
GFD-I.163
OGF DAIS Working Group

Mario Antonioletti, EPCC
Carlos Buil Aranda, UPM

Oscar Corcho, UPM
 Miguel Esteban-Gutiérrez, UPM

Asunción Gómez-Pérez, UPM
 Isao Kojima (Corresponding Author), AIST
 Steven Lynden, AIST
 Said Mirza Pahlevi, AIST

Category: INFORMATIONAL December 30, 2009

WS-DAI RDF(S) Realization: Introduction, Motivational Use Cases and
Terminologies

Status of This Memo
This document provides information about the initiative for the provisioning of access to RDF(S)
data resources by means of specific realizations of the WS-DAI Core specification.

Copyright Notice
Copyright © Open Grid Forum (2009). All Rights Reserved.

Abstract
The Database Access and Integration Services Working Group (DAIS-WG) has submitted three
specifications to the Open Grid Forum (OGF) recommendation track [WS-DAI, WS-DAIR, WS-
DAIX]. These specifications define a basic set of interfaces, properties and patterns for service-
based access to data. The core WS-DAI specification outlines a set of generic interfaces and
properties that are common to most types of data access. These may then be extended to
access specific types of data. For instance, the WS-DAIR and WS-DAIX specifications extend
the base specification to provide access to relational and XML types of data respectively.

This document outlines and motivates a further extension to the WS-DAI family of specifications
to provide access to RDF(S) data. This will define a standard mechanism for accessing RDF(S)
data in a manner consistent with the framework defined by the WS-DAI core specification. The
main outcome of this work will be two specifications that provide complementary ways for
accessing RDF(S) data: by using the W3C defined SPARQL [SPARQL] query language or
through the use of ontological primitives.

This document motivates this work by presenting an overview of the role of RDF(S) in a grid
context with several motivational use cases.

GFD-I.163 December 30, 2009

dais-wg@ogf.org 2

Table of Contents
1.	
 Introduction ...3	

2.	
 Motivation..3	

3.	
 Specification Overview..5	

3.1.	
 Specification Organization ..5	

3.2.	
 Terminologies..5	

3.3.	
 WS-DAI-RDF(S) Querying ..7	

3.4.	
 WS-DAI-RDF(S) Ontology ..8	

3.5.	
 Specification Design Policies and Issues..9	

4.	
 Motivational Use Cases ..11	

4.1.	
 Grid Resource Matchmaking in Virtual Organizations ..11	

4.2.	
 Grid Resource Annotation and Monitoring ..12	

4.3.	
 Federated SPARQL (Distributed RDF Data Integration)...13	

4.4.	
 ADMIRE Registry ..15	

4.5.	
 Summary...16	

5.	
 Conclusion ..17	

GFD-I.163 December 30, 2009

dais-wg@ogf.org 3

1. Introduction
Grid technologies aim to provide the framework to enable the dynamic, flexible sharing of
computational, data and other types of resources through interoperable middleware based on
open standards. To successfully achieve this end one must be able to unambiguously interpret
metadata about resources in order to be able to discover, utilise correctly and effectively
combine resources together, usually in a dynamic manner, to solve problems.

The Semantic Web community [SW] is currently leading research and development
work in the area of semantic technologies, with a main objective being the provision of a
“common framework that allows data to be shared and reused across application,
enterprise, and community boundaries” [http://www.w3.org/2001/sw/], building on the
data model defined by the Resource Description Framework specifications [RDF-XML,
RDFS, RDF-SEMANTICS], also known as RDF(S). In terms of its adoption, RDF(S) is
being used extensively to represent large amounts of data by a number of applications
worldwide. For example, the UniProt [www.uniprot.org] Protein Database contains 262
million RDF triples, DBpedia [http://wiki.dbpedia.org/] contains over 270 million RDF
facts and the Linking Open Data project [http://linkeddata.org/] now provides 4.7 billion
RDF triples in total. In the same way that RDF(S) is a fundamental building block of the
Semantic Web, it naturally follows that RDF(S) data resources are a key element for
metadata exposure and provisioning.

This document introduces and motivates the definition of a set of service-based interfaces for
accessing RDF(S) [DAIRDFS], based on the OGF WS-DAI specification for data access and
integration together with a set of use cases highlighting potential scenarios to which this
technology could be applied in the context of a regular web service environments or as part of a
grid fabric.

2. Motivation
The next generation of semantically aware grid technologies need to be able to provide
metadata to support the virtualisation of distributed computation, storage, and communication
over a large number of resources [GRID]. This is challenging when systems are loosely coupled
and heterogeneous, where any grid node may provide, at any point in time, new services,
functions, or, in general, new resources that are unknown a priori to its clients or the other grid
nodes. In order to incorporate these new elements into other applications or middleware, or to
cooperate with them, not only do they have to be made available and accessible in a
standardized way, but also visible and adequately described. Metadata plays a crucial role for
this to be achievable; however [S-OGSA] identifies a number of reasons as to why metadata
becomes difficult to interpret in existing grids, including: "knowledge burial", the tendency for
resource metadata to be buried in middleware code, libraries, different database schemas and
XML documents. One way of mitigating this issue is through the use of vocabularies that are
defined, agreed and shared by a community, thus ensuring a degree of interoperability across
applications and/or middleware that exploit this metadata. Examples of resource description
vocabularies are: GLUE [GLUE], the forthcoming Network Mark-up Language (NML) currently
being developed by the OGF NML working group [http://forge.gridforum.org/sf/projects/nml-wg]
and the DMTF Common Information Model (CIM) [http://www.dmtf.org/standards/cim/]. Through
the use of these vocabularies, communities can tackle challenges like: resource discovery and
selection (also known as matchmaking), brokering, monitoring, accounting, etc.

These vocabularies have been traditionally defined using XML Schema, which dictates both the
structure to be used for resource descriptions as well as the set of data types needed for such
structures. Hence, resource descriptions are expressed as XML documents that follow the
corresponding schema. This approach is good enough for closed environments where the types
of resources, or the information that can be described, are known a priori. However, this
approach is too rigid for open environments where new elements are incorporated dynamically.

The use of languages like RDF(S) offer more flexibility in the description of metadata. The work
described in this document aims to support this effort by extending the WS-DAI specifications,
which already provide web service access to XML and relational data, to also encompass
RDF(S) data. Standard programming languages APIs for accessing databases, e.g. JDBC,
have been widely used to save on programming effort and promote interoperability; the WS-DAI

GFD-I.163 December 30, 2009

dais-wg@ogf.org 4

specifications aim to bring the same benefits to service-based computing. The WS-DAI
specifications provide a set of WSDL [WSDL] defined interfaces for managing, querying and
describing various properties associated with data resources, i.e. the DBMS that manage the
data. Thus an important aspect of using this approach is that the interfaces defined in the WS-
DAI specifications can be combined with those defined by other web service standards that
concentrate on other areas, for example, security. In addition to this, the web service interfaces
provide a programming language independent way to access the underlying data resources.
This is of particular value to clients accessing RDF stores which do not provide consistent APIs
for accessing the RDF data. Thus the abstraction layer provided by the proposed RDF DAIS
interfaces will allow clients to contact the underlying RDF stores in a consistent manner
regardless of what the underlying storage engine is. In addition, although the SPARQL query
language already has an associated W3C recommendation web service-based protocol
[SPROT] for executing SPARQL queries.

The RDF(S)-based WS-DAI specifications motivated in this document are required for the
following reasons:

• The WS-DAI specifications set out standard patterns for interacting with data resources
within the context of service-based computing. For example, operations and properties exist
for exposing information about a data resource's ability to support various features such as
transactions and concurrency. Furthermore, WS-DAI can leverage off existing Web Service
specifications such as WS-ResourceProperties [WS-ResourceProperties] for exposing
resource properties and WS-ResourceLifetime [WS-ResourceLifetime] for resource lifetime
management, both of which form part of the Web Services Resource Framework [WSRF].
In contrast, the SPARQL Protocol defines a single query operation and associated fault
messages but lacks the range of operations, properties and faults defined within the WS-
DAI specifications in order to fully support access to data resources in a service-based
setting. An RDF(S) realization of WS-DAI is therefore required to provide this support in an
RDF(S) setting.

• The SPARQL Protocol's query operation is analogous to the direct data access query
pattern specified by WS-DAI, where the entire dataset formed as the result of a query is
returned to the client within a response message. The WS-DAI specification defines a
second pattern, indirect data access, where the result of a query is made available as a new
data resource, i.e. implementing the factory pattern. This pattern supports an indirect form
of third-party delivery, can be used to avoid unnecessary data movement, and allows a
client to pull data from a data resource rather than have it returned all at once in a single
response message. This access pattern is important in a wide range of scenarios including
distributed query processing and providing scalable/reliable data access.

• The execution of queries is not the only means by which a client may wish to interact with
an RDF(S) data resource. The interfaces provided by RDF(S) storage systems, for example
the Jena Semantic Web Framework [http://jena.sourceforge.net/] Ontology API, provide a
range of mechanisms for directly manipulating an ontology. As such APIs vary depending
on the specific storage system used, an application developer must change to a different
API if some resources in different organizations are stored using different systems such as
Oracle RDF or Sesame [http://www.openrdf.org/]. The greater the number of storage
systems that are used, the more APIs that need to be known the greater the effort required
to build an application. The WS-DAI-RDF(S) Ontology specification aims to provide a
standardized set of ontology handling primitives for interacting with RDF(S) data resources,
hiding any syntactic and platform-dependent aspects, enabling their use in an open,
interoperable way.

Currently, the W3C has published several specifications to access RDF(S) data, such as the
access protocol [SPROT] and query results format [RESULTS] for the SPARQL [SPARQL]
query language. However, it is important to note that this set of W3C specifications are targeted
only at extracting data from RDF(S) repositories. That is, they currently do not define a means
for creating, updating or deleting RDF(S) data, although particular proposals exist for doing so
(see [SUPDATE]).

These factors motivate our work on the provision of a WS-DAI-based standard supporting
RDF(S) data resources. The goal is to develop a single framework that satisfies the

GFD-I.163 December 30, 2009

dais-wg@ogf.org 5

requirements outlined above, including scalable data access patterns and a layer of abstraction
allowing for consistent interaction with underlying RDF management systems.

3. Specification Overview
3.1. Specification Organization
We have identified two different ways of interacting with RDF(S) resources: firstly we follow a
query approach, in which a client can retrieve the contents of a resource using SPARQL
queries; for the second we follow an ontological approach that enables a client to explore and
modify a resource using a set of primitives for accessing ontologies. In addition to the fact that
they both share a common purpose in supporting access to RDF(S), the common denominator
to both approaches is the type of underlying (RDF) data resource and the (RDF) data model
managed by the data resource. Thus, two specifications are proposed as new WS-DAI
realizations for accessing RDF(S) data:

1) WS-DAI RDF(S) Querying [WS-DAI-RDF(S)-Query]: this specification provides a query
language interface to RDF data. This is based on the set of W3C SPARQL [SPARQL] and
supports several extensions including the indirect access pattern mandated by the WS-DAI
core specification.

2) WS-DAI RDF(S) Ontology [WS-DAI-RDF(S)-Ont]: this specification provides an API style
ontology handling set of primitives based on the RDF(S) model. These primitives provide
various operations including updates to the ontology.

These approaches are not mutually exclusive, as using one of them does not imply that the
other one cannot be used at the same time on the same resource. Furthermore, they are
complementary, as they offer different mechanisms for interacting with data resources and each
of them is targeted to fulfil different specific access requirements.

As each of the two approaches provides a different kind of interface to RDF(S) resources, they
need to be addressed by different specifications. Nevertheless, the specifications should not be
totally decoupled, as they share a common purpose, data model and principal actor: the RDF(S)
data resource.

Figure 1 shows these specifications and their relations to existing set of WS-DAI specifications.
Both the RDF(S) Ontology and Query access specifications are WS-DAI realizations, like the
WS-DAIR [WS-DAIR] specification for relational data and the WS-DAIX [WS-DAIX] specification
for XML data, but they have a common purpose, supporting access to RDF(S) data resources,
the motivation for which is presented in this document.

Figure 1: The WS-DAI family of specifications

3.2. Terminologies
As the two RDF(S) related specifications share a common purpose, the set of interfaces these
specifications provide can be conceptually grouped together, as illustrated in Figure 1, to form
the set of WS-DAI-based interfaces supporting RDF, defined as follows:

W
S

- DAI
R Relational

Access

W
S

- DAI
X XML

Access

W
S

- DA
I

- RD
F

(S) - ON
T

Ontology
Access

W
S

- DA
I

- RD
F

(S) - Quer
y

Query
Access

W
S

- DA
I Message

Patterns Core
Interfaces ,

Messages and
Properties

RDF(S) Interfaces

GFD-I.163 December 30, 2009

dais-wg@ogf.org 6

RDF(S) Interfaces: The base interfaces and corresponding properties defined in the WS-DAI
specification extended to provide access to RDF(S) data resources.

The WS-DAI specification family is based on the concept of a data resource. Relational and
XML data resources are defined in the WS-DAIR and WS-DAIX specifications, respectively. For
the WS-DAI RDF(S), we have defined RDF(S) Data Resource as follows:

RDF(S) Data Resource: A data source or sink that is based on the RDF data model, together
with any associated management infrastructure that exhibits capabilities that are characteristic
of RDF repositories. The management infrastructure may also exhibit RDF(S) model based
views, exposing RDF Schema entailment capabilities over the resource. An RDF(S) Data
Resource is illustrated in Figure 2.

As described in Section 2, two specifications aim to provide different views for the same RDF
data. An RDF(S) Data Resource can be handled as a set of RDF triples [RDF-CONCEPTS]
(instances) or an ontological hierarchy which is based on the RDF(S) model [RDF-CONCEPTS].

 Figure 2: An RDF(S) Data Resource

This means that there are two different ways in which the data can be viewed. For instance, a
set of RDF triples can be handled as an RDF Graph from the instance point of view. Since the
term Graph is a defined term in [RDF-CONCEPTS], these triples must be represented as a
Graph when using the WS-DAI-RDF(S) Querying specification. On the other hand, the RDF(S)
Ontology specification presents a view that is based on an ontology hierarchy that can be
manipulated by ontological primitives, which are defined as follows:

Ontological access primitive: A data access operation based on the model/formalism used for
representing the data, which takes into account the structures defined by the formalism and the
relationships between them.

Ontological access primitives are performed on a Repository, which is defined as follows:

Repository: A set of RDF triples that are defined together. This term is synonym of the term
RDF Graph as defined in [RDF-CONCEPTS].

The specifications also support operations on collections of RDF(S) data resources, in which
case the RDF(S) Querying specification presents a GraphCollection view and the RDF(S)
Ontology specification presents a RepositoryCollection view, as defined below.

GraphCollection: A set of RDF graphs.

Repository Collection: An entity that manages sets of repositories.

Table 1 shows how the above terms fit into the views provided by the two specifications.

 WS-DAI RDF(S) Ontology WS-DAI RDF(S) Querying

An RDF(S) data resource
(see Fig 2) A Repository Data Resource An RDF Graph Data Resource

A set of RDF(S) data
resources A RepositoryCollection Data Resource A GraphCollection Data Resource

GFD-I.163 December 30, 2009

dais-wg@ogf.org 7

Table 1: Term relationships between some terms of two specifications

3.3. WS-DAI-RDF(S) Querying
The objective of the querying specification is to provide a set of set-oriented declarative access
methods to execute queries submitted by a client. This specification does not specify its own
language to access the RDF(S) data resources. Instead, it acts as a channel for RDF queries to
be conveyed to the appropriate data resources. For instance, for RDF(S) data resources, or for
data resources that supports RDF type queries, the query language supported is SPARQL, a
W3C recommendation.

SPARQL has four query forms: CONSTRUCT, DESCRIBE, SELECT, and ASK. The first and
second forms return an RDF graph as the result of a query (CONSTRUCT returns an RDF
graph constructed by substituting variables in the query patterns, while DESCRIBE returns an

RDF graph that describes the resources found). In contrast to these two forms, the results of the
other two are not RDF graphs: SELECT returns all, or a subset of, the variables found in a
query pattern match; ASK returns a boolean value indicating whether there was a match for a
query pattern.

In addition to the SPARQL query language, the W3C has recommended the following related
standard specifications to access remote/distributed RDF data using SPARQL:

• SPARQL Query Results XML Format [RESULTS]: is an XML format for variable
bindings and boolean results defined by the SPARQL query language.

• SPARQL Protocol for RDF [SPROT]: is a protocol for conveying SPARQL queries from
query clients to SPARQL query processors.

The approach taken in the WS-DAI-RDF(S) Querying specification is to keep as much
compatibility with the existing W3C standards as possible while satisfying the WS-DAI core
specification at the same time, in particular by fully supporting the SPARQL query language and
its associated XML result format.

Direct Access and Indirect Access

One of the key features of the WS-DAI specification, illustrated in Figure 3 within the context of
WS-DAI-RDF(S), is that of direct/indirect access to data resources. Direct access allows the
results of a request to be delivered to a consumer directly in the response message. This is one
of the two access patterns which the WS-DAI core model describes. To cater for this mode of
operation the specification defines an interface, SPARQLAccess, for accessing an RDF(S) data
resource using SPARQL.

Indirect access is the other access pattern which the WS-DAI core model supports. This allows
data, usually the result of a query, to be accessed by means of a new service-managed data
resource, and thus data is not returned directly to the consumer. Indirect access can be very
useful when it is anticipated that the size of a query result will be large.

GFD-I.163 December 30, 2009

dais-wg@ogf.org 8

 Figure 3: Overview of WS-DAI RDF(S) Querying Specification

In order to access query results derived through indirect access, two interfaces have been
defined that provide specialized access to these results: TriplesSetAccess and
ResultsSetAccess. These interfaces may be made available through different data access
services, the end points being returned to the client as a result of one of the indirect (factory)
operations.

3.4. WS-DAI-RDF(S) Ontology
The objective of the WS-DAI-RDF(S) Ontology access specification is to provide an integral
access mechanism for RDF(S) sources that goes beyond the retrieval capabilities offered by the
querying specification, whilst providing a simple but complete set of functionalities that abstracts
the most general necessities a client may have when working with RDF(S) data sources. Thus,
the specification details a set of ontology handling primitives for dealing with the RDF(S) model,
hiding the syntactic aspects of RDF(S) and transparently exploiting its semantics.

Data Resources and Interfaces

The specification differentiates several types of RDF(S) data resources, each of them allowing
addressing and accessing of RDF(S) sources at different levels of granularity. These data
resources can be divided in two groups: placeholders for built-in RDF(S) classes, and
convenience abstractions. The diagram depicted in Figure 4 shows the resources defined and
the relationships existing between them using UML notation.

GFD-I.163 December 30, 2009

dais-wg@ogf.org 9

Figure 4: WS-DAI-RDF(S) Ontology Data Resource Model

On the one hand, placeholders for built-in RDF(S) classes (Resource, Class, Property,
Statement, Container, and List data resources) provide class-oriented views of an RDF
individual (entity or thing). That is, the particular view focus on the specific data that is defined
for the RDF individual according to the semantics of the particular RDF(S) built-in class, as
defined in [RDF-SEMANTICS].

On the other hand, convenience abstraction data resources (such as RepositoryCollection and
Repository) provide a means for dealing with multiple RDF individuals. Thus, a Repository data
resource contains data (RDF triples) that simultaneously define multiple RDF individuals.
Similarly, a RepositoryCollection data resource aggregates multiple repositories.

Based on this Resource model, direct and indirect access interfaces can be defined. Indirect
access uses the factory pattern, which allows for a basic navigation mechanism, based on the
creation of new resources to represent data using different interfaces at various hierarchical
levels. This allows a a client to browse RDF(S) data resources at different levels of granularity
and exploit the semantics of the RDF(S) data represented by RDF(S) data resources via the
ontological access primitives supported by the specification.

3.5. Specification Design Policies and Issues
The design of the WS-DAI-RDF(S) Querying specification follows the same approach as the
WS-DAIR and WS-DAIX specifications for relational and XML data by extending the core WS-
DAI specification with a set of RDF(S) specific properties and operations to support SPARQL
querying.

The WS-DAI-RDF(S) Ontology specification is aimed at providing a means for accessing
RDF(S) data resources in a comprehensive manner, offering mechanisms for creating,
retrieving, updating and deleting contents. The specification defines these mechanisms
following the RDF(S) model and semantics, providing clients with different levels of granularity
in which to view and use data resources by using different types of data resources and
interfaces. As a result, the full specification provides a larger number of interfaces and
operations than the other DAIS realizations (the WS-DAIR, WS-DAIX and the WS-DAI-RDF(S)
specifications).

From a consumer/service provider point of view, the usefulness of the specification depends on
their specific requirements, especially when dealing with RDF(S) data sources, that is: what
needs to be done and how the consumer expects to be able to do it. For this reason, in order to
facilitate the adoption and implementation of the specification by the community, the WS-DAI-
RDF(S) Ontology specification has been divided into three different profiles, each including an
increasing degree of functionality to enable clients to deal with RDF(S) data resources at a finer
grain of detail, while ensuring interoperability among any implementations (see the relationships
between profiles in Figure 5). For instance, if a service provider implements Profile 0, the
consumer can be sure that ALL interfaces and operations defined in Profile 0 have been
implemented. Furthermore, the service provider which supports Profile 1 must support Profile 0.

GFD-I.163 December 30, 2009

dais-wg@ogf.org 10

Figure 5: WS-DAI-RDF(S) Ontology profiles

The profiles are thus:

Profile 0: Basic RDF support. This profile includes the minimum set of functionalities needed
for accessing RDF data without taking into account the semantics of the RDF(S) model. Within
this profile, clients can manipulate the contents of an RDF(S) resource as a whole –using the
RepositoryAccess interface– or by directly inspecting the individuals defined within the RDF(S)
resource, using the ResourceAccess interface.

Profile 1: RDF Schema support. This profile includes all the functionalities described in Profile
0, enhancing this by taking into account the semantics of the RDF(S) model and by providing
additional functionality to work with RDF vocabularies at a conceptual level. Thus, with this
profile clients can directly deal with the classes and properties defined within an RDF(S)
resource, being able to explore and manipulate their hierarchies and also discover how
individuals are classified according to the vocabulary, but without needing to explicitly deal with
the underlying syntactic details. Section 4.2 describes a use case that deals with RDF
vocabularies to determine the scope of changes detected during resource monitoring, using
Profile 1 to provide the means to further exploit the semantics of RDF vocabularies.

Profile 2: Full RDF(S) support. This profile includes all the functionality described in Profile 1,
and extends it to deal with the rest of the built-in RDF vocabulary (containers, RDF collections
and reifications). This profile provides the means for dealing with additional RDF abstractions
using well-known data access patterns, i.e. traversing the members of an RDF collection or a
container without requiring any preliminary knowledge about its internal structure using the
iterator pattern.

In contrast to the functionality provided by the above profiles, the WS-DAI-RDF(S) Querying
specification is designed with the aim of being a minimal extension of WS-DAI, providing
support for queries only. For instance, the WS-DAI RDF(S) Querying specification supports
SPARQL as a means of interacting with RDF data, which does not yet provide any update
functionality. Although SPARQL update languages have been proposed, standards do not yet
exist and therefore the WS-DAI-RDF(S) Ontology specification provides the only way in which
the WS-DAI-RDF(S) specifications may be used to update RDF data.

GFD-I.163 December 30, 2009

dais-wg@ogf.org 11

4. Motivational Use Cases
This section presents several scenarios that demonstrate the need and usefulness of RDF(S) to
describe data and resource metadata as well as motivating the RDF(S) data access methods
developed. Other use cases that show the usefulness of RDF(S) data access protocols in
different types of applications can be found in [UNCR] .

The first scenario, in Section 4.1, shows how RDF(S) can be used to enable resource
matchmaking in a virtual organization, where RDF(S) is used to describe the resources offered
by each organization, and how RDF(S) access methods (either programmatic or declarative)
facilitate this task.

The second scenario, in Section 4.2, shows how resources in a virtual organization, such as the
ones in the aforementioned matchmaking scenario, can be monitored and annotated in order to
maintain up-to-date metadata about them, so that future matchmaking tasks can continue to be
performed accurately.

The third scenario, in Section 4.3, shows the importance of using a standard access method
and the benefits provided by the WS-DAI-RDF(S) Querying specification when processing
federated queries over multiple distributed RDF databases. The final scenario, in Section 4.4,
shows how the EU funded ADMIRE project is using the WS-DAI-RDF specification to provide
access to its registries.

4.1. Grid Resource Matchmaking in Virtual Organizations

Motivation

A grid may include a large number of resources with various intrinsic capabilities distributed
across different organizations. The explicit representation of resource metadata, with its
adequate exploitation, plays an important role in facilitating effective grid resource discovery
and selection, as shown in [TANGDK]. This is a key aspect considered in semantic grid
information system architectures and middleware such as S-MDS [S-MDS], S-OGSA [S-OGSA],
S-SRB [S-SRB], and the CaBIG [https://cabig.nci.nih.gov/] project's data access services, etc.

Goal

Given a set of repositories and services that store metadata from different types of resources,
the goal of a matchmaker is to discover and select appropriate resources for a given task. This
can be done by querying the available metadata – either using a high-level RDF query language
such as SPARQL or using a specialized data access API – and ordering the matched resources
based on specific ordering criteria, i.e. class subsumption relationships.

Requirement Analysis

Each semantic grid information system may collect resource information from different sources
in a grid, and maintain the resource metadata using their own proprietary mechanisms. Despite
their differences, the metadata representation used by these systems is the same, that is, it is
based on the RDF(S) model. Besides, the metadata could be created using the same RDF
schema. In this scenario, it is also desirable to retrieve resource metadata from multiple
available systems, so that the client may be able to obtain a more complete description of the
resources, as the lack of information from one system might be compensated by the information
from the others.

Use Case

Figure 6 shows the aforementioned matchmaking scenario implemented using the SPARQL
query language. In this scenario, RDF(S) data sources are exposed through RDF(S) data
access services which support the WS-DAI-RDF(S) query-based access mechanism. A
requester sends a resource request to the matchmaker, specifying the resource requirements
as a SPARQL query (1). The matchmaker forwards the query to existing metadata information
systems, which also support the same querying capabilities (2, 4, 6 and 8). After receiving the
query results (3, 5, 7 and 9), the matchmaker merges the results and forwards them to the
consumer (10). Similar work has been proposed and implemented in a semantic web
environment [MATCH].

GFD-I.163 December 30, 2009

dais-wg@ogf.org 12

Figure 6: Grid resource matchmaking using WS-DAI-RDF(S) data access mechanisms

4.2. Grid Resource Annotation and Monitoring
Motivation

As previously mentioned, a grid can host a large number of resources with heterogeneous
characteristics and capabilities distributed across different organizations, hosting various
semantic grid applications and architectures [GRID2SEM] aimed at facilitating the discovery and
selection of the resources available by the using metadata for these resources. Providing the
means for maintaining valid and up-to-date metadata is fundamental to carry out accurate
resource matchmaking for this scenario.

Goal

Consider a scenario in which a set of agents monitor available resources that themselves have
monitoring capabilities, i.e. the model developed by the Info Dissemination Working Group
[http://forge.gridforum.org/sf/projects/infod-wg] for notifying changes in resource status in a
virtual organization. The agents will monitor each resource's characteristics, capabilities, status
etc. and compile this information into metadata about each resource, represented using a
suitable vocabulary. Thus given a set of such repositories and services that store the metadata
and the vocabularies that provide the semantics for the metadata; the goals are to provide a
means for creating the metadata using an adequate monitoring vocabulary, and to provide a
way of maintaining the metadata stored in the repositories.

Requirement Analysis

The maintenance of this metadata implies browsing, updating and deleting existing metadata
already stored in the repositories. Therefore, it is necessary to have a means for both reading
and writing the metadata. Furthermore, as both the annotation process and the metadata being
managed might be very complex and large in terms of quantity, deleting and generating all the
metadata about a resource every time a change occurs may not be feasible. Thus, having fine
grained operations for modifying the metadata is worthwhile.

Use Case

Figure 7 schematically depicts this monitoring and annotation scenario. RDF(S) data access
services provide a standard access method for the RDF(S) data resources (metadata
repositories and vocabulary repositories). Support for updates to the repositories are required,
therefore the WS-DAI-RDF(S) Ontology specifications are used. Monitoring agents connect to
the resources’ monitoring facilities (1). When a change in the resource is detected an agent is

GFD-I.163 December 30, 2009

dais-wg@ogf.org 13

notified(2), the agent browses the vocabulary repositories to check which elements are affected
by the specific change (elements that are obsolete, elements that may be out of date, and new
elements that may also have to be added) (3). After determining the set of changes that have to
be made in the metadata repositories, the agent deletes the obsolete parts of the affected
metadata (4), updates those parts that are out-of-date (5), and creates any new part that is
required (6).

Figure 7: Grid resource monitoring and annotation using WS-DAI-RDF(S) data access

mechanisms

4.3. Federated SPARQL (Distributed RDF Data Integration)
Motivation

The distributed and data-intensive nature of service-based grids means that integrating data
from multiple sources is a key requirement for many applications. Distributed data integration
may be required for various reasons, including autonomy-related reasons requiring that certain
data is owned and managed locally or performance/scalability-related reasons where multiple
resources are used to enable parallel and distributed data processing, as exemplified in the
context of relational data integration by OGSA-DQP [http://www.ogsadai.org.uk/dqp]. The WS-
DAI-RDF(S) specifications should allow data integration applications to be built on top of WS-
DAI-RDF(S) data resources by providing the necessary interfaces and access patterns for
efficient distributed data integration. Data integration applications can benefit from the seamless
integration with other capabilities inherent to service-based Grids such as resource discovery
and resource monitoring, as demonstrated by OGSA-DQP and OGSA-DAI-RDF [OGSA-DAI-
RDF].

Goal

Given a set of distributed RDF data sources, the goal is to provide a robust and scalable
federated database that supports seamless access over the heterogeneous RDF database
management systems.

Requirement Analysis

GFD-I.163 December 30, 2009

dais-wg@ogf.org 14

Distributed data integration applications require a common interface to eliminate syntactic
heterogeneities that may exist between individual data resources. Syntactic heterogeneities
may be present in both the interfaces used to retrieve information about the data held by a data
resource and the interfaces used to submit queries and retrieve data from resources. Data
retrieval mechanisms must support large datasets and allow a client to have control over the
rate at which data is delivered to avoid being swamped with data from multiple sources. Third-
party delivery, supported in an indirect fashion by the WS-DAI-RDF(S) specifications, is also
important as in some cases where it is possible to perform data integration using multiple
computational resources. Third-party delivery allows a data integration application to issue sub-
queries to data resources and delegate the various tasks involved in processing the data to
other services, allowing the data to be integrated in parallel.

Use Case

Ubiquitous code (ucode) [UCODE] identifiers, often physically implemented as RFID tags, can
be used to identify real-world objects among multiple computer systems. A ucode relation
(UCR) is a relationship between objects (identified by ucodes), which can be modeled as an
RDF triple, for example, this apple (subject ucode) is produced by (predicate relation ucode) the
JA Tsugaru-Minami Farm (object ucode). UCR triples are generally stored in a wide area
distributed databases (UCR databases), and there have been efforts to implement UCR
databases that support SPARQL endpoint, e.g. by Nihon Unisys [http://dev.tyzoh.jp/trac/semi-
structured-db/].

Figure 8 provides an overview of a grid-based distributed RDF database, which federates
various (UCR) RDF databases. The service-based SPARQL query interfaces provide a uniform
access mechanism to the heterogeneous RDF databases for implementing distributed query
processing over the individual data resources.

Figure 8: Large scale distributed RDF database

In this scenario, a federated SPARQL query is decomposed into a number of sub-queries,
based on the information that has been retrieved about the properties of each resource. Sub-
queries are sent to the individual data resources and the results are integrated in order to
answer the federated query. The standardized interfaces provided by the WS-DAI-RDF(S)
specifications mean that syntactic heterogeneities present amongst the individual data sources
are resolved when performing these tasks. Data integration is performed by multiple
computational resources within the area labeled “distributed processing” in the figure. The
indirect data access pattern (SPARQLExecuteFactory operation) is used to execute each sub-
query, which results in the creation of a new data resource for each set of query results. The
various data integration tasks (e.g. joins, unions etc.) that need to be performed are then
delegated to appropriate nodes in the set of computational resources, which are given
references to the created data resources that need to be accessed in order to perform their
allocated tasks. The SPARQLResultsSetAccess port-type’s GetResults operation allows results
to be pulled from data resources as they are needed, enabling the computational nodes

GFD-I.163 December 30, 2009

dais-wg@ogf.org 15

implementing the distributed query processing to control the rate at which data is retrieved from
data resources. The use-case therefore relies extensively on the indirect data access pattern
supported by WS-DAI specifications.

4.4. ADMIRE Registry
Motivation

The EC funded ADMIRE1 (Advanced Data Mining and Integration for Europe) project aims to
build a platform that will bridge the gap between domain experts and the application of Data
Mining and Integration (DMI) technologies to these domains. The goals and motivations for
ADMIRE, as well as a more complete description of this use case, can be found in [ADMIRE]. In
ADMIRE, registries are used to track processing elements (PE) – these are primitive or
composite software components that encapsulate DMI algorithms. PEs are created by data
mining experts and are then made available to the ADMIRE community. A registry allows users
to locate these PEs when required using SPARQL. There are two main levels at which these
registries operate: a local (or workbench) level in which a DMI Workbench tool is used to create
PEs which are then stored in this local registry; there is also registries (accessed through a
gateway) populated by the local registries with the PEs developed at other workbenches and
made available to other ADMIRE communities.

Goal

In ADMIRE registries play a key role. A registry stores the location of the PEs and a description
of them. This description contains the data types of the input and output parameters for each
PE and any restrictions associated with these. Information about the PEs is encoded using RDF
and stored in the ADMIRE registry. In ADMIRE, DMI expert users create these PEs, store them
in a repository and update the registry, first locally and then this may be optionally migrated to
registries. To retrieve these PEs users have to use the SPARQL query language receiving as
result the location of those PEs. The goal of these registries is to provide users with a way of
retrieving the PE information that meets their requirements to execute DMI workflows using the
PEs, either created by them or other users, within the ADMIRE community. They are accessed
by different users at different times in different contexts (binding the states to the users), thus a
way for managing them is necessary and it is provided by the WS-DAI-RDF(S) specification.

Requirement Analysis

The registry allows the data stored in it to be queried, updated and added to. It is thus
necessary to have methods available for querying and storing RDF data. New ADMIRE nodes
may be incorporated into the system at certain points, therefore the local registry at each
workbench will have to update (if allowed by the workbench users) the registries.

Use Case

Figure 9 represents the interactions of ADMIRE users querying the registries (both local and
global) using SPARQL.

1 Framework 7 ICT 215024.

GFD-I.163 December 30, 2009

dais-wg@ogf.org 16

Figure 9: ADMIRE use case: Data-Aware Distributed Computing (DADC) engineers, DMI

experts and Domain experts acting as end users for and ADMIRE community. For more details
consult with [ADMIRE]

The ADMIRE registries provides access to the PEs that are designed by the ADMIRE end
users. Both registries are accessible via interfaces based on the WS-DAI-RDF(S) specification.
The registries are also accessible via an implementation based on OGSA-DAI
[http://ogsadai.org.uk] activities. The latter is used by the ADMIRE workbench users whilst the
former is used by users external to the project to query the registry for available PEs – hence
the requirement to use a standards based mechanism.

The working process is described as follows:

• a user queries the local registry for a Processing Element (PE) by sending a SPARQL
query;

• if there is a PE that matches the query in the local registry then this is returned to the
user else the local registry queries the other ADMIRE registries for possible matches. If
there is a match, the location of these matches are propagated to the local registry;

• the local registry returns the locations of the desired PEs to the user if any exist;

• the user accesses and executes the PE stored in the repository containing the data
mining models.

It is important to note that there are two registries with the same functionality but working at
different levels. The first (local) registry is located locally for a user to access directly. The other
registries are available for external queries from the local registries (via the gateways) and are
populated by the local registries. The content of the registries will be available to people
external to ADMIRE using the standard WS-DAI-RDF interfaces.

4.5. Summary
From these four scenarios it is clear that there is a real benefit to having a standardized set of
interfaces to be able to access RDF(S) data. Moreover, in contrast to the existing specifications
for accessing RDF(S) data resources, such as the SPARQL protocol, the different types of
access patterns provided by the WS-DAI family of specifications can provide additional ways of
addressing the scenarios. For example, this is demonstrated in Section 4.2 by the Grid
Resource Annotation and Monitoring use case, which requires the ontological access primitives

GFD-I.163 December 30, 2009

dais-wg@ogf.org 17

provided by the WS-DAI-RDF(S) Ontology specification, and in Section 4.3 by the Federated
SPARQL use case which requires the indirect access pattern supported by WS-DAI
specifications. Thus we believe that there is a real need for this type of functionality both within
the grid world and more generally within the RDF(S) communities as well.

5. Conclusion
The provisioning of RDF(S) access mechanisms is of major interest to the OGF community as it
will be the first step in the way for enhancing the current grid by means of semantic
technologies.

The DAIS WG is engaged in an initiative for providing such mechanisms as part of the data
access and integration facilities that are being defined at the moment. The work will be carried
out in parallel: one focused on accessing following an ontological approach, and the other
targeted at accessing to RDF(S) contents using the query language.

The work that is to be accomplished has its roots is previous work undertaken by AIST2 and the
OntoGrid3 project, teams who will keep working in these issues and will lead the initiative.

We encourage the rest of the DAIS WG members, OGF members and Semantic Grid experts
who are interested in the forthcoming work, to join the initiative.

Author Information
Isao Kojima
Information Technology Research Institute
National Institute of Advanced Industrial Science and Technology (AIST)
Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki
305-8568
Japan
email: kojima@ni.aist.go.jp

Miguel Esteban Gutiérrez
Ontology Engineering Group (OEG),
Universidad Politécnica de Madrid (UPM),
Campus de Montegancedo s/n,
28660 – Boadilla del Monte, Madrid
Spain
email: mesteban@fi.ump.es

Oscar Corcho
Ontology Engineering Group (OEG),
Universidad Politécnica de Madrid (UPM),
Campus de Montegancedo s/n,
28660 – Boadilla del Monte, Madrid
Spain
email: ocorcho@fi.upm.es

Steven Lynden
Information Technology Research Institute
National Institute of Advanced Industrial Science and Technology (AIST)
Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki
305-8568
Japan
email: steven.lynden@aist.go.jp

Mario Antonioletti

2 http://www.aist.go.jp
3 http://www.ontogrid.eu

GFD-I.163 December 30, 2009

dais-wg@ogf.org 18

EPCC,
JCMB,
The King's Buildings,
Mayfield Road,
Edinburgh EH9 3JZ,
United Kingdom.
email: mario@epcc.ed.ac.uk

Carlos Buil Aranda
Ontology Engineering Group (OEG),
Universidad Politécnica de Madrid (UPM),
Campus de Montegancedo s/n,
28660 – Boadilla del Monte, Madrid
Spain
email: cbuil@fi.upm.es

Said Mirza Pahlevi
National Institute of Advanced Industrial Science and Technology (AIST)
 Current Affiliation:
Institute of Statistics(STIS)
Jl. Otista 64c, Jakarta, 13330
Indonesia
email: mirza@stis.ac.id

Asunción Gómez-Pérez
Ontology Engineering Group (OEG),
Universidad Politécnica de Madrid (UPM),
Campus de Montegancedo s/n,
28660 – Boadilla del Monte, Madrid
Spain
email: asun@fi.upm.es

Contributors

Masahiro Kimoto, Business Search Technology Corporation, Japan.
Norman W Paton, University of Manchester

Acknowledgements
We would like to thank to those members of the DAIS-WG who have helped us in the process
of chartering the initiative as part of the DAIS WG: Malcolm Atkinson, Amy Krause, and Dave
Pearson.

We also have to thank AIST and the OntoGrid project, as their funding has made possible this
work.

OMII-UK resources contributed to the production of this work. OMII-UK is funded by EPSRC
through the UK e-Science Core Programme and through the JISC.

Intellectual Property Statement
The OGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described
in this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights.
Copies of claims of rights made available for publication and any assurances of licenses to be
made available, or the result of an attempt made to obtain a general license or permission for
the use of such proprietary rights by implementers or users of this specification can be obtained
from the OGF Secretariat.

GFD-I.163 December 30, 2009

dais-wg@ogf.org 19

The OGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the GGF Executive Director.

Full Copyright Notice
Copyright (C) Open Grid Forum (2009). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be prepared,
copied, published and distributed, in whole or in part, without restriction of any kind, provided
that the above copyright notice and this paragraph are included on all such copies and
derivative works. However, this document itself may not be modified in any way, such as by
removing the copyright notice or references to the OGF or other organizations, except as
needed for the purpose of developing Grid Recommendations in which case the procedures for
copyrights defined in the OGF Document process must be followed, or as required to translate it
into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
OPEN GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

References
[ADMIRE]

M. Atkinson, P. Brezany, O. Corcho, L. Han, J.I. van Hemert, L. Hluchy, A. Hume, I.
Janciak, A. Krause, and D. Snelling. ADMIRE White Paper: Motivation, Strategy,
Overview and Impact. Technical Report version 0.9, University of Edinburgh, January
2009

[DAIRDFS]

M. Esteban, I. Kojima, S. Mirza, O. Corcho and A. Gomez, Accessing RDF(S) data
resources in service-based Grid infrastructures. Concurrency and Computation:
Practice and Experience, Vol.21.No.8, 1029-1051 (2009)

[GLUE]

 S. Andreozzi et al. GLUE Specification v.2.0, OGF, GLUE Working Group, March 2009
 http://www.ogf.org/documents/GFD.147.pdf.

[GRID]

I. Foster and C. Kesselman (Eds.) GRID 2, Blueprint for a New Computing
Infrastructure, Morgan-Kaufmann Press. (2003)

[GRID2SEM]

 C. Goble, D. DeRoure, N. Shadbolt and A. Fernandes, Enhancing services and
 applications with knowledge and semantics, in [GRID] (2003)

[MATCH]

Said Mirza. A Semantic Matchmaker for RDF/OWL-based Service Repositories, RDF,
Ontologies and Meta-Data Workshop, UK National e-Science Institute (2006)

http://www.nesc.ac.uk/action/esi/download.cfm?index=3183

[OGSA-DAI-RDF]

I. Kojima. Design and Implementation of OGSA-DAI-RDF, 3rd GGF Semantic Grid
Workshop

GFD-I.163 December 30, 2009

dais-wg@ogf.org 20

http://www.semanticgrid.org/GGF/ggf16/slides/Design%20and%20Implementation%20o
f%20OGSA-DAI-RDF.ppt

[RDF-CONCEPTS]
G. Klyne and J. J. Carroll. Resource Description Framework (RDF): Concepts and
Abstract Syntax, W3C Recommendation. 10 February 2004
http://www.w3.org/TR/rdf-concepts/

[RDF-SEMANTICS]

P. Hayes (Ed). RDF Semantics. W3C Recommendation 10 February 2004

http://www.w3.org/TR/rdf-mt/

[RDFS]

D. Brickley and R.V. Guha, RDF Vocabulary Description Language 1.0: RDF Schema.
W3C Recommendation 10 February 2004

http://www.w3.org/TR/rdf-schema/

[RDF-XML]

 D. Beckett (editor), RDF/XML Syntax Specification, W3C Recommendation, 2004.

http://www.w3.org/TR/rdf-syntax-grammar/

[RESULTS]

D. Beckett, SPARQL Query Results XML Format, W3C Recommendation 15 January
2008.

http://www.w3.org/TR/rdf-sparql-XMLres/

[S-MDS]

S. Mirza and I. Kojima. Towards Automatic Service Discovery and Monitoring in WS-
Resource Framework, In: Proc. of the First International Conference on Semantics,
Knowledge and Grid. (2005) 932-938

[S-OGSA]

P. Alper, S. Bechhofer, O. Corcho, C. Goble, I. Kotsiopoulos, P. Missier. An overview of
S-OGSA: a Reference Semantic Grid Architecture.Journal of Web Semantics: Science,
Services and Agents on the World Wide Web, vol. 4, no. 2, June, 2006, pp. 102-115
(DOI: 10.1016/j.websem.2006.03.001).

[SPARQL]

Eric Prud'hommeaux and Andy Seaborne. SPARQL Query Language for RDF, W3C
Recommendation 15 January 2008

http://www.w3.org/TR/rdf-sparql-query/

[SPROT]

K. Clark, SPARQL Protocol for RDF, W3CRecommendation 15 January 2008.

http://www.w3.org/TR/rdf-sparql-protocol/

[S-SRB]

S.J. Jeffrey, and J. Hunter, A Semantic Search Engine for the Storage Resource Broker,
in 3rd GGF Semantic Grid Workshop. 2006: Athens, Greece.

[SW]

T. Berners-Lee, J. Hendler, O. Lassila. The Semantic Web. Scientific American, 284(5)
(2001) 34 – 43

[SUPDATE]

A. Seaborne et al. SPARQL Update - A language for updating RDF graphs. W3C
Member Submission, 15 July 2008

GFD-I.163 December 30, 2009

dais-wg@ogf.org 21

http://www.w3.org/Submission/2008/SUBM-SPARQL-Update-20080715/

[TANGDK]

H. Tangmunarunkit, S. Dekker and C. Kesselman. Ontology-based resource matching
in the grid- The grid meets the semantic web, Second International Web Conference,
ISWC2003 (2003)

[UCODE]
T-Engine Forum, "Ubiquitous ID Architecture”, UID-CO00002-0.00.24, Nov. 2006 (in
Japanese).

[WS-DAI]

M. Antonioletti, M. Atkinson, A. Krause, S. Malaika, S. Laws, N. W. Paton D. Pearson,
and G. Riccardi. Web Services Data Access and Integration – The Core (WS-DAI)
Specification, Version 1.0. GWD-R, Global Grid Forum, DAIS Working Group, Jun
2006.

[WS-DAIR]

M. Antonioletti, B. Collins, A. Krause, S. Laws, J. Magowan, S. Malaika, and N.W.
Paton. Web Services Data Access and Integration – The Relational Realisation (WS-
DAIR) Specification, Version 1.0. GWD-R, Global Grid Forum, DAIS Working Group,
Jun 2006.

[WS-DAI-RDF(S)-Ont]

M. Esteban and A. Gomez: Web Services Data Access and Integration - The RDF(S)
Realization(WS-DAI-RDF(S)) RDF(S) Ontology Specification, Profile 0,Open Grid
Forum, DAIS Working Group

http://forge.gridforum.org/sf/go/doc15613?nav=1

[WS-DAI-RDF(S)-Query]

I. Kojima, S. Mirza and S. Lynden: Web Services Data Access and Integration – The RDF(S)
Realization(WS-DAI RDF(S)) RDF(S) Querying Specification, , Open Grid Forum, DAIS
Working Group

http://forge.gridforum.org/sf/go/doc14074?nav=1

[WS-DAIX]

M. Antonioletti, S. Hastings, A. Krause, S. Langella, S. Laws, S. Malaika, and N.W.
Paton. Web Services Data Access and Integration – The XML Realization (WS-DAIX)
Specification,Version 1.0. GWD-R,Global Grid Forum,DAIS Working Group, Jun 2006.

[WSDL]
E. Christensen, F. Curbera, G. Meredith and S. Weerewarana. Web Services
Description Language (WSDL) 1.1, W3C Note. 15 March 2001

http://www.w3.org/TR/wsdl

[WS-ResourceLifetime]

L. Srinivasan and T.Banks. Web Services Resource Lifetime 1.2 (WS-
ResourceLifetime). OASIS Standard, 1 April 2006.
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_lifetime-1.2-spec-os.pdf

[WS-ResourceProperties]

S. Graham and J. Treadwell. Web Services Resource Properties 1.2 (WS-
ResourceProperties). OASIS Standard, 1 April 2006.
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf

[WSRF]
T. Banks (editor), Web Services Resource Framework (WSRF) - Primer v1.2. Oasis
Standards, May 2006

http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf

