionality may be provided by associating EPRs with content and relying on the OGSA
Basic Profile.

It must also be possible for the owner of a description to update it. This is done via the
Update operation:

Update () – Modify an existing entry.

• Name identifying the entity to be described.

• The new description of that entity.

A registry may also allow a third party to add to the description of an existing entry, even if
they do not have the ability to modify the original description. The query mechanism may
provide facilities whereby queries can choose to take account or ignore descriptions from third
parties. The addition of third-party descriptions is provided by the Augment operation:

Augment () – Add additional properties for an entry created by someone else.

• Name identifying the entity to be described.

• The additional description of that entity.

13.3 Classification

Some registry systems, such as UDDI [UDDI], provide mechanisms for classifying
descriptions. This allows a registry manager to upload a categorization scheme and then
assign entries in the registry to these categories. The intention is that clients can then find
content by category. This is supported by the AddClassification and Classify operation:

AddClassification () – Add a classification to the catalog.

• The name of the classification scheme.

• An XML specification of the tags in the classification scheme.

AddClassification() does not return a result, unless faults occur.

Classify () – Specify how descriptions are classified according to registered
classifications.

• A list of (scheme name, tag) pairs.

Classify() is called on a registered description to add that description to the appropriate
classification. There probably needs to be an additional operation that does this for a list of
descriptions, rather than having to call the operation once for each description.

The increasingly popular use of tagging is a less formal approach to categorization where
individuals just invent words to indicate categories and then associate them with content.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 61

13.4 Query

The fundamental client operation on a data catalog is to query the descriptions to find items of
interest. This is done with the Find() operation:

Find () – Apply a query to the catalog and return matching entries.

• Query expression.

• The new description of that entity.

Information provided by a registry is exposed in XML format and is queried using XPath or
XQuery statements. The result of this operation will be references to services that satisfy the
query.

If the result of service or resource discovery through the registry is an address it can be used
directly to locate the service providing access to the data resource. When the result
comprises a service or resource name further work must be undertaken to retrieve the
address associated with the returned name, possibly using another registry.

13.5 Currency

When descriptions are held in a registry, the registry is effectively acting as a cache.
Therefore the information should be refreshed using selectable strategies. For example,

• Do not cache, i.e. always read directly from the service.
• Cache once, i.e. the data is static and will not change.
• Cache timeout, i.e. it is not vital that the data is absolutely up to date so refresh every

n seconds.
• Update on event, i.e. update the cache whenever the data changes.
• Update on age, i.e. give the information an age and provide policy to drive updates to

aging data.
The precise set of policies that govern the operation of a data catalog, including these
currency properties, needs to be defined. In addition there will also be properties that
describe the registry itself – e.g. the age of a particular entry, capabilities, etc.

It should be possible for a client to subscribe to any changes in the description of a given
entity. This functionality should be provided by the notification features of an OGSA Basic
Profile and possibly the work of the Info-D Working Group of OGF [Info-D].

13.6 Security and Hierarchies

Registries may employ a variety of trust models. In order for a service to publish descriptions
with a registry it may have to pre-register with the registry. This reassures a client that the
description comes from a trusted source. The content that may be queried may depend on
the credentials used by a client. The trust model used within a Virtual Organization may be
implicit, i.e. members of that VO are automatically trusted. However as annotations may be
replicated from one registry to another as in the figure below, other VO domains may be less
trusted and the amount of information replicated may be a subset of that available at the
original registry. A registry client may have to drill down through the services in order to obtain
the full information.

Registries that span VO boundaries are out of scope for this version of this document.

Virtual Organization

Virtual Organization

R

R

R

DS

DS

Figure 11: Registries that span multiple Virtual Organizations

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 62

14 Conclusions and Future Work

This OGSA Data Architecture is the first attempt to define the data management capability
within the OGSA architecture. It addresses the issues that pertain to data within Grids and the
services, operations and properties required to deal with data in a manner consistent with the
OGSA vision. The document is not intended to be prescriptive, or normative, but rather is
intended to highlight and suggest what needs to be present in Grid environments to deal with
data. No doubt, as more detailed examinations are made of the requirements, services are
implemented and further investigations are carried out, the details contained within this
document will have to change. However, this document provides a base-line from which such
work may start.

The OGSA Data Working Group produced this architecture with the twin intents of:

• linking existing work on standards for Data Grids with the ongoing development of the
OGSA architecture.

• stimulating new standardisation work in key areas.

This work has achieved these goals not only by producing the current document but also by:

• contributing the description of data management capabilities to the OGSA 1.5
document

• creating the successful OGSA ByteIO working group in OGF

• encouraging the OGF's Grid File Systems working group to develop RNS to meet the
needs of Data Grids

• stimulating the creation of the OGSA WS-Naming profile document

• launching the OGSA DMI working group and continuing to influence its work

This version of the OGSA Data Architecture covers some basic capabilities. Future versions
should tackle key ideas such as session management, integration with workflow systems,
integration with provisioning systems and operations on streams. There is much that needs to
be done on infrastructure for managing vocabularies and ontologies. We believe that version
1.0 will form a sound base on which these further developments can be built.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 63

15 Appendix: Summary of General Interfaces

This appendix gives a summary of all the interfaces defined in this document.

15.1 Policy Operations

Operations Description

ReplacePolicy Replaces the entire policy governing the
operation of the service with the policy supplied
as an argument.

UpdatePolicy Updates part of the policy governing operation of
the service

15.2 Data Transfer Operations

Factory Operation Description

CreateTransfer Initiates a transfer between a data source and a
data sink. Returns an EPR to a Transfer service
that is managing the transfer.

Data Resource Operations Description

GetHandle Returns a WS-Name for the transfer related
operations provided by that service

GetSupportedProtocols Returns the set of transfer protocols supported
by this data resource.

SetupTransfer Returns a protocol-specific URI which can be
used to initiate and mange the transfer.

Transfer Service Operations Description

PauseTransfer Temporarily stops an in-progress transfer.

ResumeTransfer Resumes a paused transfer.

StopTransfer Stops an in–progress transfer. The Transfer
service is destroyed as part of this operation.

15.3 Data Access Operations

Factory Operation Description

Create Create an association between a data service
and an underlying resource with a given service
interface. The underlying resource may be
created and populated as a result of this
operation.

Unstructured Data Access
Operations

Description

Read Takes an offset and a number of bytes to read,
and returns that number of bytes from the
resource.

Write Takes a fixed number of bytes of data which it
writes to the resource.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 64

Structured Data Access
Operations

Description

ExecuteQuery Provide a means for querying a resource. This
could take an SQL, an XPath or XQuery
expression or any language type described by
the LanguageMap property which is then run by
the underlying resource.

BulkLoad Provide a means of inserting large amounts of
data into an underlying resource.

15.4 Storage Operations

Space Management
Operations

Description

ReserveSpace Facilitates negotiation of space reservation.

GetSpace Returns space tokens for currently allocated
spaces.

ReleaseSpace Releases an occupied space.

Depending on local settings and policies, all files
may need to be released in the specified space
before the space can be released.

Directory Management
Operations

Description

ListFiles Returns a list of files and information about them.

ReleaseFiles Releases the files in a storage space.

The files are not necessarily deleted
immediately, but the space occupied by the
released files is eligible for removal if space is
needed.

RemoveFiles Removes files from a storage space.

CopyFiles Copies files, either within a storage space or
between (local) spaces.

MoveFiles Moves files either within a storage space or
between (local) spaces.

MakeDirectory Creates a directory in a local storage space.

DeleteDirectory Deletes a directory in a local storage space.

Transfer Management
Operations

Description

OrderTransferFromStorage Reorders a transfer request from a storage
resource based on the current known state of
that resource.

OrderTransferToStorage Reorders a transfer request to a storage
resource based on the current known state of
that resource.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 65

15.5 Cache Service Operations

Factory Operation Description

CreateCache Returns an EPR to a newly created cache
service.

Cache Service Operation Description

SynchronizeCache Forces (temporary) consistency of a cache.

15.6 Replication Operations

Factory Operation Description

CreateReplica Returns an EPR to a newly created data
replication service.

Replica Service Operations Description

ValidateReplica Returns an indication of whether or not the
replica is identical with the primary data source.

ModifyReplicatedContents Change the set of data being replicated.

SynchronizeReplica Forces (temporary) data consistency of a replica.

15.7 Federation Operations

Factory Operation Description

CreateFederation Returns an EPR to a newly created, empty, data
federation service.

Federation Service
Operations

Description

AddSourceToFederation Adds one or more new input sources to a data
federation.

AddAccessMechanism Adds a new access mechanism to a data
federation.

UpdateFederationAttributes Changes the various attributes of a data
federation.

RemoveSourceFromFederation Removes an input resource from a data
federation.

RemoveAccessMechanism Removes a specified access mechanism from a
data federation.

15.8 Registry Operations

Operations Description

Publish Add an entry to the catalog.

Update Modify an existing entry.

Augment Add additional properties for an entry created by
someone else.

AddClassification Add a classification to the catalog.

Classify Specify how descriptions are classified according
to registered classifications.

Find Apply a query to the catalog and return matching
entries.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 66

16 Appendix: Interface Mappings to Existing Specifications

This section maps the proposed interfaces in the OGSA Data Architecture to interfaces
proposed in existing standards.

16.1 Data Access Mappings

This subsection describes the mapping of the Data Access Section to existing OGF
standards. There are two main specifications in this area – those from the OGF DAIS WG for
structured data and from the OGF OGSA ByteIO WG for unstructured data.

The WS-DAI specification [WS-DAI] produced by the Database Access and Integration
Services Working Group, DAIS-WG, proposes a generic, model independent way of providing
access to structured data held in data resources. The WS-DAI specification provides a set of
basic patterns that are then specialized for particular types of data resources, such as
relational databases or XML databases, in related specification documents referred to as
realizations.

Operation WS-DAI mapping

Create Message pattern defined but no
operations are defined.

ExecuteQuery CoreDataAccess::GenericQuery

BulkLoad <None>

DAIS realizations seeks to extend the core properties and operations defined in the core
specification for a particular type of data model: this is done by [WS-DAIR] for relational data
resources and the [WS-DAIX] specification for XML data resources. This ensures that
different realizations have a level of functional commonality.

Operation WS-DAIR mapping

Create SQLAccessFactory::SQLExecuteFactory

SQLResponseFactory::SQLRowsetFactory

ExecuteQuery SQLAccess::SQLExecute

BulkLoad <None>

Operation WS-DAIX mapping

Create XMLCollectionFactory::CollectionSelectionFactory

XQueryFactory::XQueryExecuteFactory

XPathFactory::XPathQueryFactory

ExecuteQuery XQueryAccess::XQueryExecute

XPathAccess::XPathExecute

XUpdateAccess::XUpdateExecute

BulkLoad <None>

The ByteIO specification [OGSA ByteIO] is divided into two separate and distinct interfaces –
RandomByteIO and StreamableByteIO – each addressing a unique set of use cases. The
first of these supports the notion that a data resource is directly accessible and that clients
can handle the maintenance of any session state (such as size and position). This is
specifically designed to ease the burden of service authoring by pushing much of the

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 67

management to the client libraries. The other interface is useful for clients that wish for more
session-like semantics in their data interactions. In this latter case, resources implementing
the interface do not represent the data source/sink directly so much as an open session
between the client and the data. This distinction is most clear when considering the canonical
semantics of "terminating" resources. When a RandomByteIO resource is terminated, the
data resource is destroyed but when a StreamableByteIO resource is terminated, the data is
unaffected -- only the open session between the client and the data disappears.

Operation RandomByteIO mapping StreamableByteIO mapping

Read RandomByteIO::read StreamableByteIO:: seekRead

Write RandomByteIO::write

RandomByteIO::append

RandomByteIO::truncAppend

StreamableByteIO:: seekWrite

16.2 Storage Management Mappings

This subsection describes the mapping of the Storage Management section to the existing
OGF specification SRM [SRM].

Space Management Operation SRM mapping

ReserveSpace srmReserveSpace

GetSpace srmGetSpaceTokens

ReleaseSpace srmReleaseSpace

Directory Management Operation SRM mapping

ListFiles srmLs

ReleaseFiles srmRm

RemoveFiles srmRm

CopyFiles srmCopy

MoveFiles srmMv

MakeDirectory srmMakeDir

DeleteDirectory srmRmDir

Transfer Management Operation SRM mapping

OrderTransferFromStorage <None>

OrderTransferToStorage <None>

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 68

17 Appendix: Specifications referred to in this document

The role of this document is to explain how relevant specifications can fit together to create a
coherent Grid architecture for data based on web services. This section briefly lists the
relevant specifications. Each of these specifications describes a different part of this
architecture. Some have much wider applicability; for example the descriptions of data
formats are used in a wide variety of systems.

Some of these specifications already exist, others are in development.

17.1 Data Access Specifications

Specification Description Defining body

ByteIO POSIX-like operations for Grids. OGF (OGSA ByteIO WG)

WS-DAI Virtualization of queries over
structured data

OGF (DAIS WG)

WS-DAIR Instantiation of WS-DAI for
relational data

OGF (DAIS WG)

WS-DAIX Instantiation of WS-DAI for XML
data

OGF (DAIS WG)

17.2 Data Description Specifications

Specification Description Defining body

DFDL Describing binary data OGF (DFDL WG) – under
development

Dublin Core Common metadata elements DCMI

JPEG Image format ITU/CCITT

PNG Portable Network Graphics IETF

TIFF Image format Adobe

XSD XML schema description W3C

17.3 Data Transfer Specifications

Specification Description Defining body

FTP File Transfer Protocol IETF

GridFTP Extended FTP OGF (GridFTP WG)

MTOM SOAP-based binary data W3C

OGSA DMI Data Transfer Control OGF (OGSA DMI WG) –
under development

SwA SOAP with attachments W3C

DIME SOAP-based binary data IETF – withdrawn

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 69

17.4 Storage Specifications

Specification Description Defining body

SRM Management of mass storage
resources

OGF (GSM WG)

17.5 Infrastructure Specifications

Specification Description Defining body

Info-D Publish-subscribe information
dissemination

OGF (InfoD WG)

JSDL Job submission description
language

OGF (JSDL WG)

OGSA Basic Security
Profile

Messaging security OGF (OGSA WG)

OGSA WSRF Basic
Profile

Resource addressing, Lifetime
management, Notification

OGF (OGSA WG)

RNS Human-meaningful names OGF (GFS WG)

UDDI Universal Description Discovery
and Integration

OASIS

URI Universal Resource locator W3C

WS-Addressing-core Transport-neutral addresses W3C

WS-Agreement Policy agreement management OGF GRAAP WG

WS-DM Management OASIS

WS-Management Management DMTF

WS-Naming Abstract names OGF OGSA-Naming WG

WS-Policy A framework for policy definition W3C

17.6 Transaction Specifications

Specification Description Defining body

WS-Coordination, WS-Atomic
Transaction and
WS-BusinessActivity

Distributed transactions OASIS

WS-Context, WS-Coordination
Framework, WS-Transaction
Management

Distributed transactions OASIS

17.7 API Specifications

Specification Description Defining body

POSIX Byte stream IO IEEE

NFS Network file access IETF

CIFS Network file access SNIA

JDBC Java database access Sun

ODBC Database access Microsoft

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 70

18 Glossary

This section defines the terms used in this document and gives the origin for these definitions.
Although we have tried to use terms in their generally accepted manner, this glossary is the
definitive definition of the terms used in this document, along with the OGSA glossary [OGSA
Glossary].

Term Definition Origin

API Application Programming Interface – a set of language-
specific types, methods and other features that allow an
application to access or control a resource.

New

Capability In OGSA, a set of one or more services that together
provide a function that is useful in a Grid context.

The OGSA Data Management Services described in this
document are an example of an OGSA capability.

OGSA Glossary
v1.6 (definition)

New (example)

Cache A cache service maintains a local copy of a subset of
remote data, in order to improve access times for local
consumers.

New

Component An interchangeable part of a system that encapsulates its
contents and defines its behavior in terms of its public
interfaces.

OGSA Glossary
v1.6

Data Access A mechanism that allows an entity to identify a subset of
the data held by a data resource and either update that
subset, return it to the requesting entity, or make it
available for transfer elsewhere.

New

Data Catalog A registry that stores data descriptions of data services or
the data resources they represent. This is sometimes
called a “metadata catalog”.

Data
Consistency

An instance of data in a resource in a distributed system is
said to be “consistent” with one or more other instances of
that data elsewhere in the system if it is up-to-date with
respect to those instances.

In a given system, a policy may define the rules for
determining the extent to which data is up-to-date and for
maintaining that degree of consistency.

New

Data
Description

A generic term for the set(s) of properties that specify
aspects of particular data, including the data format,
information about the resource that holds the data, and
any other description of that data such as provenance,
classification, textual description, etc.

New

Data
Federation

In OGSA, data federation refers to the logical integration
of multiple data services or data resources so that they
can be accessed as if they were a single service.

New

Data Format The encoding, structure, classification and organization of
data in a data resource or message.

New

Data
Management
Services

In OGSA, the capability concerned with the storage,
description, access, update, location, transfer and other
management of data.

New

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 71

Term Definition Origin

Data
Replication

The maintenance of one or more copies (replicas) of data
such that the replicas are kept up to date with any
changes in that data, to a degree specified by an
applicable consistency policy.

New

Data
Resource

An entity (and its associated framework) that provides a
data access mechanism or that can act as a data source
or data sink.

New

Data Service A service that provides interfaces to the capabilities and
data of one or more data resources within a service-
oriented architecture.

New

Data Set An encoding of data in a defined syntax suitable for
externalization outside of a data resource—for example
for data transfer to or from another data resource.

Examples include a WebRowSet encoding of an SQL
query result set, a JPEG-encoded byte array, and a ZIP-
encoded byte array of a set of files.

Derived from
OGSA Data
Services, Dublin
Core Metadata
Initiative [Dublin
Core]

Data Sink A data resource that receives the data copied by a data
transfer mechanism from a data source.

New

Data Source A data resource that contains the data to be copied to a
data sink via a data transfer mechanism.

New

Data Staging The transfer of data to a specified location in preparation
for an activity, e.g. running a job on an execution
resource, or the transfer of data resulting from an activity
to another location.

New

Data Transfer A mechanism to physically copy data from a data source
to a data sink.

New

Entity Any nameable thing. For example, in OGSA an entity
might be a resource or a service.

OGSA Glossary
v1.6

Interface In a service-oriented architecture, a specification of the
operations that a service offers its clients.

OGSA Glossary
v1.6

Management The process of taking administrative actions such as
deploying, configuring, monitoring, metering, tuning,
and/or troubleshooting resources, either manually or
automatically.

OGSA Glossary
v1.6

Metadata Data that describes data. Metadata may include
references to schemas, provenance, and information
quality.

OGSA Glossary
v1.6

Quality of
service (QoS)

A measure of the level of service attained, such as
security, network bandwidth, average response time or
service availability.

OGSA Glossary
v1.6

Replica
Catalog

A registry that maintains associations between globally
unique names and physical addresses for replicated data
items

New

Registry An authoritative, centrally-controlled store of information.

Web services use registries to advertise their existence
and to describe their interfaces and other attributes.
Prospective clients query registries to locate required
services and to discover their attributes.

OGSA Glossary
v1.6

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 72

Term Definition Origin

Resource A resource is a physical or logical entity that supports use
or operation of a computing application or environment.

In an OGSA Grid resources are accessed through
services.

In a Grid context the term encompasses entities that
provide a capability or capacity (e.g., servers, networks,
disks, memory, applications, databases, IP addresses,
and software licenses). Dynamic entities such as
processes, print jobs, database query results and virtual
organizations may also be represented and handled as
resources.

See http://www.w3.org/TR/2004/NOTE-ws-arch-
20040211/#resource for the WS Architecture definition of
this term.

OGSA Glossary
v1.6

Scenario A scenario is a specific sequence or path of interactions,
from initiation to goal, occurring within a particular
environment and/or context. A use case may contain
multiple scenarios.

OGSA scenarios are high-level and described in a casual
style.

OGSA Glossary
v1.6

Service A service in the most general sense is an entity, usually
composed of one or more software components, that
provides functionality in response to client requests.

A service is often a part of a service-oriented architecture,
and participates in realizing one or more capabilities.

For example, a high-level service such as an electronic
bookstore may be composed of several lower-level
constituent services, such as inventory, checkout and
order tracking.

OGSA Glossary
v1.6

Service-
oriented
architecture
(SOA)

This term is increasingly used to refer to an architectural
style of building reliable distributed systems that deliver
functionality as services, with the additional emphasis on
loose coupling between interacting services.

Note: An SOA can be based on Web services (which
provide basic interoperability), but it may use other
technologies instead.

OGSA Glossary
v1.6

Storage
Resource

A resource that provides a physical or logical storage
capability. Examples include storage devices, storage
appliances, disk volumes and file systems.

New

Virtualization Virtualization uses a level of indirection to abstract the
implementation details of one or more entities, enabling
them to appear to their consumers in a more appropriate
form. For example, a virtualized entity might present
different interfaces from its underlying entities, a single
entity might be partitioned and presented as a set of
(lower-capacity) entities, or a set of discrete entities might
be treated as a single aggregate entity.

OGSA Glossary
v1.6

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 73

Term Definition Origin

Virtual
organization
(VO)

A virtual organization comprises a set of individuals and/or
institutions having direct access to computers, software,
data, and other resources for collaborative problem-
solving or other purposes.

VOs are a concept that supplies a context for operation of
the Grid that can be used to associate users, their
requests, and a set of resources. The sharing of resources
in a VO is necessarily highly controlled, with resource
providers and consumers defining clearly and carefully
just what is shared, who is allowed to share, and the
conditions under which sharing occurs.

OGSA Glossary
v1.6

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 74

19 Contributors

19.1 Author Information

Dave Berry
National e-Science Centre
15 South College Street
Edinburgh
EH10 4ST
UK

Allen Luniewski
IBM Cross Brand Services
IBM Silicon Valley Laboratory
555 Bailey Ave.
San Jose, CA 95141

Mario Antonioletti
EPCC
JCMB
The King's Buildings
Mayfield Road
Edinburgh
EH9 3JZ
UK

19.2 Acknowledgements

This document contains contributions from many people who have given their time and
expertise towards the production of the OGSA Data Architecture. The authors thank the
people who have contributed text, ideas and comments to this document, including the
following:

Ted Anderson, IBM Corporation, USA

Malcolm Atkinson, NeSC, UK

Ann Chervenak, Information Sciences Institute, USA

Neil Chue Hong, EPCC, UK

Stephen Davey, NeSC, UK

Abdeslem Djaoui, CCLRC, UK

Andrew Grimshaw, University of Virginia, USA

Shannon Hastings, Ohio State University, USA

Peter Kunszt, ETH Zurich / Swiss National Supercomputing Centre CSCS, Switzerland,

Simon Laws, IBM Corporation, UK

Leo Luan, IBM Corporation, USA

Fred Maciel, Hitachi, Japan

Susan Malaika, IBM Corporation, USA

Mark Morgan, University of Virginia, USA

Manuel Pereira, IBM Corporation, USA

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 75

20 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology
described in this document or the extent to which any license under such rights might or might
not be available; neither does it represent that it has made any effort to identify any such
rights. Copies of claims of rights made available for publication and any assurances of
licenses to be made available, or the result of an attempt made to obtain a general license or
permission for the use of such proprietary rights by implementers or users of this specification
can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the OGF Executive Director.

21 Disclaimer

This document and the information contained herein is provided on an “As Is” basis and the
OGF disclaims all warranties, express or implied, including but not limited to any warranty that
the use of the information herein will not infringe any rights or any implied warranties of
merchantability or fitness for a particular purpose.

22 Full Copyright Notice

Copyright (C) Open Grid Forum (2006, 2007). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be
prepared, copied, published and distributed, in whole or in part, without restriction of any kind,
provided that the above copyright notice and this paragraph are included on all such copies
and derivative works. However, this document itself may not be modified in any way, such as
by removing the copyright notice or references to the OGF or other organizations, except as
needed for the purpose of developing Grid Recommendations in which case the procedures
for copyrights defined in the OGF Document process must be followed, or as required to
translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or
its successors or assignees.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 76

23 References

[CIFS]

Storage Network Industry Association. Common Internet File System (CIFS)
Technical Reference. Revision 1.0. http://www.snia.org/tech_activities/CIFS/CIFS-TR-
1p00_FINAL.pdf.

[DAIS]
Atkinson, M,. Dialani, D., Guy, L., Narang, I., Paton, N., Pearson, D., Storey, T.,
Watson, P., Grid Database Access and Integration: Requirements and
Functionalities, Global Grid Forum, Lemont, Illinois, U.S.A., GFD-I.13, March 2003.
http://www.ogf.org/documents/GFD.13.pdf.

[DIME]
Nielsen, H. and Sanders, H.. Direct Internet Message Encapsulation (DIME).
Microsoft, June 2002. http://xml.coverpages.org/draft-nielsen-dime-02.txt

[Dublin Core]
DCMI Usage Board, DCMI Metadata Terms, DCMI Recommendation, December
2006. http://dublincore.org/documents/dcmi-terms/.

[FTP]
Postel, J. and Reynolds, J. File Transfer Protocol (FTP). IETF RFC 989, October
1985. http://www.ietf.org/rfc/rfc0959.txt

[GridFTP]
Mandrichenko, I., Allcock, W. and Perelmutov, T. GridFTP v2 Protocol Description.
OGF GFD.47, May 2005. http://www.ogf.org/documents/GFD.47.pdf

[Info-D]
Davey, S., Dialani, V., Fehling, R., Fisher,S., Gawlick, D., Kantarjiev, C. Madsen, C.,
Malaika, S., Mishra, S. and Shankar. M., Information Dissemination in the Grid
Environment – Base Specifications, GFD-R-P-110, Open Grid Forum, July 2007.
http://www.ogf.org/documents/GFD.110.pdf.

[JDBC]
Andersen, L., Specification Lead. JDBC™ 4.0 Specification, JSR221. Sun
Microsystems, Inc. November 7, 2006.

[JPEG]
Information Technology Digital Compression and Coding of Continuous-Tone Still
Images Requirements and Guidelines,. JPEG ISO/IEC 10918-1 ITU-T
Recommendation T.81, 1994.

[JSDL]
Anjamshoaa, A., Brusard, F., Drescher, M., Fellows, D., Ly, A., McGough, S.,
Pulsipher, D. and Savva, A., Job Submission Description Language (JSDL)
Specification, Version 1.0. GFD-R.056, Global Grid Forum, November 2005.
http://www.ogf.org/documents/GFD.56.pdf.

[MTOM]
Gudgin, M., Mendelsohn, N., Nottingham, M. and Rujellan, H. SOAP Message
Transmission Optimization Mechanism. W3C Recommendation, January 2005.
http://www.w3.org/TR/soap12-mtom/.

[NFS]
Shepler, S., Callaghan, B., Robinson, D., Thurlow, R., Beame, C., Eisler, M. and
Noveck, D. Network File System (NFS) version 4 Protocol. RFC 3530, IETF, April
2003. http://rfc.net/rfc3530.html.

[ODBC]
ODBC--Open Database Connectivity Overview, Micrsoft Knowledge Base Article
110093, http://support.microsoft.com/kb/110093.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 77

[OGSA]
Foster, I., Kishimoto, H., Savva, A., Berry, D., Djaoui, A., Grimshaw, A., Horn, B.,
Maciel, F., Siebenlist, F., Subramaniam, R., Treadwell, J. and Von Reich, J., The
Open Grid Services Architecture, Version 1.5. Open Grid Forum OGSA-WG. GFD-
I.080, July 2006. http://www.ggf.org/documents/GWD-I-E/GFD-I.80.pdf.

[OGSA BSP-Core]
Mori, T. and Siebenlist, F., OGSA

®
 Basic Security Profile 1.0— Core. Open Grid

Forum GFD.86 January 2007. http://www.ogf.org/documents/GFD.86.pdf

[OGSA SP-Secure]
Mori, T. and Siebenlist, F., OGSA

®
 Security Profile 1.0— Secure Channel. Open Grid

Forum, GFD.99, February 2007. http://www.ogf.org/documents/GFD.99.pdf

[OGSA BES]
Foster, I., Grimshaw, A., Lane, P., Lee, W., Morgan, M., Newhouse, S., Pickles, S.,
Pulsipher, D., Smith, C. and Theimer, M., OGSA® Basic Execution Service Version
1.0. OGF GFD.108, August 2007.

[OGSA ByteIO]
Morgan, M ByteIO Specification 1.0. OGF GFD.87, January 2007.

[OGSA Glossary]
Treadwell, J. (ed.) Open Grid Services Architecture Glossary of Terms, Version 1.6.
Open Grid Forum OGSA-WG. GFD-I.120, January 2008.
http://www.ogf.org/documents/GWD-I-E/GFD-I.120.pdf.

[OGSA Profile Definition]
Maguire, T., Snelling, D. OGSA Profile Definition. Global Grid Forum, Lemont, Illinois,
U.S.A., GFD-I.059, January 2006. http://www.ogf.org/documents/GFD.59.pdf

[OGSA Roadmap]
Kishimoto, H., and Treadwell, J. (eds.) Defining the Grid: A Roadmap for OGSA
Standards. Global Grid Forum, Lemont, Illinois, USA, GFD-I.053, September 2005.
http://www.ogf.org/documents/GFD.53.pdf.

[OGSA WSRF]
Foster, I., Maguire, T. and Snelling, D.: OGSA WSRF Basic Profile 1.0. GGF OGSA
Working Group (OGSA-WG), GFD-R-P.072, May 2006.
http://www.ogf.org/documents/GFD.72.pdf.

[PNG]
T. Boutell, et. al. PNG (Portable Network Graphics) Specification. Version 1.0. IETF.
http://www.ietf.org/rfc/rfc2083.txt.

[POSIX]
IEEE Std. 1003.1-1990 Standard for Information Technology Portable Operating
System Interface (POSIX) - Part 1: System Application Programming Interface (API).

[RNS]
Pererira, M., Tatebe, O., Luan, L. and Anderson, T.., Resource Namespace Service
Specification, GFDF-R-P-101, Open Grid Forum, March, 2007,
http://www.ogf.org/documents/GFD.101.pdf.

[SRM]
Sim, A. and Shoshani, A. The Storage Resource Manager Interface Specification,
version 2.2, CERN, FNAL, JLAB, LBNL and RAL, April 2007, http://sdm.lbl.gov/srm-
wg/doc/SRM.v2.2.pdf.

[SwA]
Barton, J., Thatte, S. and Nielsen, H. SOAP Messages with Attachments, W3C Note,
December 2000, http://www.w3.org/TR/SOAP-attachments.

[TIFF]
TIFF Revision 6.0, Adobe, June 1992,
http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 78

[UDDI]
Universal Description Discovery and Integration, OASIS published standard, version
2 of July, 2002, http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm.

[URI]
Berners-Lee, T., Fielding, R., Irvine, U.C., Masinter, L. Uniform Resource Identifiers
(URI): Generic Syntax. August 1998. http://www.ietf.org/rfc/rfc2396.txt.

[UTF-8]
Yergeau, F., UTF-8, a transformation format of ISO 10646. IETF.
http://www.ietf.org/rfc/rfc3629.txt.

[WS-Addressing-core]
Gudging, M. Hadley, M. and Rogers, T. Web Services Addressing 1.0 – Core. W3C
Recommendation May 2006. http://www.w3.org/TR/ws-addr-core.

[WS-Agreement]
Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., Pruyne, J.,
Rofrano, J., Tuecke, S. and Xu, M. Web Services Agreement Specification (WS-
Agreement). Open Grid Forum GFD.107. May 2005.
http://www.ogf.org/documents/GFD.107.pdf

[WS-AtomicTransaction]
Cabrera, L.F., Copeland, G., Feingold, M.,Freund, R.W., Johnson, J., Joyce, S.,
Kaler, C., Klein, J., Langworthy, D., Little, M., Nadalin, A., Newcomer, E., Orchard, D.,
Robinson, I.,Storey, T., and Thatte, S. Web Services Atomic Transaction, Version
1.0, August 2005. http://xml.coverpages.org/WS-AtomicTransaction200508.pdf.

[WS-BusinessActivity]
Cabrera, L.F., Copeland, G., Feingold, M.,Freund, R.W., Freund, T.,Joyce, S., Klein,
J., Langworthy, D., Little, M., Leymann, F., Newcomer, E., Orchard, D., Robinson,
I., Storey, T., Thatte, S., Web Services Business Activity Framework (WS-
BusinessActivity), OASIS Submission, August 2005.
http://specs.xmlsoap.org/ws/2004/10/wsba/wsba.pdf

[WS-Context]
D. Bunting, M. Chapman, O. Hurley, M. Little, J. Mischkinsky, E. Newcomer, J.
Webber, K. Swenson. Web Services Context (WS-Context) , http://www.oasis-
open.org/committees/download.php/4344/WSCTX.pdf

[WS-Coordination]
F. Cabrera, G. Copeland, T. Freund, J. Klein, D. Langworthy, D. Orchard, J.
Schwchuk and T. Storey, Web Services Coordination (WS-Coordination), http://www-
106.ibm.com/developerworks/library/ws-coor/.

[WS-Coordination Framework]
M. Little, E. Newcomer, G. Pavik. Web Services Coordination Framework
Specification (WS-CF). OASIS.
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf.

[WS-DAI]
Antonioletti, M., Atkinson, M., Krause, A., Laws, S., Malaika, S., Paton, N. W.,
Pearson, D. and Riccardi, G., Web Services Data Access and Integration – The Core
(WS-DAI) Specification, Version 1.0. GFD-R-P.074, Global Grid Forum. July 2006.
http://www.ggf.org/documents/GFD.74.pdf.

[WS-DAIR]
Antonioletti, M., Collins, B., Krause, A., Laws, S., Malaika, S., Magowan, J., Paton, N.
W., Web Services Data Access and Integration – The Relational Realisation (WS-
DAIR) Specification, Version 1.0. GFD-R-P.076, Global Grid Forum. July 2006.
http://www.ggf.org/documents/GFD.76.pdf.

GFD-I.121 December 5, 2007

ogsa-d-wg@ogf.org 79

[WS-DAIX]
Antonioletti, M., Krause, A., Hastings, S., Langella, S., Laws, S., Malaika, S., Paton,
N. W., Web Services Data Access and Integration – The XML Realisation (WS-DAIX)
Specification, Version 1.0. GFD-R-P.075, Global Grid Forum. August 2006.
http://www.ggf.org/documents/GFD.75.pdf.

[WS-DM]
Bullard, V., Murray, B. and Wilson, K. An Introduction to WSDM, OASIS wsdm-1.0-
intro-primer-cd-01, February 2004. http://www.oasis-
open.org/committees/download.php/16998/wsdm-1.0-intro-primer-cd-01.doc

[WS-Management]
Web Services for management (WS-Management), DMTF DSP0226, April 2006.
http://www.dmtf.org/standards/wbem/wsman.

[WS-Naming]
Grimshaw, A. and Snelling, D. WS-Naming Specification. GFD 109, Open Grid
Forum, July 2007. http://www.ogf.org/documents/GFD.109.pdf .

[WS-Policy]
Schlimmer, J., Bajaj, S., Box, D., Chappell, D., Curbera, F., Daniels, G., Hallam-
Baker, P., Hondo, M., Kaler, C., Langworthy, D., Nadalin,A., Nagaratnam, N.,
Prafullchandra, H., von Riegen, C., Roth, D., Sharp, C., Shewchuk, J., Vedamuthu,
A., Yalçinalp, Ü., and Orchard, D., Web Services Policy 1.2 - Framework (WS-
Policy), W3C submission, April 2006. http://www.w3.org/Submission/WS-Policy/

[WS-TransactionManagement]
Bunting, D., Chapman, M., Hurley, O., Little, M., Mischkinsky, J., Newcomer, E.,
Webber, J., and Swenson, K., Web Services Transaction Management (WS-TXM)
Ver1.0, http://www.arjuna.com/library/specs/ws_caf_1-0/WS-TXM.pdf

[XIO]
Globus XIO. The Globus eXtensible Input Output library.
http://www-unix.globus.org/api/c-globus-3.2/globus_xio/html/.

[XML]
Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E. and Yergeau, F. Extensible
Markup Language (XML) 1.0 (Third Edition), W3C Recommendation 4th February
2004. http://www.w3.org/TR/REC-xml/.

[XSD]
Thompson, H., Beech, D., Maloney, M. and Mendelsohn, N. XML Schema Part 1:
Structures Second Edition, W3C Recommendation October 2004.
http://www.w3.org/TR/xmlschema-1/.

