
GFD-I.170 Tom Lehman (USC/ISI)
 Chin Guok (ESnet)
 Andy Lake (ESnet)
 Radoslaw Krzywania (PSNC)
 Michal Balkcerkiewicz (PSNC)

Network Service Interface Working Group (NSI-WG) October 24, 2010

Inter-Domain Controller (IDC) Protocol Specification

Status of this Document
This document is provided to the Open Grid Forum (OGF) Network Service Group (NSI) as an
informational document. Distribution is unlimited.

Copyright Notice

Copyright © Open Grid Forum (2005- 2010). All Rights Reserved.

Abstract
This document defines the detailed specifications and implementation requirements for the Inter-Domain
Controller Protocol (IDCP). This document level of detail is intended to be sufficient to support
independent implementation efforts.

This specification is provided to the OGF NSI Working Group as an informational document. The
objective of this submission is to provide another example of a currently deployed protocol in this area, in
case it is helpful to the ongoing NSI standardization efforts.

This protocol development work began as part of the DICE Control Plane Working Group. DICE is a
collaboration amongst DANTE (GEANT), Internet2, CANARIE, ESnet, USLHCnet, and others. This
protocol has been implemented and is currently deployed by ESnet, Internet2, GEANT AutoBAHN,
USLHCnet, and others.

The IDCP defines a protocol and associated message formats that enable the dynamic provision of
network resources across multiple administrative domains. The IDC architecture supports dynamic
networking, the concept by which network resources (i.e. bandwidth, VLAN number, etc) are requested
by end-users, automatically provisioned by software, and released when they are no longer needed.
This is in contrast with the more traditional “static” networking where network configurations are
manually made by network operators and usually stay in place for long periods of time.

The IDC protocol defines messages for reserving network resources, signaling resource provisioning,
and gathering information about previously requested resources. These messages are defined in a
SOAP [SOAP] web service format. This document and others relating to the IDCP are maintained at the
IDCP Control Plane web site: www.controlplane.net [CNTL-PLANE].

Contents
1	
 Introduction.. 3	

1.1	
 Goals and Requirements .. 4	

1.1.1	
 Requirements.. 4	

1.1.2	
 Non-Goals... 4	

1.2	
 Notational Conventions .. 5	

1.3	
 Terminology .. 5	

1.4	
 Namespaces... 7	

2	
 Messaging Model .. 8	

2.1	
 Publish/Subscribe Model .. 8	

2.2	
 The Daisy-Chain ... 9	

2.2.1	
 Resource Scheduling Chain ... 10	

2.2.2	
 Signaling Chain... 11	

2.2.3	
 Error Handling Chain .. 12	

3	
 Reservation States .. 12	

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 2

4	
 Security.. 13	

4.1	
 Authentication and Authorization.. 13	

4.2	
 Digital Signature Format and Algorithms.. 13	

4.3	
 Example.. 14	

4.3.1	
 Request message ... 14	

4.3.2	
 Reply message ... 16	

5	
 End-User to IDC Interface ... 16	

6	
 IDC to IDC Message Forwarding... 18	

7	
 Common Data Types... 19	

7.1	
 Reservation Details .. 19	

7.2	
 Path Information ... 20	

7.3	
 Events... 23	

8	
 Notification Interface.. 24	

8.1	
 Subscribe.. 25	

8.1.1	
 Request... 25	

8.1.2	
 Response.. 26	

8.1.3	
 Identifying Subscriptions ... 26	

8.1.4	
 Example .. 27	

8.2	
 Notify .. 28	

8.2.1	
 Message Format ... 28	

8.3	
 Renew .. 29	

8.3.1	
 Request... 29	

8.3.2	
 Response.. 29	

8.3.3	
 Example .. 30	

9	
 Resource Scheduling .. 31	

9.1	
 Creating a Reservation ... 31	

9.1.1	
 createReservation... 31	

9.1.2	
 createReservationResponse... 32	

9.1.3	
 RESERVATION_CREATE_CONFIRMED event .. 32	

9.1.4	
 RESERVATION_CREATE_COMPLETED event ... 33	

9.2	
 Modifying a Reservation ... 33	

9.2.1	
 modifyReservation .. 33	

9.2.2	
 modifyReservationResponse .. 34	

9.2.3	
 RESERVATION_MODIFY_CONFIRMED event... 34	

9.2.4	
 RESERVATION_MODIFY_COMPLETED event .. 35	

9.3	
 Cancelling a Reservation.. 35	

9.3.1	
 cancelReservation .. 35	

9.3.2	
 cancelReservationResponse .. 35	

9.3.3	
 RESERVATION_CANCEL_CONFIRMED event .. 35	

9.3.4	
 RESERVATION_CANCEL_COMPLETED event ... 36	

10	
 Signaling.. 36	

10.1	
 Automatic vs Manual Signaling .. 36	

10.2	
 Creating a Circuit .. 36	

10.2.1	
 Manually creating a circuit with createPath... 36	

10.2.2	
 UPSTREAM_PATH_SETUP_CONFIRMED event... 37	

10.2.3	
 DOWNSTREAM_PATH_SETUP_CONFIRMED event .. 37	

10.2.4	
 PATH_SETUP_COMPLETED event .. 38	

10.3	
 Removing a circuit .. 38	

10.3.1	
 Manually removing a circuit with teardownPath.. 38	

10.3.2	
 UPSTREAM_PATH_TEARDOWN_CONFIRMED event.. 39	

10.3.3	
 DOWNSTREAM_PATH_TEARDOWN_CONFIRMED event ... 39	

10.3.4	
 PATH_TEARDOWN_COMPLETED event ... 39	

11	
 Polling Circuit Information.. 39	

11.1	
 Listing Reservations ... 39	

11.1.1	
 Example .. 41	

11.2	
 Querying Reservations ... 42	

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 3

11.2.1	
 Example .. 42	

12	
 Topology Exchange... 43	

13	
 Brokered Notification ... 43	

13.1	
 RegisterPublisher ... 44	

13.1.1	
 Request... 44	

13.1.2	
 Response.. 44	

13.1.3	
 Identifying Publisher Registrations.. 45	

13.1.4	
 Examples .. 45	

13.2	
 DestroyRegistration .. 46	

13.2.1	
 Request... 46	

13.2.2	
 Response.. 46	

13.2.3	
 Examples .. 47	

14	
 Advanced Subscription Management.. 47	

14.1	
 Unsubscribe.. 48	

14.1.1	
 Request... 48	

14.1.2	
 Response.. 48	

14.1.3	
 Example .. 48	

14.2	
 PauseSubscription.. 49	

14.2.1	
 Request... 49	

14.2.2	
 Response.. 50	

14.2.3	
 Example .. 50	

14.3	
 ResumeSubscription .. 51	

14.3.1	
 Request... 51	

14.3.2	
 Response.. 51	

14.3.3	
 Example .. 51	

15	
 Appendix A: IDC Topics and Events ... 52	

16	
 Appendix B: The Meta-scheduler Model ... 54	

17	
 Appendix C: Create Reservation Example .. 55	

18	
 Security Considerations... 65	

19	
 Contributors and Editors.. 65	

20	
 Intellectual Property Statement ... 65	

21	
 Disclaimer.. 66	

22	
 Full Copyright Notice ... 66	

23	
 References .. 66	

1 Introduction

This document specifies the Inter-Domain Controller (IDC) Protocol (IDCP) for dynamically provisioning
network resources across multiple administrative domains. The IDC architecture supports dynamic
networking, the concept by which network resources (i.e. bandwidth, VLAN number, etc) are requested
by end-users, automatically provisioned by software, and released when they are no longer needed.
This contrasts more traditional “static” networking where network configurations are manually made by
network operators and usually stay in place for long periods of time.

The IDC protocol specifically addresses issues related to dynamically requested resources that traverse
domain boundaries. In both the static and dynamic case there must be extensive coordination between
each domain to provision resources. In the static case this requires frequent communication between
network operators making manual configurations and can take weeks to complete depending on the
task. In the dynamic case, the IDC protocol automates this coordination and allows for provisioning in
seconds or minutes. Interactions between domains are handled using messages defined in the protocol.

The IDC protocol defines messages for reserving network resources, signaling resource provisioning,
and gathering information about previously requested resources. These messages are defined in a
SOAP [SOAP] web service format. Since all messages are defined using SOAP and XML, the protocol
also utilizes a few external specifications for features such as security and topology description. Later

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 4

sections in this document will indicate where external specifications are used. Also, the complete list of
supported messages defined by the IDC protocol is contained within a Web Services Description
Language (WSDL) file [WSDL]. This document describes the WSDL file and provides additional details
on the information elements in each message. This document and others relating to the IDCP are
maintained at the IDCP Control Plane web site: www.controlplane.net [CNTL-PLANE]. The documents
located on this web site which define the IDCP are as follows:

• IDCP Specification (this document)
• IDCP Messaging Service and Schema Definitions

o IDCP.xsd
o IDCP.wsd
o IDCP-Notify.wsdl

• Topology Schema
o nmtopo_ctrlplane.rnc

1.1 Goals and Requirements

The goal of the IDC protocol is to define the terminology, concepts, operations, and messages needed to
dynamically provision network resources across multiple administrative domains.

1.1.1 Requirements
In meeting these goals the IDC protocol must address the following requirements:

• Must securely communicate messages. Security mechanisms that support authentication,
authorization, and encryption must be factored into the protocol design. Security is vital to
protecting the valuable network resources of communicating domains.

• Must support multiple vendors and technology types. The diversity of network equipment is
an important consideration for an inter-domain protocol. The protocol design should be generic
enough that its information elements are meaningful to configuring equipment made by different
vendors and/or of differing technology type (i.e. Ethernet, MPLS, etc.).

• Must provide information portable to other network services. The dynamic allocation of
network resources will be important to other services such as those dedicated to monitoring and
measurement. The IDC protocol should utilize external specifications when it increases its ability
to interoperate with other services without violating the other requirements.

• Must allow for future extensibility. Extensibility is important for supporting new user
requirements as they arise in the future. It is also critical for supporting the dynamic provisioning
of new network technologies as they become available.

1.1.2 Non-Goals
The following topics are outside the scope of the IDC protocol specification:

• Defining an interface between an Inter-Domain Controller and the Domain Controller. The
IDC architecture describes a domain specific service called the Domain Controller (DC) that
manages and provisions local network resources. This document does not describe how
information from IDC protocol messages is passed to the DC as it is domain-specific.

• Defining security policy. This document defines information elements used in IDC protocol
messages that may be used to establish trust and make authorization decisions, but it does not
dictate how a domain uses that information to make such decisions.

• Defining the information elements used to describe a domain’s topology. Topology
description is specified using an external specification called the NMWG Control Plane Schema

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 5

[NMWG-CP]. This document describes the aspects of that schema pertinent to its own
information elements but is not an exhaustive description of the NMWG Control Plane definition.
The IDCP utilizes a specific version of this schema as defined in the reference [NMWG-CP] and
on the IDCP web site [CNTL-PLANE]

• Defining domain-specific operations such as path calculation and scheduling algorithms.

1.2 Notational Conventions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described
in RFC 2119 [RFC2119].

When describing abstract data models, this specification uses the notational convention used by the
XML Infoset [XML-Infoset]. Specifically, abstract property names always appear in square brackets (e.g.,
[some property]).

When describing concrete XML schemas, this specification uses a convention where each member of an
element’s [children] or [attributes] property is described using an XPath-like [XPATH] notation (e.g.,
/x:MyHeader/x:SomeProperty/@value1).

1.3 Terminology

Defined below are the basic definitions for the terminology used in this specification.

Circuit – A connection between two endpoints that can be used to transmit data between them.

Confirmed Inter-Domain Path (CIDP) – A Strict Inter-Domain Path (SIDP) where each domain in the
path has authorized the use of the path segment between its local ingress and egress links for a
specified period of time.

Control Plane – The networking infrastructure that is used to share information between entities capable
of configuring and managing network equipment. The control plane manages the data plane.

Data Plane – Network infrastructure that is used to make data connections between network entities.
Devices in the data plane generally correspond to layers 1-3 of the OSI Networking Model [OSI]. A data
plane may be managed by a control plane.

Destination – The endpoint of a circuit that is the last dynamically controlled link as determined by the
direction of the signaling flow.

Dynamic Circuit Network (DCN) – A network with a control plane capable of accepting request
messages for network resources between two endpoints and provisioning connections based on that
request. For the purposes of this document a DCN MUST have a Domain Controller and MAY have an
Inter-Domain Controller.

Domain – In the Network Management Working Group (NMWG) topology schema a set of network
devices administrated by a common organization, group, or some other type of authority.

Domain Controller (DC) – In the IDC architecture a service that provisions and manages network
devices in the local domain.

Egress - The property of being a point of exit. The term may be applied to a domain, node, port, or link.
When applied to the latter three terms it means the last node/port/link in a given domain. When applied
to domain it means the last domain in a given path. An egress node/port/link is equivalent to the

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 6

destination node/port/link if it is also in the egress domain.

Endpoint – The termination points of a dynamic circuitʼs path. There are two endpoints in a path: source
and destination.

End User – An entity that sends a request to an Inter-Domain Controller (IDC) and is not itself an IDC.
The entity may be a human or some type of automated agent.

Global Reservation Identifier (GRI) - A name assigned to a reservation upon receiving a reservation
creation request. This name is included in all messages about this reservation, including messages
about success of the reservation and creation of a circuit from the reservation. The GRI is unique across
all domains and is formed by appending a locally unique number to the globally unique domain identifier
of the IDC receiving the user request.

Hop – An element in a given path. A hop may take the form of a domain, node, port or link.

Ingress – The property of being a point of entrance. The term may be applied to a domain, node, port, or
link. When applied to the latter three terms it means the first node/port/link in a given domain. When
applied to domain it means the first domain in a given path. An ingress node/port/link is equivalent to the
source node/port/link if it is also in the ingress domain.

Inter-Domain Controller (IDC) – A service that runs in a local domain and coordinates with similar
services in other domains to provision network resources across administrative boundaries.
Interoperating IDCs create an inter-domain control plane. For the purposes of this document an IDC is a
service that implements the IDC protocol.

Link - In the NMWG topology schema, a connection between two adjacent ports capable of using some
subset of resources available on that port.

Lookup Service – An external service that maps a human-readable name to a uniform resource name
(URN)

Loose Inter-Domain Path (LIDP) – A list containing two endpoints and zero or more intermediate hops.
The hops may take the form of a domain, node, port or link.

Network Element – A domain, node, port, or link.

Network Resource – A network capability that can be allocated by the control plane. This includes (but
is not limited to) bandwidth, VLAN number, and SONET/SDH timeslots.

Node – In the NMWG topology schema a physical or logical representation of a junction of ports that
connect to other nodes via links. A node may correspond directly to a network device such as a switch or
router or may be abstracted to represent a collection of devices such as an Autonomous System (AS).

Path - A list of physical or logical network elements in the form of hops that data will traverse when
traveling between two endpoints. A path may contain all relevant elements between two endpoints
(strict) or only a subset (loose). When a path is instantiated on the network it becomes a circuit.

Path Segment – A subset of a path consisting of two or more connected hops.

Port – In the NMWG topology schema a physical or logical connection point. A single port may represent
one or more interfaces on a network device. Ports are connected by one or more links and are the
children of nodes.

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 7

Reservation – The right to use a set of network resources starting at a given time for a specified
duration.
Signaling – The process by which Inter-Domain Controllers (IDCs) are triggered to have their Domain
Controllers (DC) create, manage, and remove circuits associated with a reservation.

Source – The endpoint of a circuit that is the first dynamically controlled link as determined by the
direction of the signaling flow.

Strict Inter-Domain path (SIDP) – A list of hops that MUST include every domainʼs ingress and egress
link between its two endpoints. An IDC MUST honor the ingress and egress links specified in the SIDP.
A SIDP MAY contain intra-domain hops between a domainʼs ingress and egress, but there is no
requirement to do so. Intra-domain hops MAY be treated as hints in interdomain paths.
In the future, paths may be defined that contain a mixture of strict and loose hops where a strict hop
must be honored by the IDC and a loose hop is a hint to the IDC attempting to find a path between
endpoints.

Token – A hard to counterfeit sequence of bytes that grants the right of the holder to signal a
reservation.

Topology – A physical or logical description of how devices on the network data plane connect.
Elements in the topology may be provisioned by the control plane to create circuits in response to
dynamic network resource requests.

Uniform Resource Name (URN) – A persistent, location-independent, resource identifier as defined in
RFC 2141 [RFC2141]. URNs are used to identify domains, nodes, ports and links in the NMWG topology
schema. URNs that reference elements defined in the NMWG topology schema always begin with the
prefix “urn:ogf:network”. A URN is considered a fully-qualified identifier because all parent elements must
be defined when referencing elements below the top level of a hierarchical structure. URNs for each
element in the domain,-> node -> port ->link hierarchy defined by NMWG look like the following:

• Domain URN: urg:ogf:network:domain=domain_id

• Node URN: urg:ogf:network:domain=domain_id:node=node_id

• Port URN: urg:ogf:network:domain=domain_id:node=node_id:port=port_id

• Link URN: urg:ogf:network:domain=domain_id:node=node_id:port=port_id:link=link_id

1.4 Namespaces

The following namespaces are used in this document:
Prefix Namespace

idc http://controlplane.net/IDCP/20100208
See www.controlplane.net for formal specification

nmwg-cp http://ogf.org/schema/network/topology/ctrlPlane/20070626/
See www.controlplane.net for formal specification

wsse http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-
1.0.xsd

wsse11 http://docs.oasis-open.org/wss/oasis-wss-wssecurity-secext-1.1.xsd
wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
wsnt http://docs.oasis-open.org/wsn/b-2
wsnt-br http://docs.oasis-open.org/wsn/br-2

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 8

ds http://www.w3.org/2000/09/xmldsig#
soap http://schemas.xmlsoap.org/wsdl/soap12/
xsd http://www.w3.org/2001/XMLSchema
wsdl http://schemas.xmlsoap.org/wsdl/

2 Messaging Model

The IDC protocol utilizes a publish/subscribe model for asynchronous messaging. This model is primarily
implemented using a message-sequencing scheme described as the “daisy-chain”. This model is
described in the section that follows.

(NOTE: For a discussion of an alternative messaging scheme please see Appendix B: The Meta-
scheduler Model)

2.1 Publish/Subscribe Model

The Inter-Domain Controller Protocol (IDCP) implements a publish/subscribe model as defined by the
WS-Notification [WSN] specification from OASIS. Under this model an Inter-Domain Controller (IDC)
publishes events when certain tasks are performed or a failure occurs. Tasks that trigger events include
(but are not limited to) the reservation of resources or the creation of a circuit on the network. External
IDCs, end-users, or other interested services subscribe to receive notification of these events as they
are published. External IDCs in particular use the notifications to make decisions about actions to take
and when to change a reservation’s state.

Figure 2.1 (Left) Unbrokered notification where burden of subscription management falls on the IDC.
(Right) Brokered notification where subscription management and notification distribution delegated to
NotificationBroker (NB)

The management of subscriptions and distribution of messages can be handled within the IDC service or
it can be delegated to an external service using the WS-BrokeredNotification specification [WSBN]. Both

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 9

methods are shown in Figure 2.1. The brokered method uses a service called the NotificationBroker to
accept subscriptions and send notifications. The advantage of using the brokered method is that it
decreases the logic required in the IDC. The IDC only needs to send a single notification to the
NotificationBroker and it will handle the matching and distribution of notifications to subscribers. The
NotificationBroker may also have generally utility for tasks such as network monitoring and topology
distribution but those topics are outside the scope of this document and/or reserved for future work.
Subscribers may choose the events for which they receive notification by using a number of parameters.
The topic is the primary parameter subscribers use to filter notifications. A topic is a pre-defined set of
events. The IDC protocol defines the following topics (See Appendix A for a full listing of events in each
topic):

Topic Name Description
IDC Events required between IDCs organized in a daisy-chain (see section 2.2) to

reserve resources and provision circuits
INFO Events that contain information about when errors and operations complete but

exclude some of the intermediate events of the IDC topic. Useful for end-users or
other services that need basic information about IDC activity

DEBUG Events useful for debugging purposes
ERROR This topic contains only those events that indicate an error or failure during an IDC

operation.
Other filters are available that further limit notifications received based on the content of the message.
These are described in the corresponding messaging sections of this document.

2.2 The Daisy-Chain

The daisy-chain scheme works by passing IDC protocol messages from one IDC to another in a chain-
like fashion through a sequence of domains. The order of IDCs in the chain is determined by the path (or
expected path) associated with a request. Paths represent a linear sequence of network elements
describing how data will travel from one end of a point-to-point circuit to the other. Calculation of the path
may be part of the operation being performed (as is the case when a reservation is being created) or
may have been calculated by some previous operation (as is the case when cancelling a pre-existing
reservation). Since each network element in the linear sequence belongs to an administrative domain an
IDC can extrapolate the sequence of domains from the path. The way that messages are passed varies
slightly depending on whether the operation is a resource scheduling or signaling request. The sections
that follow describe each of these cases.

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 10

2.2.1 Resource Scheduling Chain

Figure 2.2 An example of a daisy-chain model under the brokered model used during resource

scheduling with three domains.

Resource scheduling operations are those that relate to the creation, modification and cancellation of
reservations for network resources. Figure 2.2 shows an example of a resource scheduling daisy chain
between three domains. In the example the brokered notification model is implemented. Details of the
various resource operations is saved for a later section but an outline of the basic message-passing
process shown in the diagram is described below:

1. The daisy chain is initiated when an end-user sends a request to the IDC of Domain 1, the first
domain in the path from source to destination. Currently the end-user MUST send the initial
request to the IDC of the first domain in the path.

2. The first IDC does some basic sanity checking of the message and returns an acknowledgement
indicating the request was accepted. Further operations are performed asynchronously.

3. Next, the IDC performs some operation depending on the request type, modifies the request as
needed, and forwards it to Domain 2

4. Domain 2 responds indicating the request was accepted after checking the request parameters
are valid and continues asynchronously.

5. Domain 2 analyzes the request, performs any necessary operations and forwards the message
to Domain 3.

6. Domain 3 responds indicating the request was accepted after checking the request parameters
are valid and continues asynchronously.

7. Domain 3 is the last domain the path so there is no further forwarding required. Instead it
publishes a CONFIRMED event indicating that the operation is finished in the local domain.

8. Domain 2 receives the CONFIRMED event and does some finalization tasks. It then publishes a
CONFIRMED event indicating that the operation is finished in the local domain.

9. Domain 1 receives the CONFIRMED event and does some finalization tasks. Since it is the first
domain in the path that means every domain has completed their portion of the operation.
Domain 1 publishes a COMPLETED event to indicate this fact which is received by Domain 2.

10. Domain 2 publishes a COMPLETED message which is received by Domain 3. This is purely for
informational purposes so that Domain 3 knows the other domains succeeded and so it has any
additional information added to the request by the other domains during the confirmation phase.

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 11

2.2.2 Signaling Chain

Figure 2.3 Example of how IDCs interact for signaling operations

Signaling operations are those that trigger the IDC to interact with the domain controller to create and
teardown circuits. Figure 2.3 shows the process by which messages are passed for signaling operations.
They are described as follows:

1-3. These steps are optional. A circuit may be initiated by sending messages to trigger the setup/
teardown process. Alternatively, the circuit may be triggered in each domain at a start time specified
during resource scheduling in which case these steps are skipped. If messages are used they are
forwarded down the chain to trigger the process that follows. Section 7.2 describes how the end-user
can indicate which of these two modes is desired for a specific signaling instance.

4. Each domain sets-up/tears-down their segment of the path in parallel. Two types of events are thrown
as each event completes. The first is an UPSTREAM CONFIRMED event. UPSTREAM CONFIRMED
events are thrown when every domain before the domain publishing the event AND the local domain are
finished with their operation. Domains in the example publish the events as follows:

a. Domain 1 publishes this event when it finishes the local setup because it’s the first
domain in the path.

b. Domain 2 throws the event when the local operation AND domain 1 has published an
UPSTREAM CONFIRMED event.

c. Domain 3 publishes this event when Domain 2 publishes an UPSTREAM CONFIRMED
event AND it completes with the local operation. This is not shown in the diagram as the
event is also completed at this point.

5. The second event type is a DOWNSTREAM CONFIRMED event. DOWNSTREAM CONFIRMED
events are thrown when every domain after the domain publishing the event AND the local domain are
finished with their operation. Domains in the example publish the events as follows:

a. Domain 3 publishes this event when it finishes the local setup because it’s the last
domain in the path.

b. Domain 2 throws the event when the local operation completes AND Domain 3 has
published a DOWNSTREAM CONFIRMED event.

c. Domain 1 publishes this event when Domain 2 publishes a DOWNSTREAM
CONFIRMED event AND it completes with the local operation. This is not shown in the
diagram as the event is also completed at this point.

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 12

6. When a domain has published both an UPSTREAM CONFIRMED event and a DOWNSTREAM
CONFIRMED event then the operation is complete in every domain. It publishes a COMPLETED event
to indicate this. It is published by every domain but only shown in the diagram going to end-user. The
other domains do NOT need to wait for a COMPLETED event from the other domains before
considering an operation finished.

2.2.3 Error Handling Chain
At any point a failure may occur during an operations. When that occurs a FAILED event is published by
the IDC where the error originates. It is the responsibility of the neighboring IDCs in the chain to pass the
FAILED event to their direct neighbor that didn’t experience the error. Likewise, the neighbor must pass
the FAILED event farther down the chain. The following scenarios are possible:

• A failure occurs on the first domain. When this happens it should pass the failure event to the
second domain in the signaling path. The second domain will pass it to the third, etc until the end
is reached.

• A failure occurs in the last domain. When this happens the last domain should pass the
failure event to the second-to-last domain in the signaling path. This domain should pass it to the
previous domain before it in the signaling path, etc until the first domain is reached.

• A failure occurs in the middle domain. When this happens the domain should pass the failure
to its neighbors in both directions. Each neighbor will pass the event along their respective
segments of the chain until both ends are reached.

3 Reservation States

Figure 3.1 State diagram of reservations in the IDC protocol

The IDC protocol creates resource reservations that change state in response to protocol messages.
Figure 3.1 shows the states and transitions for reservations created using the IDC protocol. The
following describes each state:

• ACCEPTED – A reservation is in this state when a user first submits a request to create a
reservation and its parameters have been validated but prior to performing an initial path
computation.

• INCREATE – A reservation is in this state when path computation begins and until the
RESERVATION_CREATE_COMPLETED or RESERVATION_CREATE_FAILED is triggered.

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 13

In other words, a reservation is in this state until every domain has finished attempting to
reserve the requested resources.

• PENDING – A reservation in this state has resources reserved in all domains (as signaled by a
RESERVATION_CREATE_COMPLETED event) but the start time of the underlying resource
has not been reached. In addition, if the reservation uses XML signaling it will be in this state
until a createPath message is received. A reservation may also be cancelled while in this state.

• INSETUP – A reservation is in this state while the circuit is being created on the network. A
circuit remains in this state until a PATH_SETUP_COMPLETED event or
PATH_SETUP_FAILED event occurs. In other words, a circuit remains in this state until every
domain in the path has completed the circuit creation process (either successfully or
unsuccessfully).

• ACTIVE - A reservation enters this state when every domain has completed creating the circuit
as signaled by a PATH_SETUP_COMPLETED event. A circuit remains in this state until the
reservation end time or a user action (such as a modification) changes the state.

• INMODIFY – A reservation is in this state if it was previously PENDING or ACTIVE but a user
has requested it be modified. A reservation will return to its previous PENDING or ACTIVE state
once the modification completes (whether successfully or unsuccessfully).

• INTEARDOWN – This event occurs while domains are removing a circuit. A reservation MUST
enter this state when the reservation end time is reached. A failure, user-request teardown, or
cancellation may also change the reservation to this state.

• CANCELLED – A reservation enters this state after all domains in the path have finished
cancelling a reservation as signaled by a RESERVATION_CANCEL_COMPLETED message.
When a reservation is cancelled the circuit is removed from the network if cancellation occurs
while circuit is in the ACTIVE state. Also, the hold on resources is released so they are free for
reservation. This is a terminal state meaning the reservation state cannot change once in
CANCELLED.

• FINISHED – A reservation enters this state when the end time is reached AND every domain in
the path has removed their circuit from the network (as defined by the
RESERVATION_TEARDOWN_COMPLETED event). This is a terminal state meaning the
reservation state cannot change once in FINISHED.

• FAILED – A reservation may reach this state due to a non-recoverable error in any of the above
states occurs. The state is reached if any of the FAILED events detailed in Appendix A: IDC
Topics and Events occur. This is a terminal state meaning the reservation state cannot change
once in FAILED.

4 Security

4.1 Authentication and Authorization

The IDC uses SOAP messages, secured by WS-Security v1.1 [WS-Sec] using the XML Signature
standard [DigSig] to timestamp and sign, but not encrypt the message body for the request messages
and to timestamp, but not sign or encrypt the reply messages. The messages are SOAP over HTTPS
with server-side authentication that serves to authenticate the HTTPS server to the client and to encrypt
the connection. The message signature accomplishes end-to-end authentication of the requester to the
IDC server. Note that at some sites the HTTPS server is on a separate host from the IDC server due to
firewall constraints. The IDC expects to find the x.509 certificate of the requester included in the digital
signature. It verifies that certificate and extracts the subject name from the certificate which it uses to
authorize the requested action. Note that in order to verify the included certificate the IDC must have
access to a trusted copy of the certificate of its issuer. The privileges of a given requester are kept locally
by the IDC and indexed by the user’s subject name. They are not currently part of the message protocol.
If in the future it is desired to identify users by some means other than an x.509 certificate, for example a
Kerberos token or a SAML assertion, the IDC will need to be modified to use such an identifier to access
the privilege information for the user.

4.2 Digital Signature Format and Algorithms

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 14

In theory, the IDC protocol should support a variety of algorithms used by the digital signature. The only
part of the signature that the IDC depends on is the security token being an x.509 certificate from which
the name of the requester can be extracted. To the extent that various XML signing libraries support
different algorithms one should be able to choose various canonicalization, transforms, digest and
signature methods.

However, due to the lack of compatibility of different packages and languages, it is strongly
recommended to use the choices shown in the example and itemized below:

Signing Info: the entire body of the message is signed in one part.

KeyInfo: the security token is a base64 encoded binary x.509v3 certificate.

Canonicalization method: Exclusive XML canonicalization, (http://www.w3.org/2001/10/xml-exc-c14n#),
is strongly recommended by the WS-security specification. See [WS-Sec] section 8.1.

Transform method: same as canonicalization method

Digest method: SHA1 (http://www.w3.org/2000/09/xmldsig#sha1) is considered more secure than md5
the other widely used digest algorithm.

Signature method: rsa-sha1 (http://www.w3.org/2000/09/xmldsig#rsa-sha1) is the standard method to
use an rsa key to sign a sha1 digest of the text.

4.3 Example

4.3.1 Request message
<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
 <soap:Header>
 <wsse:Security
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-
 200401-wss-wssecurity-secext-1.0.xsd"
 soap:mustUnderstand="true">
 <wsse:BinarySecurityToken
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-
 200401-wss-wssecurity-utility-1.0.xsd"
 EncodingType="http://docs.oasis-open.org/wss/2004/01/
 oasis-200401-wss-soap-message-security-
 1.0#Base64Binary"
 ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-
 200401-wss-x509-token-profile-1.0#X509v3"
 wsu:Id="CertId-6479960">
 [X.509 Certificate]
 </wsse:BinarySecurityToken>
 <ds:Signature
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 Id="Signature-1830472">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
 Algorithm="http://www.w3.org/2001/10/xml-exc-

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 15

 c14n#"/>
 <ds:SignatureMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-
 sha1"/>
 <ds:Reference URI="#id-7438423">
 <ds:Transforms>
 <ds:Transform
 Algorithm="http://www.w3.org/2001/10/xml-exc-
 c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod
 Algorithm="http://www.w3.org/2000/09/
 xmldsig#sha1"/>
 <ds:DigestValue>
 [SHA 1 Digest]
 </ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>
 [Message Signature]
 </ds:SignatureValue>
 <ds:KeyInfo Id="KeyId-15565667">
 <wsse:SecurityTokenReference
 xmlns:wsu="http://docs.oasis-
 open.org/wss/2004/01/oasis-200401-wss-wssecurity-
 utility-1.0.xsd"
 wsu:Id="STRId-13122813">
 <wsse:Reference URI="#CertId-6479960"
 ValueType="http://docs.oasis-
 open.org/wss/2004/01/oasis-200401-wss-x509-
 token-profile-1.0#X509v3"/>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 </ds:Signature>
 <wsu:Timestamp
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-
 200401-wss-wssecurity-utility-1.0.xsd"
 wsu:Id="Timestamp-13182325">
 <wsu:Created>2008-05-05T19:43:25.596Z</wsu:Created>
 <wsu:Expires>2008-05-05T19:48:25.596Z</wsu:Expires>
 </wsu:Timestamp>
 </wsse:Security>
 </soap:Header>
 <soap:Body
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-
 200401-wss-wssecurity-utility-1.0.xsd"
 wsu:Id="id-7438423">

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 16

 [Unencrypted IDC Message]
 </soap:Body>
</soap:Envelope>	

4.3.2 Reply message
<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
 <soap:Header>
 <wsse:Security
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-
 200401-wss-wssecurity-secext-1.0.xsd"
 soap:mustUnderstand="true">
 <wsu:Timestamp
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-
 200401-wss-wssecurity-utility-1.0.xsd"
 wsu:Id="Timestamp-5830260">
 <wsu:Created>2008-05-05T19:43:32.635Z</wsu:Created>
 <wsu:Expires>2008-05-05T19:48:32.635Z</wsu:Expires>
 </wsu:Timestamp>
 <wsse11:SignatureConfirmation
 xmlns:wsse11="http://docs.oasis-open.org/wss/oasis-wss-
 wssecurity-secext-1.1.xsd"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-
 200401-wss-wssecurity-utility-1.0.xsd"
 Value="[Signature Value]"
 wsu:Id="SigConf-707092" />
 </wsse:Security>
 </soap:Header>
 <soap:Body>
 [Unencrypted IDC Message Response]
 </soap:Body>
</soap:Envelope>	

5 End-User to IDC Interface

The IDC protocol defines a SOAP [SOAP] interface between the end-user and IDC that MAY be
implemented by a particular IDC instance. An IDC instance MAY implement (instead or in addition) a
custom interface for end-user interaction and still be valid if the messages passed between IDCs
conform to this specification document. An IDC SHOULD implement some type of end-user interface
that allows requesters to initiate the operations defined in this specification.

The end-user interface defined by this specification uses SOAP messages similar to those passed
between IDCs. The SOAP header contains the elements defined by WS-Security [WS-Sec] and
described in section 4 of this document. The SOAP body of messages may be one of the several types
defined in sections 9 thru 10. The primary difference between the body of messages exchanged
between an end-user and those exchanged with another IDC is that the former are not encapsulated in
<idc:forward> or <idc:forwardResponse> elements (see section 6).

The WSDL [WSDL] operations available for end-user interactions with the IDC as defined by this
interface are listed below:

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 17

<wsdl:operation name="createReservation">
 <wsdl:input message="tns:createReservation" />
 <wsdl:output message="tns:createReservationResponse" />
 <wsdl:fault name="AAAErrorException"
 message="tns:AAAFaultMessage" />
 <wsdl:fault name="BSSErrorException"
 message="tns:BSSFaultMessage" />
</wsdl:operation>
<wsdl:operation name="cancelReservation">
 <wsdl:input message="tns:cancelReservation"></wsdl:input>
 <wsdl:output message="tns:cancelReservationResponse" />
 <wsdl:fault name="AAAErrorException"
 message="tns:AAAFaultMessage" />
 <wsdl:fault name="BSSErrorException"
 message="tns:BSSFaultMessage" />
</wsdl:operation>
<wsdl:operation name="queryReservation">
 <wsdl:input message="tns:queryReservation" />
 <wsdl:output message="tns:queryReservationResponse" />
 <wsdl:fault name="AAAErrorException"
 message="tns:AAAFaultMessage" />
 <wsdl:fault name="BSSErrorException"
 message="tns:BSSFaultMessage" />
</wsdl:operation>
<wsdl:operation name="modifyReservation">
 <wsdl:input message="tns:modifyReservation" />
 <wsdl:output message="tns:modifyReservationResponse" />
 <wsdl:fault name="AAAErrorException"
 message="tns:AAAFaultMessage" />
 <wsdl:fault name="BSSErrorException"
 message="tns:BSSFaultMessage" />
</wsdl:operation>

<wsdl:operation name="listReservations">
 <wsdl:input message="tns:listReservations" />
 <wsdl:output message="tns:listReservationsResponse" />
 <wsdl:fault name="AAAErrorException"
 message="tns:AAAFaultMessage" />
 <wsdl:fault name="BSSErrorException"
 message="tns:BSSFaultMessage" />
</wsdl:operation>
<wsdl:operation name="createPath">
 <wsdl:input message="tns:createPath" />
 <wsdl:output message="tns:createPathResponse" />
 <wsdl:fault name="AAAErrorException"
 message="tns:AAAFaultMessage" />
 <wsdl:fault name="BSSErrorException"
 message="tns:BSSFaultMessage" />
</wsdl:operation>
<wsdl:operation name="teardownPath">
 <wsdl:input message="tns:teardownPath" />
 <wsdl:output message="tns:teardownPathResponse" />
 <wsdl:fault name="AAAErrorException"
 message="tns:AAAFaultMessage" />
 <wsdl:fault name="BSSErrorException"
 message="tns:BSSFaultMessage" />
</wsdl:operation>

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 18

A detailed description of each message type in the context of end-user requests as well as IDC-to-IDC
requests is described in sections 9 thru 12 of this document.

6 IDC to IDC Message Forwarding

The initial messages passed between IDCs along a daisy chain use the forward operation. These are
only for the initial requests that start an operation, not the notification messages to confirm and complete
an operation (see the Notify section). The WSDL [WSDL] definition of the forward operation is shown
below:
<wsdl:operation name="forward">
 <wsdl:input message="tns:forward"></wsdl:input>
 <wsdl:output message="tns:forwardResponse"></wsdl:output>
 <wsdl:fault name="AAAErrorException"
 message="tns:AAAFaultMessage" />
 <wsdl:fault name="BSSErrorException"
 message="tns:BSSFaultMessage" />
</wsdl:operation>

The operation defines an <idc:forward> element included in the SOAP body of a message. The XML
Schema [XML Schema] definition for this element is described below:
<xsd:element name="forward">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="payload" type="tns:forwardPayload" />
 <xsd:element name="payloadSender" type="xsd:string" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>
/forward

Container element included in the body of SOAP message when an IDC is sending a request to
the next IDC in a daisy chain

/forward/payload
Contains message element with request-specific parameters

/forward/payloadSender
A string indicating the end-user that sent the initial request. This string may be a domain specific
value such as a login associated with the end-user. Future versions of this specification may
further define this element.

A forward request will contain a different payload depending on the operation being performed. Below is
an XML Schema [XML Schema] description of the payload type:
<xsd:complexType name="forwardPayload">
 <xsd:sequence>
 <xsd:element name="contentType" type="xsd:string" />
 [Message Content Element]
 </xsd:sequence>
</xsd:complexType>
/forward/contentType

A string value corresponding to the element name of [Message Content Element] in this request
/forward /[Message Content Element]

The message being forwarded as indicated by /forward/contentType. Valid request types are
those indicated in sections 9 and 10.

The forward operation further defines a <idc:forwardResponse> message to be returned when an IDC is
done processing a <idc:forward> request. The <idc:forwardResponse> element and its type are defined
below:
<xsd:element name="forwardResponse" type="tns:forwardReply" />

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 19

<xsd:complexType name="forwardReply">
 <xsd:sequence>
 <xsd:element name="contentType" type="xsd:string" />
 [Message Content Element]
 </xsd:sequence>
</xsd:complexType>
/forwardResponse

A container element included in the SOAP body of a message responding to an earlier
<idc:forward> request

/fowardResponse/contentType
String value corresponding to the element name of the [Message Content Element] content in
this response

/fowardResponse /[Message Content Element]
The response element indicated by /fowardResponse/contentType and corresponding to the orginal
<idc:forward> request. Valid responses are those indicated in sections 9 and 10 of this document.

7 Common Data Types

Data types common to several messages are described in this section.

7.1 Reservation Details

All reservations are described by the following XML Schema definition. All elements in this definition
MUST be included.
<xsd:complexType name="resDetails">
 <xsd:sequence>
 <xsd:element name="globalReservationId" type="xsd:string" />
 <xsd:element name="login" type="xsd:string" />
 <xsd:element name="status" type="xsd:string" />
 <xsd:element name="startTime" type="xsd:long" />
 <xsd:element name="endTime" type="xsd:long" />
 <xsd:element name="createTime" type="xsd:long" />
 <xsd:element name="bandwidth" type="xsd:int" />
 <xsd:element name="description" type="xsd:string" />
 <xsd:element name="pathInfo" type="tns:pathInfo" />
 </xsd:sequence>
</xsd:complexType>

/idc:ResDetails;/idc:globalReservationId

The unique GRI described in section 1.3.
/idc:ResDetails/idc:login

The login identifier for the user on the originating IDC.
/idc:ResDetails/idc:status

Contains the current reservation status. See section 3 for a list of valid values.
/idc:ResDetails/idc:startTime

Contains the time the circuit was set up, if it was set up successfully. It is in seconds since the
epoch (Unix time).

/idc:ResDetails/idc:endTime
Contains the time the circuit is to be torn down or was torn down. It is in seconds since the
epoch (Unix time).

/idc:ResDetails/idc:createTime

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 20

Contains the time the reservation was scheduled, if it was scheduled successfully. It is in
seconds since the epoch (Unix time).

 /idc:ResDetails/idc:bandwidth
The bandwidth for the circuit in megabits per second (Mbps).

/idc:ResDetails/idc:description
Contains a human-readable description of the reservation’s purpose.

/idc:ResDetails/idc:pathInfo
The next section describes all the definitions involved in the path involved with a circuit.

7.2 Path Information
<xsd:complexType name="pathInfo">
 <xsd:sequence>
 <xsd:element name="pathSetupMode" type="xsd:string"
 minOccurs="1" />
 <xsd:element name="pathType" type="xsd:string" maxOccurs="1"
 minOccurs="0" />
 <xsd:element name="path" type="nmwg-cp:CtrlPlanePathContent"
 maxOccurs="1" minOccurs="0" />
 <xsd:element name="layer2Info" type="tns:layer2Info"
 maxOccurs="1" minOccurs="0" />
 <xsd:element name="layer3Info" type="tns:layer3Info"
 maxOccurs="1" minOccurs="0" />
 <xsd:element name="mplsInfo" type="tns:mplsInfo"
 maxOccurs="1" minOccurs="0" />
 </xsd:sequence>
</xsd:complexType>

idc:pathInfo/idc:pathSetupMode

This field MUST be included and is an indicator to the scheduler whether it should initiate circuit
setup automatically (see section 10.1) or have the user initiate circuit setup with the createPath
message (see section 10.2.1).

idc:pathInfo/idc:pathType

This field MAY be included, and indicates whether a path is “strict” or “loose”. If not included then
the path is assumed to be “strict”. A “strict” path indicates that path is a Strict Inter-Domain Path
(SIDP) which (by definition) means that the circuit MUST be setup using the specified ingress
and egress points exactly as given. A value of “loose” indicates that this is a Loose Inter-Domain
Path (LIDP) and that IDCs may expand and modify segments of the path during reservation
scheduling.

idc:pathInfo/idc:path

This element contains the current set of hops in a given path. The contents of this element are
defined in the NMWG Control Plane topology schema [NMWG-CP]. If idc:pathInfo/idc:pathType
is set to “loose” then the hops inside this element may be domain, node, port of link URNs. If
idc:pathInfo/idc:pathType is not included or set to strict then they MUST be link URNs

The following is excerpted from the NMWG topology schema:
<xs:complexType name="CtrlPlanePathContent">
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="unbounded" name="hop"
 type="CtrlPlane:CtrlPlaneHopContent" />
 </xs:sequence>

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 21

 <xs:attribute name="id" use="required" type="xs:string"/>
</xs:complexType>

nmwg-cp:CtrlPlanePathContent

Contains a series of hops along the associated path.
nmwg-cp:CtrlPlanePathContent/nmwg:id

Contains the id of the associated path.

<xs:complexType name="CtrlPlaneHopContent">
 <xs:sequence>
 <xs:element minOccurs="0" name="domainIdRef"
 type="xs:string" />
 <xs:element minOccurs="0" name="nodeIdRef"
 type="xs:string" />
 <xs:element minOccurs="0" name="portIdRef"
 type="xs:string" />
 <xs:element minOccurs="0" name="linkIdRef"
 type="xs:string" />
 <xs:element minOccurs="0" ref="CtrlPlane:domain"/>
 <xs:element minOccurs="0" ref="CtrlPlane:node"/>
 <xs:element minOccurs="0" ref="CtrlPlane:port"/>
 <xs:element minOccurs="0" ref="CtrlPlane:link"/>
 <xs:element minOccurs="0" maxOccurs="unbounded"
 name="nextHop" type="CtrlPlane:CtrlPlaneNextHopContent" />
 </xs:sequence>
 <xs:attribute name="id" use="required" type="xs:string"/>
 </xs:complexType>

A hop contains an optional link, port, node, and domain id, and a hop id in the NMWG URN format. It
should be noted that prior to a reservation reaching the PENDING state that any of the values under hop
are valid. After a reservation becomes PENDING, though, it is expected that hops will contain full link
elements. Hops also contain a nextHop element that’s value is the ID of the next hop in the path. It can
also be weighted and listed as optional during resource scheduling if its not required to be used in the
final path.

One of the <idc:layer2Info> or <idc:layer3Info> types MUST be present. These types contain
information dependent on whether the underlying technology of the path to be set up operates at OSI
layer 2 or layer 3. The <idc:mplsInfo> type MAY be present, depending on whether the MPLS protocol
is being used in the particular IDC.

The following describes the layer2Info type:
<xsd:complexType name="layer2Info">
 <xsd:sequence>
 <xsd:element name="srcVtag" type="tns:vlanTag" minOccurs="0"
 maxOccurs="1" />
 <xsd:element name="destVtag" type="tns:vlanTag"
 minOccurs="0" maxOccurs="1" />
 <xsd:element name="srcEndpoint" type="xsd:string" />
 <xsd:element name="destEndpoint" type="xsd:string" />
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name="vlanTag">
 <xsd:simpleContent>

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 22

 <xsd:extension base="xsd:string">
 <xsd:attribute use="optional" name="tagged"
 type="xsd:boolean"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

idc:vlanTag

Contains a string for the VLAN id and a boolean which MAY be included indicating whether this
VLAN is tagged or not.

idc:layer2Info/idc:srcVtag

This field MAY be included and specifies the VLAN at the source and whether it is tagged or not.

idc:layer2Info/idc:destVtag

This field MAY be included and specifies the VLAN at the destination and whether it is tagged or
not.

idc:layer2Info/idc:srcEndpoint

This field MUST be included, and contains an identifier for the source at the ingress of the
originating IDC.

idc:layer2Info/idc:destEndpoint

This field MUST be included, and contains an identifier for the destination at the egress of the
ending IDC.

The layer3Info type is as follows:
<xsd:complexType name="layer3Info">
 <xsd:sequence>
 <xsd:element name="srcHost" type="xsd:string" />
 <xsd:element name="destHost" type="xsd:string" />
 <xsd:element name="protocol" type="xsd:string"
 maxOccurs="1" minOccurs="0"/>
 <xsd:element name="srcIpPort" type="xsd:int" maxOccurs="1"
 minOccurs="0" />
 <xsd:element name="destIpPort" type="xsd:int"
maxOccurs="1"
 minOccurs="0"/>
 <xsd:element name="dscp" type="xsd:string" maxOccurs="1"
 minOccurs="0" />
 </xsd:sequence>
</xsd:complexType>

idc:layer3Info/idc:srcHost
This field MUST be included, and contains the DNS name or the IP address of the source of the
path.

idc:layer3Info/idc:destHost
This field MUST be included, and contains the DNS name or the IP address of the destination of
the path. The source and destination are typically outside the scope of a particular IDC, and the
path may also contains hops outside the scope of an IDC.

idc:layer3Info/idc:protocol

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 23

This field MAY be included, and is typically “udp” or “tcp”, though other protocols may be
specified.

idc:layer3Info/idc:srcIpPort
This field MAY be included, and is the transport-layer port number at the source.

idc:layer3Info/idc:destIpPort
This field MAY be included, and is the transport-layer port number at the destination.

idc:layer3Info/idc:dscp
This field MAY be included, and contains the Differentiated Services Code Point used in QoS.

The mplsInfo type MAY be present, and is only used where the IDC uses MPLS:
<xsd:complexType name="mplsInfo">
 <xsd:sequence>
 <xsd:element name="burstLimit" type="xsd:int" />
 <xsd:element name="lspClass" type="xsd:string"
 maxOccurs="1" minOccurs="0" />
 </xsd:sequence>
</xsd:complexType>

idc:mplsInfo/idc:burstLimit
This field MUST be present, and is used by the policer to determine the maximum burst above
the average bandwidth.

idc:mplsInfo/idc:lspClass
This field MUST be present, and contains the MPLS class of service.

7.3 Events

Events are wrapped in notifications that indicate when a certain task has completed or a failure has
occurred. They are described as follows:
<xsd:complexType name="eventContent">
 <xsd:attribute name="id" type="xsd:string" use="required"/>
 <xsd:sequence>
 <xsd:element name="type" type="xsd:string" />
 <xsd:element name="timestamp" type="xsd:long" />
 <xsd:element name="userLogin" type="xsd:string"
 maxOccurs="1" minOccurs="0" />
 <xsd:element name="errorSource" type="xsd:string"
 maxOccurs="1" minOccurs="0" />
 <xsd:element name="errorCode" type="xsd:string"
 maxOccurs="1" minOccurs="0" />
 <xsd:element name="errorMessage" type="xsd:string"
 maxOccurs="1" minOccurs="0" />
 <xsd:element name="resDetails" type="tns:resDetails"
 maxOccurs="1" minOccurs="0" />
 <xsd:element name="msgDetails" type="tns:msgDetails"
 maxOccurs="1" minOccurs="0" />
 <xsd:element name="localDetails" type="tns:localDetails"
 maxOccurs="1" minOccurs="0" />
 </xsd:sequence>
</xsd:complexType>

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 24

@id
Required. A string unique to the notification producer that can be used to identify the event. No
format is specified for this identifier currently by this protocol so any string is valid.

idc:timestamp
Required. The date and time that the event occurred as the number of seconds since the epoch.

idc:type
The type of event. See Appendix A: IDC Topics and Events and the individual messaging
sections for valid event types.

idc:userLogin
A string representing the user login that triggered the event (may be different from
idc:resDetails/idc:login if user that triggered event is not the user that placed original
reservation).

idc:errorSource
A string with the domain ID of the domain where an error originated. This field is not used if the
event is not an error event.

idc:errorCode
If an error occurred then this contains a string representing the error code of the event. Currently
no error codes are defined by the IDC protocol and this field is considered a placeholder for the
future. This field is never used if the event is not an error event.

idc:errorMessage
If an error occurred this element contains further information about the error. This field is not
used if the event is not an error event.

idc:resDetails
A list of details about a particular reservation including the time, path, and bandwidth. This
element is required for resource scheduling events and optional for all others. It SHOULD be
included in all events so the subscriber is not required to discover reservation details by other
means.

idc:msgDetails
Optional element containing the full XML message that triggered the event. It contains any of the
message types specified in this document for resource scheduling, signaling or polling. It
SHOULD be used for notifications belonging to the DEBUG topic.

idc:localDetails
Optional opaque element containing the additional local information about an event. The
contents of this event are one or more xsd:any elements. It MAY include things like the full local
path of a particular circuit in the domain owning the IDC that produced the event. When used
IDCs each party MUST NOT make any assumption about the contents of this field.

8 Notification Interface

The notification interface is used to push messages between IDCs and clients listening for
certain events from the IDC. This interface is defined in the WS-Notification specification.
This section defines the core messages used to distribute notifications. Also see sections 13
Brokered Notification and 14

Advanced Subscription Management for additional calls that are not required by the IDC protocol but
may be useful in some implementations.

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 25

8.1 Subscribe

8.1.1 Request
A Subscribe message as defined by the WS-Notification [WSN] specification is sent by parties that wish
to receive notifications about an event to either the NotificationBroker or directly to the IDC (depending
on the implementation). An IDC MUST send this to its neighbors if Notify messages do not provide an
authentication mechanism such as WS-Security or a two-way SSL handshake. In such a case the
Subscribe request and response can exchange a unique ID that authenticates the sender of the
notification to the receiver. A neighboring IDC MAY send a subscribe message if the Notify messages
contain WS-Security headers but this is not required. A complete description of the Subscribe message
can be found in the WS-Notification specification. The format of the Subscribe message in the context of
the IDC is provided below:

<xsd:element name="Subscribe" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="ConsumerReference"
 type="wsa:EndpointReferenceType"
 minOccurs="1" maxOccurs="1" />
 <xsd:element name="Filter"
 type="wsnt:FilterType"
 minOccurs="0" maxOccurs="1" />
 <xsd:element name="InitialTerminationTime"
 type=" wsnt:AbsoluteOrRelativeTimeType" nillable="true"
 minOccurs="0" maxOccurs="1" />
 <xsd:element name="SubscriptionPolicy"
 minOccurs="0" maxOccurs="1">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:any namespace="##any" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

/wsnt:Subscribe
A container element for subscription parameters

/wsnt:Subscribe/wsnt:ConsumerReference
A field indicating the URL where Notify messages that match this subscription should be sent.
This field is an EndpointReference type as defined in WS-Addressing [WSA]. The Address field
MUST contain the URL to send notifications. The URL SHOULD point to an endpoint running
HTTPS.

/wsnt:Subscribe/wsnt:Filter
This field contains one or more constraints a Notify message must meet to match the
subscription. This field MUST contain at least one top as defined in WS-Notification [WSN]. It
SHOULD also contain the IDC from which it is wishes to see notifications. Additional filters such
as those based on XPath MAY be included but are not required by the IDC protocol.

/wsnt:Subscribe/wsnt:InitialTerminationTime

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 26

Optional field. This field contains a suggested time that the subscription will expire. An IDC or
NotificationBroker MAY reject a subscription if an InitialTerminationTime is too far in the future or
it may ignore it.

/wsnt:Subscribe/wsnt:SubscriptionPolicy
Optional field. An opaque type that specifies further policy about the subscription. This field is
undefined for the purposes of the IDC protocol but MAY be included if a particular
implementation supports this field.

8.1.2 Response
After a subscription is received and processed a NotificationBroker (Or IDC depending on the
implementation) responds with the following message:
<xsd:element name="SubscribeResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="SubscriptionReference"
 type="wsa:EndpointReferenceType"
 minOccurs="1" maxOccurs="1" />
 <xsd:element ref="wsnt:CurrentTime"
 minOccurs="0" maxOccurs="1" />
 <xsd:element ref="wsnt:TerminationTime"
 minOccurs="0" maxOccurs="1" />
 <xsd:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

/wsnt:SubscribeResponse
A container element for the parameters in the response to the subscription

/wsnt:SubscribeResponse/wsnt:SubscriptionReference
A field that identifies the subscription. It is a WS-Addressing EndpointReference type that
contains the URL of the service providing the subscription (i.e. the NotificationBroker or IDC) and
a unique identifier of the subscription. This pair of values MUST be included in all Notify
messages sent to the consumer of this subscription. See Section 8.1.3 for a detailed description
of this field.

/wsnt:SubscribeResponse/wsnt:CurrentTime
Optional field. The time when the response was sent.

/wsnt:SubscribeResponse/wsnt:TerminationTime
Optional field. The time when the subscription expires.

8.1.3 Identifying Subscriptions
Subscriptions are identified using the wsnt:SubscriptionReference field. As defined in WS-Notification
[WSN] the wsnt:SubscriptionReference is an WS-Addressing EndpointReferenceType. For the
purposes of the IDC this field MUST take a special format beyond what is required in external
specification. The the /wsnt:SubscriptionReference/wsa:Addess field MUST be the URL to the service
providing the subscription such as the NotificationBroker or IDC (depending on the implementation). In
addition the /wsnt:SubscriptionReference/wsa:ReferenceParameters field MUST contain an
idc:subscriptionId field that contains an identifier unique to subscription service. This may be a UUID or
some other locally generated field. The combination of the subscription service’s URL and the locally
unique ID ensure a globally unique subscription. An example SubscriptionReference is shown below:

<wsnt:SubscriptionReference>

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 27

 <wsa:Address>
 https://mydomain.net/NotificationBroker
 </wsa:Address>
 <wsa:ReferenceParameters>
 <idc:subscriptionId>
 urn:uuid:bca0c6f2-c408-482a-b7f5-bb936ae7ff92
 </idc:subscriptionId>
 </wsa:ReferenceParameters>
</wsnt:SubscriptionReference>

8.1.4 Example
An example of a Subscribe message is shown below:
<s:Envelope ... >
 <s:Header>
 <!-- WS-Security headers go here -->
 </s:Header>
 <s:Body>
 <wsnt:Subscribe>
 <wsnt:ConsumerReference>
 <wsa:Address>
 https://domain1.net/IDC
 </wsa:Address>
 </wsnt:ConsumerReference>
 <wsnt:Filter>
 <wsnt:TopicExpression Dialect=" http://docs.oasis-
 open.org/wsn/t-1/TopicExpression/Full">
 idc:IDC
 </wsnt:TopicExpression>
 <wsnt:ProducerProperties
 Dialect="http://www.w3.org/TR/1999/REC-xpath-
 19991116">
 /wsa:Address='https://domain2.net/IDC’
 </wsnt:ProducerProperties>
 </wsnt:Filter>
 </wsnt:Subscribe>
 </s:Body>
</s:Envelope>
In this example Domain 1 is subscribing to message from Domain 2’s NotificationBroker. The
wsnt:ConsumerReference field indicates Domain 1 wants Notify messages sent to
“https://domain1.net/IDC”. The wsnt:Filter indicates Domain 1 is subscribing to the idc:IDC topic and only
want notifications produced by the service at “https://domain2.net/IDC” (i.e. Domain 2’s IDC).

 After receiving this request Domain 2 responds indicating the Subscription was a success with the
following message:
<s:Envelope ... >
 <s:Header>
 <!-- WS-Security headers go here -->
 </s:Header>
 <s:Body>
 <wsnt:SubscribeResponse>
 <wsnt:SubscriptionReference>
 <wsa:Address>
 https://domain2.net/NotificationBroker
 </wsa:Address>
 <wsa:ReferenceParameters>
 <idc:subscriptionId>

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 28

 urn:uuid:bca0c6f2-c408-482a-b7f5-bb936ae7ff92
 </idc:subscriptionId>
 </wsa:ReferenceParameters>
 </wsnt:SubscriptionReference>
 <wsnt:CurrentTime>
 2009-10-01T14:02:30.000+00:00
 </wsnt:CurrentTime>
 <wsnt:TerminationTime>
 2009-10-01T15:02:30.000+00:00
 </wsnt:TerminationTime>
 </wsnt:SubscribeResponse>
 </s:Body>
</s:Envelope>
We can see that the Domain 2 NotificationBroker created a SubscriptionReference to identify the
subscription. It also provided the current time and indication that the subscription will expire in one hour
(if not renewed or cancelled).

8.2 Notify

8.2.1 Message Format
Notify messages are sent between IDCs and to other interested parties when an event occurs. These
messages are asynchronous in the sense that no SOAP response is expected from the consumer.
Examples of this type of message are provided in sections 9 and 10 when discussing the specific
applications of this message. The format of the Notify message is shown below:
<xsd:element name="Notify" >
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="wsnt:NotificationMessage"
 minOccurs="1" maxOccurs="unbounded" />
 <xsd:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

/wsnt:Notify
A container element for one or more messages

/wsnt:Notify/wsnt:NotifcationMessage
An element or type wsnt:NotificationMessageHolderType containing the notification that
occurred. See the next heading for a detailed description of this type.

A more detailed view of the idc:NotifcationMessage is provided below:
<xsd:complexType name="NotificationMessageHolderType" >
 <xsd:sequence>
 <xsd:element ref="wsnt:SubscriptionReference"
 minOccurs="0" maxOccurs="1" />
 <xsd:element ref="wsnt:Topic"
 minOccurs="0" maxOccurs="1" />
 <xsd:element ref="wsnt:ProducerReference"
 minOccurs="0" maxOccurs="1" />
 <xsd:element name="Message" type="wsnt:MessageType"/>
 </xsd:sequence>
</xsd:complexType>

/wsnt:NotifcationMessage/wsnt:SubscriptionReference

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 29

A refererence identifying the subscription which caused this notification to be sent to the
consumer. It MUST match the identifier provided in the SubscribeResponse message.

/wsnt:NotifcationMessage/wsnt:Topic
The topic or list of topics to which this notification belongs.

/wsnt:NotifcationMessage/wsnt:ProducerReference
An endpoint reference identifying the service (i.e. IDC) that generated this notification. If this
message is between an IDC and the local NotificationBroker then it MUST contain a
idc:publisherRegistrationId element in the wsa:ReferencePameters. If it is between a
NotificationBroker and a consumer it MUST NOT contain the idc:publisherRegistrationId.

/wsnt:NotifcationMessage/wsnt:Message
In the IDC protocol this element MUST contain at least one idc:event element as defined in
section 7.3 Events.

8.3 Renew

8.3.1 Request
IDCs maintain subscriptions by periodically sending Renew messages to the notification service prior to
the expiration of a subscription. If a Renew message is not received prior to the expiration of a
subscription then a new subscription must be created to continue exchanging Notify messages. The
format of a request is provided below:
<xsd:element name="Renew">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="TerminationTime"
 type="wsnt:AbsoluteOrRelativeTimeType "
 nillable="true" minOccurs="1" maxOccurs="1" />
 <xsd:element ref="wsnt:SubscriptionReference"
 minOccurs="1" maxOccurs="1" />
 <xsd:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

/wsnt:Renew
The container element for the renewal parameters\

/wsnt:Renew/wsnt:TerminationTime
A field suggesting a new TerminationTime for the subscription.

/wsnt:Renew/wsnt:SubscriptionReference
Indicates which subscription to renew. This field MUST match the field of the same name
provided in the SubscribeResponse message.

8.3.2 Response
A successful response is provided below:
<xsd:element name="RenewResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="wsnt:TerminationTime"
 minOccurs="1" maxOccurs="1" />
 <xsd:element ref="wsnt:CurrentTime"
 minOccurs="0" maxOccurs="1" />

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 30

 <xsd:element ref="wsnt:SubscriptionReference"
 minOccurs="0" maxOccurs="1" />
 <xsd:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

/wsnt:RenewResponse
A container for response parameters.

/wsnt:RenewResponse/wsnt:TerminationTime
The new expiration of the subscription

/wsnt:RenewResponse/wsnt:CurrentTime
The time the response was sent.

/wsnt:RenewResponse/wsnt:SubscriptionReference
Indicates which subscription was renewed. This field MUST match the field of the same name
provided in the SubscribeResponse message and the Renew message.

8.3.3 Example
An example of Domain 1 renewing its subscription to Domain 2 is shown below:

<s:Envelope ... >
 <s:Header>
 <!-- WS-Security headers go here -->
 </s:Header>
 <s:Body>
 <wsnt:Renew>
 <wsnt:TerminationTime xmlns:xsi="http://www.w3.org/
 2001/XMLSchema-instance" xsi:nil="1">
 <wsnt:SubscriptionReference>
 <wsa:Address>
 https://domain2.net/NotificationBroker
 </wsa:Address>
 <wsa:ReferenceParameters>
 <idc:subscriptionId>
 urn:uuid:bca0c6f2-c408-482a-b7f5-bb936ae7ff92
 </idc:subscriptionId>
 </wsa:ReferenceParameters>
 </wsnt:SubscriptionReference>
 </wsnt:Renew>
 </s:Body>
</s:Envelope>

And the response is as follows:
<s:Envelope ... >
 <s:Header>
 <!-- WS-Security headers go here -->
 </s:Header>
 <s:Body>
 <wsnt:RenewResponse>
 <wsnt:TerminationTime>
 2009-10-01T16:02:30.000+00:00
 </wsnt:TerminationTime>

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 31

 <wsnt:CurrentTime>
 2009-10-01T15:02:30.000+00:00
 </wsnt:CurrentTime>
 <wsnt:SubscriptionReference>
 <wsa:Address>
 https://domain2.net/NotificationBroker
 </wsa:Address>
 <wsa:ReferenceParameters>
 <idc:subscriptionId>
 urn:uuid:bca0c6f2-c408-482a-b7f5-bb936ae7ff92
 </idc:subscriptionId>
 </wsa:ReferenceParameters>
 </wsnt:SubscriptionReference>
 </wsnt:RenewResponse >
 </s:Body>
</s:Envelope>

9 Resource Scheduling
A dynamic circuit uses network resources (such as bandwidth) along a path. A reservation is created
when a path with the desired resources for a circuit is found and reserved. Resource scheduling is the
process by which reservations are created, modified, and cancelled. The IDC protocol defines
operations for each of these functions.
9.1 Creating a Reservation

9.1.1 createReservation
The createReservation message is used to request the creation of a new reservation. It is worth noting
that the base resCreateContent data type used contains only administrative information (see section
7.1); all technology-specific information is contained in the pathInfo sub-object (see section 7.2). The
format of the request message is shown below:
<xsd:element name="createReservation"
 type="tns:resCreateContent" />
<xsd:complexType name="resCreateContent">
 <xsd:sequence>
 <xsd:element name="globalReservationId" type="xsd:string"
 maxOccurs="1" minOccurs="0"/>
 <xsd:element name="startTime" type="xsd:long" />
 <xsd:element name="endTime" type="xsd:long" />
 <xsd:element name="bandwidth" type="xsd:int" />
 <xsd:element name="description" type="xsd:string" />
 <xsd:element name="pathInfo" type="tns:pathInfo" />
 </xsd:sequence>
</xsd:complexType>

/idc:createReservation
Container element included in the SOAP [SOAP] body of a message that contains the
parameters for creating the reservation.

/idc:createReservation/idc:globalReservationId
MAY be included. It is used to uniquely identify the reservation across all IDCs. If omitted, the
message recipient MUST generate an appropriately unique identifier and return it in the
response. Typical use is that an end-user omits this field, and their home IDC instance
creates a string with a format of idc_id-seq_nr

/idc:createReservation/idc:startTime and idc:createReservation/dc:endTime
MUST be included, and define the period for which the requested resources will be reserved.
The field format is seconds-since-epoch.

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 32

/idc:createReservation/idc:bandwidth
 MUST be included, and specifies the number of Mbps requested to be reserved.
/idc:createReservation/idc:description

MUST be included, and is a human-readable field meant to describe the purpose of the
reservation.

/idc:createReservation/idc:pathInfo
MUST be included, and is extensively described in section 7.2. The path information here
represents what the reservation requester is asking from the IDC. The hops it contains may be
domain, node, port, or link elements of id references.

9.1.2 createReservationResponse
The IDC returns a createReservationResponse after receiving a request and verifying its parameters are
valid. The response indicates the reservation is in the ACCEPTED state. This means that the reservation
has NOT been scheduled and no hold on resources yet exists. Instead it indicates that the reservation
will be considered for further processing. The format of the message is below:
<xsd:element name="createReservationResponse"
 type="tns:createReply" />
<xsd:complexType name="createReply">
 <xsd:sequence>
 <xsd:element name="globalReservationId" type="xsd:string" />
 <xsd:element name="token" type="xsd:string" maxOccurs="1"
 minOccurs="0"/>
 <xsd:element name="status" type="xsd:string" />
 <xsd:element name="pathInfo" type="tns:pathInfo"
 maxOccurs="1" minOccurs="0" />
 </xsd:sequence>
</xsd:complexType>

/idc:createReservationResponse
Container element included in the SOAP [SOAP] body of a message with the response of a
createReservation operation.

/idc:createReservationResponse/idc:globalReservationId
MUST be included. Typically an IDC instance generates a string with a format of idc_id-seq_nr
and returns it to the user through this field.

/idc:createReservationResponse/idc:token
MAY be included, and contains a token that is to be used during path signaling. The specific use
cases for tokens are the subject of ongoing research.

/idc:createReservationResponse/idc:status
MUST contain the value ACCEPTED to indicate the request was received and the parameters
were valid.

/idc:createReservationResponse/idc:pathInfo
MUST be included, and is extensively described in section 7.2. This path information describes
the path the IDC decided that the reservation will actually take.

9.1.3 RESERVATION_CREATE_CONFIRMED event
After the createReservation request has been forwarded to the last domain in the signaling path, the last
domain can make final decisions about the path and resources that will be reserved and throw a
RESERVATION_CREATE_CONFIRMED event. This takes the form of a wsnt:Notify message
containing an idc:event element. Each domain received the event, makes final decision about local
resources, and passes it back toward the first domain. See section 2.2.1 Resource Scheduling Chain for
more information on this ordering. A RESERVATION_CREATE_CONFIRMED event MUST also meet
the following requirements in addition to the general requirement of a Notify message:

• The /idc:event/idc:eventType field MUST have a value of
RESERVATION_CREATE_CONFIRMED

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 33

• The event MUST contain an /idc:event/idc:resDetails object describing the reservation being
created.

• The /idc:event/idc:resDetails/idc:pathInfo/idc:path MUST contain full nmwg-cp:link elements for
all hops local to the domain throwing the event and all domains toward the last domain
(inclusive). This means the last domain must fill-in the hops for itself, the second-to-last domain
must fill-in its hop plus pass the filled-in hops of the last domain, etc. By the time the first domain
is reached all domains beyond the first domain should have full nmwg-cp:link elements.

• Each domain MUST select the resources that will be used in its domain and include those in the
event. For example, in a reservation using VLANs a domain must select its VLANs and include
that decision in the message.

9.1.4 RESERVATION_CREATE_COMPLETED event
After the first domain receives a RESERVATION_CREATE_CONFIRMED event it finalizes its resources
and throws a RESERVATION_CREATE_COMPLETED event toward the end client and the next IDC in
the signaling path. The next IDC is responsible for continuing this message along the chain and the
message will eventually reach the last domain. When each domain receives the
RESERVATION_CREATE_COMPLETED the MUST change the reservation state to PENDING. A
domain MUST NOT make any changes to the resources selected when receiving a
RESERVATION_CREATE_COMPLETED event. This event is for informational purposes only so that
each domain knows the resource selected by other domains and thus has an equivalent view of the
inter-domain reservation. Below are the message requirements specific to the
RESERVATION_CREATE_COMPLETED event:

• The /idc:event/idc:eventType field MUST have a value of
RESERVATION_CREATE_COMPLETED

• The event MUST contain an /idc:event/idc:resDetails object describing the reservation being
created.

• The /idc:event/idc:resDetails/idc:pathInfo/idc:path MUST contain full nmwg-cp:link elements for
every hop in the inter-domain path.

9.2 Modifying a Reservation

9.2.1 modifyReservation
This message is used to initiate the modification of an existing PENDING or ACTIVE reservation. When
the process completes either successfully or unsuccessfully the reservation MUST return to the state it
was in prior to modification unless a network failure prevents this from happening. The modification
message supports changes in bandwidth, start and end time, description, as well as path information.
The user provides the Global Reservation Identifier of the reservation they wish to modify, as well as the
desired new values of the parameters. The message recipient MAY accept all, some, or none of the new
values depending on policy and user authorization.
The request message is described below:
<xsd:element name="modifyReservation"
 type="tns:modifyResContent" />
<xsd:complexType name="modifyResContent">
 <xsd:sequence>
 <xsd:element name="globalReservationId" type="xsd:string"
 maxOccurs="1" minOccurs="1"/>
 <xsd:element name="startTime" type="xsd:long" />
 <xsd:element name="endTime" type="xsd:long" />
 <xsd:element name="bandwidth" type="xsd:int" />
 <xsd:element name="description" type="xsd:string" />
 <xsd:element name="pathInfo" type="tns:pathInfo" />
 </xsd:sequence>
</xsd:complexType>

/idc:modifyReservation

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 34

Container element included in the SOAP [SOAP] body of a message that contains the
parameters for mofifying the reservation.

/idc:modifyReservation/idc:globalReservationId
 MUST be included. It is used to specify the reservation to be modified.
/idc:modifyReservation/idc:startTime and /idc:modifyReservation/idc:endTime
 MUST be included, and define the new period for which the requested resources will be
reserved. The field format is seconds-since-epoch.
/idc:modifyReservation/idc:bandwidth
 MUST be included, and specifies the new number of Mbps requested.
/idc:modifyReservation/idc:description
 MUST be included, is the new human-readable field that describes the purpose of the
reservation.
/idc:modifyReservation/idc:pathInfo

MUST be included, and is extensively described in section 7.2. The path information here will
replace the existing path information.

9.2.2 modifyReservationResponse

The modifyReservationResponse message gets returned after validating the parameters but prior to
processing the request and setting the state to INMODIFY. It has the following format:
<xsd:element name="modifyReservationResponse"
 type="tns:modifyResReply" />
<xsd:complexType name="modifyResReply">
 <xsd:sequence>
 <xsd:element name="reservation" type="tns:resDetails" />
 </xsd:sequence>
</xsd:complexType>

/idc:modifyReservationResponse
Container element included in the SOAP [SOAP] body of a message with the response of a
modifyReservation operation.

idc:modifyReservationResponse/idc:resDetails
 MUST be included, and is the full reservation description as it is after the changes the user
requested. The data type is fully described in section 7.1.

9.2.3 RESERVATION_MODIFY_CONFIRMED event
After the modifyReservation request has been forwarded to the last domain in the signaling path, the last
domain can make final decisions about the modified path and resources that will be reserved and throw
a RESERVATION_MODIFY_CONFIRMED event. This takes the form of a wsnt:Notify message
containing an idc:event element. Each domain receives the event, makes final decision about local
resources, and passes it back toward the first domain. See section 2.2.1 Resource Scheduling Chain for
more information on the messahe ordering. A RESERVATION_MODIFY_CONFIRMED event meets the
following requirements in addition to the general requirement of a Notify message:

• The /idc:event/idc:eventType field MUST have a value of
RESERVATION_MODIFY_CONFIRMED

• The event MUST contain an /idc:event/idc:resDetails object describing the reservation being
modified.

• The /idc:event/idc:resDetails/idc:pathInfo/idc:path MUST contain full nmwg-cp:link elements for
all hops local to the domain throwing the event and all domains toward the last domain
(inclusive). This means the last domain must fill-in the hops for itself, the second-to-last domain
must fill-in its hop plus pass the filled-in hops of the last domain, etc. By the time the first domain
is reached all domains beyond the first domain should have full nmwg-cp:link elements of the
reservation to be modified.

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 35

• An IDC MUST select the resources that will be used in the local domain after modification and
include those in the event. For example, in a reservation using VLANs in a domain must select
its VLANs and include that decision in the message.

9.2.4 RESERVATION_MODIFY_COMPLETED event
After the first domain receives a RESERVATION_MODIFY_CONFIRMED event it finalizes its resources
and throws a RESERVATION_MODIFY_COMPLETED event toward the end client and the next IDC in
the signaling path. The next IDC is responsible for continuing this message along the chain and the
message will eventually reach the last domain. When each domain receives the
RESERVATION_MODIFY_COMPLETED event it MUST change the reservation state back to PENDING
or ACTIVE. A domain MUST NOT make any changes to the resources selected when receiving a
RESERVATION_MODIFY_COMPLETED event. This event is for informational purposes only so that
each domain knows the resource selected by other domains and thus has an equivalent view of the
inter-domain reservation. Below are the message requirements specific to the
RESERVATION_MODIFY_COMPLETED event:

• The /idc:event/idc:eventType field MUST have a value of RESERVATION_ MODIFY
_COMPLETED

• The event MUST contain an /idc:event/idc:resDetails object describing the reservation that was
modified.

• The /idc:event/idc:resDetails/idc:pathInfo/idc:path MUST contain full nmwg-cp:link elements for
every hop in the inter-domain path.

9.3 Cancelling a Reservation

9.3.1 cancelReservation
Cancellation of a reservation is used to release the resources held by a reservation including the
removal of ACTIVE reservations before the originally defined end time. If a reservation is PENDING
when a cancellation is received then only the resources need to be released and no circuit teardown is
required. When the process completes the reservation enters the CANCELLED state. The request
message to initate the cancellation process is described below:
<xsd:element name="cancelReservation" type="tns:globalReservationId" />
<xsd:complexType name="globalReservationId">
 <xsd:sequence>
 <xsd:element name="gri" type="xsd:string" />
 </xsd:sequence>
</xsd:complexType>

/idc:cancelReservation
Container element included in the SOAP [SOAP] body of a message with the cancellation
parameters.

/idc:cancelReservation/idc:gri
 MUST be included. The identifier for the reservation to be cancelled.

9.3.2 cancelReservationResponse
The response message of this operation is described below:
<xsd:element name="cancelReservationResponse" type="xsd:string" />

/idc:cancelReservationResponse
 MUST be included; a human-readable string such as “Cancellation accepted”.

9.3.3 RESERVATION_CANCEL_CONFIRMED event
A RESERVATION_CANCEL_CONFIRMED event is first thrown when the last domain in the signaling
path has released the necessary resources and removed the circuit from the network (if the reservation
was ACTIVE). Each domain throws the RESERVATION_CANCEL_CONFIRMED method after receiving

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 36

this event, removing the local circuit and releasing the resources until the first domain is reached. The
only additional requirements beyond those other events are that the event type is set to
RESERVATION_CANCEL_CONFIRMED and the GRI is included.

9.3.4 RESERVATION_CANCEL_COMPLETED event
The RESRVATION_CANCEL_COMPLETED event is thrown after all domains have confirmed the
reservation cancellation. The first domain throws it to the end-user and the next domain in the signaling
path where its forwarded down the chain. The RESERVATION_CANCEL_COMPLETED message
indicates that each domain can set the reservation status to CANCELLED. The only additional
requirements beyond those for other events are that the event type is set to
RESERVATION_CANCEL_COMPLETED and the GRI is included.

10 Signaling

Signaling is the process that triggers the creation of a reservation’s circuit on the network. After a
reservation is placed, a circuit with the reserved resources will not be created until signaling occurs. In
addition to circuit creation, signaling also encompasses circuit refreshing and removal. Signaling may
occur automatically or in response to messages received by the IDC. The type of signaling that occurs is
indicated by the <idc:pathSetupMode> field specified in the createReservation message sent during
resource scheduling (see section 5).This section details the use of each signaling type.

10.1 Automatic vs Manual Signaling

A <idc:pathSetupMode> value of timer-automatic indicates that a circuit will be created at the reservation
start-time and removed at the reservation end-time. Beyond resource scheduling, no message exchange
is required between a requester of a timer-automatic reservation and the IDC that received the request.
This type of signaling is useful in many cases but does have some implications. It requires that a
requester either assume a circuit is created/removed at the specified time or continuously send
queryReservation messages to get the circuit status (see section 0). End-users or IDCs wishing to have
more direct control over a circuit may want to consider using message signaling.
A reservation with <idc:pathSetupMode> set to signal-xml indicates that a circuit will only be
created/removed upon receiving a signaling message. Signaling with messages is useful for those cases
in which the requester wants more direct control over circuit instantiation beyond just creation at the
start-time and removal at the end-time.

10.2 Creating a Circuit

10.2.1 Manually creating a circuit with createPath
If automatic signaling is specified then this message is NOT required. After a reservation has been
placed requiring message signaling a circuit will not be created until the start time is reached AND a
circuit creation message is received by the IDC. Circuit creation is signaled using the createPath
operation. A createPath request is described in detail below:
<xsd:element name="createPath" type="tns:createPathContent" />
<xsd:complexType name="createPathContent">
 <xsd:sequence>
<xsd:element name="globalReservationId" type="xsd:string" />
 </xsd:sequence>
</xsd:complexType>

/idc:createPath
A container element with parameters for creating the circuit. If the message is from the end-user
then this element will be contained directly within the body of a SOAP message (see section 5).
If this element is passing between IDCs it will be encapsulated in an <idc:forward> element (see
section 6).

/idc:createPath/idc:globalReservationId

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 37

A required field indicating the global reservation identifier (GRI) of the reservation with the
resources to instantiate.

The response of a createPath operation contains the following elements:
<xsd:element name="createPathResponse"
 type="tns:createPathResponseContent" />
<xsd:complexType name="createPathResponseContent">
 <xsd:sequence>
 <xsd:element name="globalReservationId" type="xsd:string" />
 <xsd:element name="status" type="xsd:string" />
 </xsd:sequence>
</xsd:complexType>

/idc:createPathResponse
A container element returning the results of the createPath request. If the message is to the end-
user then this element will be contained directly within the body of a SOAP message (see
section 5). If this element is passing between IDCs it will be encapsulated in an
<idc:forwardResponse> element (see section 6).

/idc:createPathResponse /idc:status
The status that resulted from the operation. It should have a value of INCREATE.

/idc:createPathResponse /idc:globalReservationId
A required field indicating the global reservation identifier (GRI) of the reservation with the circuit
that was created.

An IDC MUST complete the following order of tasks when processing the requests and responses of a
createPath operation:

1. Upon receiving a createPath message the IDC should validate the parameters and immediate
send a createPathResponse back to the requester

2. The IDC should next send an <idc:forward> message containing a <idc:createPath> element in
the payload to the IDC of the next domain in the reservation’s path. If there is no next domain in
the path then the IDC should proceed to step 3.

3. Upon receiving a successful response from the IDC contacted in step 2, the IDC should contact
the domain controller (DC) to create the local domain’s portion of the circuit. Events should be
triggered as described in the sections that follow.

10.2.2 UPSTREAM_PATH_SETUP_CONFIRMED event
Regardless of whether a circuit is signaled automatically or manually it must throw certain events. The
UPSTREAM_PATH_SETUP_CONFIRMED event is thrown in a wsnt:Notify messaging containing an
idc:event object. It is triggered in one of the following cases:

1. The local domain is the first domain in the path and it has completed circuit creation in the local
domain.

2. The local domain has completed its local configuration AND it has received an
UPSTREAM_PATH_SETUP_CONFIRMED event.

The idc:event/idc:eventType must be set to UPSTREAM_PATH_SETUP_CONFIRMED and it must
contain the message must contain GRI of the reservation.

10.2.3 DOWNSTREAM_PATH_SETUP_CONFIRMED event
The DOWNSTREAM_PATH_SETUP_CONFIRMED event is thrown in a wsnt:Notify messaging
containing an idc:event object. It is triggered in one of the following cases:

1. The local domain is the last domain in the path and it has completed circuit creation in the local
domain.

2. The local domain has completed its local configuration AND it has received a
DOWNSTREAM_PATH_SETUP_CONFIRMED event.

The idc:event/idc:eventType must be set to DOWNSTREAM_PATH_SETUP_CONFIRMED and it must
contain the message must contain GRI of the reservation.

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 38

10.2.4 PATH_SETUP_COMPLETED event
The PATH_SETUP_COMPLETED event indicates that a reservation is created in every domain along
the signaling path. The PATH_SETUP_COMPLETED event MUST be sent after a domain receives an
UPSTREAM_PATH_SETUP_CONFIRMED event AND a
DOWNSTREAM_PATH_SETUP_CONFIRMED event. The reservation is considered ACTIVE upon the
triggering of this event. The idc:event/idc:eventType must be set to PATH_SETUP_COMPLETED and it
must contain the message must contain GRI of the reservation.

10.3 Removing a circuit

10.3.1 Manually removing a circuit with teardownPath
This message is NOT required for manual signaling. When a circuit is no longer needed an end-user or
IDC may send a teardownPath message to remove a circuit from the data plane. This message is
different from cancelReservation (see section 9.3) in that it does not remove a reservation’s hold on
network resources. This means that a circuit may be instantiated again after a teardownPath completes
if another createPath message is sent before the reservation end time. A circuit MUST be removed from
the data plane at reservation end time whether a teardownPath message is received or not. The
teardownPath request is described below:
<xsd:element name="teardownPath"
 type="tns:teardownPathContent" />
<xsd:complexType name="teardownPathContent">
 <xsd:sequence>
 <xsd:element name="globalReservationId" type="xsd:string" />
 </xsd:sequence>
</xsd:complexType>

/idc:teardownPath
A container element with parameters for tearing down the circuit. If the message is from the end-
user then this element will be contained directly within the body of a SOAP message (see
section 5). If this element is passing between IDCs it will be encapsulated in an <idc:forward>
element (see section 6).

/idc:teardownPath/idc:globalReservationId
A required field indicating the global reservation identifier (GRI) of the reservation with the circuit
to remove.

The response of a teardownPath operation is as follows:
<xsd:element name="teardownPathResponse"
 type="tns:teardownPathResponseContent" />
<xsd:complexType name="teardownPathResponseContent">
 <xsd:sequence>
 <xsd:element name="globalReservationId" type="xsd:string"/>
 <xsd:element name="status" type="xsd:string" />
 </xsd:sequence>
</xsd:complexType>

/idc:teardownPathResponse
A container element returning the results of the teardownPath request. If the message is to the
end-user then this element will be contained directly within the body of a SOAP message (see
section 5). If this element is passing between IDCs it will be encapsulated in an
<idc:forwardResponse> element (see section 6).

/idc:teardownPathResponse/idc:status
The status that resulted from the operation. It should have a value of INTEARDOWN.

/idc:teardownPathResponse/idc:globalReservationId
A required field indicating the global reservation identifier (GRI) of the circuit that was removed.

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 39

10.3.2 UPSTREAM_PATH_TEARDOWN_CONFIRMED event
The UPSTREAM_PATH_TEARDOWN_CONFIRMED event is thrown in a wsnt:Notify messaging
containing an idc:event object. It is triggered in one of the following cases:

1. The local domain is the first domain in the path and it has completed circuit removal in the
local domain.

2. The local domain has completed its local configuration AND it has received an
UPSTREAM_PATH_TEARDOWN_CONFIRMED event.

The idc:event/idc:eventType must be set to UPSTREAM_PATH_TEARDOWN_CONFIRMED and it must
contain the message must contain GRI of the reservation.

10.3.3 DOWNSTREAM_PATH_TEARDOWN_CONFIRMED event
The DOWNSTREAM_PATH_TEARDOWN_CONFIRMED event is thrown in a wsnt:Notify messaging
containing an idc:event object. It is triggered in one of the following cases:

3. The local domain is the last domain in the path and it has completed circuit removal in the local
domain.

4. The local domain has completed its local configuration AND it has received a
DOWNSTREAM_PATH_TEARDOWN_CONFIRMED event.

The idc:event/idc:eventType must be set to DOWNSTREAM_PATH_TEARDOWN_CONFIRMED and it
must contain the message must contain GRI of the reservation.

10.3.4 PATH_TEARDOWN_COMPLETED event
The PATH_TEARDOWN_COMPLETED event indicates that a reservation is removed in every domain
along the signaling path. The PATH_TEARDOWN_COMPLETED event MUST be sent after a domain
receives an UPSTREAM_PATH_TEARDOWN_CONFIRMED event AND a
DOWNSTREAM_PATH_TEARDOWN_CONFIRMED event. The reservation is considered PENDING,
CANCELLED, or FINISHED upon the triggering of this event and what caused the teardown. The
idc:event/idc:eventType must be set to PATH_TEARDOWN_COMPLETED and it must contain the
message must contain GRI of the reservation.

11 Polling Circuit Information

The IDC protocol currently provides two messages for finding information about reservations, one giving
a summary list according to a number of search terms, and one providing reservation details given a
global reservation identifier (GRI).

11.1 Listing Reservations

The listReservations operation returns a list of reservation that match a specified set of search
parameters. The summary list as retrieved from a given IDC does not include intra-domain information
that may be available from other IDCs along a reservation’s path. All elements in a listReservations
request MAY be included, and are used as either terms to limit the search, or to control the number of
results returned. Search term elements can be combined to yield a subset of all stored reservations.
The request for the listReservations operation is described below.
<xsd:element name="listReservations" type="tns:listRequest" />
<xsd:complexType name="listRequest">
 <xsd:sequence>
 <xsd:element name="resStatus" type="xsd:string"
 maxOccurs="5" minOccurs="0" />
 <xsd:sequence maxOccurs="1" minOccurs="0">
 <xsd:element name="startTime" type="xsd:long" />
 <xsd:element name="endTime" type="xsd:long" />
 </xsd:sequence>
 <xsd:element name="description" type="xsd:string"
 maxOccurs="1" minOccurs="0" />

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 40

 <xsd:element name="linkId" type="xsd:string"
 maxOccurs="unbounded" minOccurs="0" />
 <xsd:element name="vlanTag" type="tns:vlanTag"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:element name="resRequested" type="xsd:int"
 minOccurs="0"/>
 <xsd:element name="resOffset" type="xsd:int"
 minOccurs="0"/>
 </xsd:sequence>
</xsd:complexType>

/idc:listReservations
Element included in the body of a SOAP [SOAP] message of type idc:listRequest that contains
search constraints for a desired list of reservations.

/idc:listReservations/idc:resStatus
Contains a list of statuses to constrain the search. It may include 0 or all of the following:
ACTIVE, PENDING, FINISHED, CANCELLED, and FAILED. If it is not given, reservations with
all statuses are returned, depending on the other search parameters. If one or more are given,
only reservations with those statuses are returned.

/idc:listReservations/idc:startTime
Constrains the search such that only reservations ending after the start time are returned.

/idc:listReservations/idc:endTime
Constrains the search such that only reservations starting before the end time are returned.

/idc:listReservations/idc:description
Constrains the search such that only those reservations with that string in their descriptions are
returned.

/idc:listReservations/idc:linkId
Contains a list of zero or more link ids. Constrains the search such that only reservations with
those link ids in their intradomain paths are returned.

/idc:listReservations/idc:vlanTag
Contains a list of zero or more VLAN tags. Constrains the search such that only reservations
with those VLAN tags are returned.

/idc:listReservations/idc:resRequested
Contains an integer indicating how many results are returned in one request.

/idc:listReservations/idc:resOffset
Contains an integer offset into the total set of reservations. Taken together with resRequested, it
can be used to page through the results.

The response to a listReservations operation contains the following elements:
<xsd:element name="listReservationsResponse"
 type="tns:listReply" />
<xsd:complexType name="listReply">
 <xsd:sequence>
 <xsd:element name="resDetails" type="tns:resDetails"
 maxOccurs="unbounded" minOccurs="0" />
 <xsd:element name="totalResults" type="xsd:int"
 minOccurs="0" />
 </xsd:sequence>
</xsd:complexType>

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 41

/idc:listReservationsResponse
Element included in the body of a SOAP [SOAP] message of type idc:listReply that contains
zero or more objects with a summary of each reservation that matched the search constraints in
the listReservations request.

/idc:listReservationsResponse/idc:resDetails
Zero or more idc:resDetails instances (see section 4.1) containing information about the
reservations satisfying the search criteria, and may be empty.

/idc:listReservationsResponse/idc:totalResults
An optional element containing the number of instances returned.

11.1.1 Example
The following are examples of a listReservations request and response.
In the following request, reservations are requested that have finished successfully and have a VLAN tag
of 3000.
<soap:Envelope ...>
<soap:Body>
 <idc:listReservations>
 <idc:resStatus>FINISHED</idc:resStatus>
 <idc:vlanTag tagged="true">3000</idc:vlanTag>
 <idc:resRequested>10</idc:resRequested>
 <idc:resOffset>0</idc:resOffset>
 </idc:listReservations>
</soap:Body>
</soap:Envelope>

An abstracted view of the response is below:
<soap:Envelope ...>
<soap:Body>
 <idc:listReservationsResponse>
 <idc:resDetails>
 <idc:globalReservationId>domain1.net-1
 </idc:globalReservationId>
 <idc:login>user@domain.net</idc:login>
 <idc:status>FINISHED</idc:status>
 <idc:startTime>1206486746</idc:startTime>
 <idc:endTime>1206486962</idc:endTime>
 <idc:createTime>1206486752</idc:createTime>
 <idc:bandwidth>25</idc:bandwidth>
 <idc:description>default layer 2 test
 reservation</idc:description>
 <idc:pathInfo>
 <idc:pathSetupMode>timer-automatic</idc:pathSetupMode>
 <idc:path id="unimplemented">
 <ctrlp:hop id="hop1">
 <linkIdRef>linkId1</linkIdRef>
 </hop>
 ...
 <ctrlp:hop id="hopN">
 <linkIdRef>linkIdN</linkIdRef>

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 42

 </hop>
 </idc:path>
 </idc:pathInfo>
 <idc:layer2Info>
 <idc:srcVtag tagged="true">3000</idc:srcVtag>
 <idc:destVtag tagged="true">3000</idc:destVtag>
 <idc:srcEndpoint>srcLinkId</idc:srcEndpoint>
 <idc:destEndpoint>destLinkId</idc:destEndpoint>
 </idc:layer2Info>
 </idc:resDetails>
....
 <idc:totalResults><12></idc:totalResults>
 </idc:listReservationsResponse>
</soap:Body>
</soap:Envelope>

11.2 Querying Reservations

The queryReservation operation returns details about a specified reservation. The queryReservation
operation MAY be forwarded to other domains to obtain additional information about the requested
reservation. The request for the queryReservation operation is described below.
<xsd:element name="queryReservation"
type="tns:globalReservationId" />
<xsd:complexType name="globalReservationId">
 <xsd:sequence>
 <xsd:element name="gri" type="xsd:string" />
 </xsd:sequence>
 </xsd:complexType>

/idc:queryReservation

Element included in the body of a SOAP [SOAP] message that contains information to identify
the reservation to query.

/idc:queryReservation/idc:globalReservationId
The unique global reservation id (GRI) of the reservation to query.

The following is the response to the queryReservation request:
<xsd:element name="queryReservationResponse"
 type="tns:resDetails" />

/idc:queryReservationResponse
Element included in the body of a SOAP [SOAP] message that contains the details of a queried
reservation.

/idc:queryReservationResponse/idc:resDetails
An instance (see section 4.1), if any, with the given global reservation id, containing path
information from all IDC’s participating in the circuit.

11.2.1 Example
An example of a queryReservation operation is shown below:

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 43

<soap:Envelope ...>
<soap:Body>
 <idc:queryReservation>
 <idc:gri>domain1.net-1</idc:gri>
 </idc:queryReservation>
</soap:Body>
</soap:Envelope>

See the preceding section for an example of a resDetails instance that would be returned as part of a
queryReservationResponse.

12 Topology Exchange

The Inter-Domain Controller (IDC) currently offers limited support for exchanging topology information
between domains. It defines one operation named getNetworkTopology that returns a view of the inter-
domain topology. All topology elements are described using the NMWG Control Plane [NMWG-CP]
topology schema. Topology exchange is still an area of active development and more sophisticated
services will provide this function in the future. As a result this call may be deprecated in the future. The
getNetworkTopology request is described below:
<xsd:element name="getNetworkTopology"
 type="tns:getTopologyContent" />
<xsd:complexType name="getTopologyContent">
 <xsd:sequence>
 <xsd:element name="topologyType" type="xsd:string" minOccurs="1" />
 </xsd:sequence>
</xsd:complexType>

/idc:getNetworkTopology
Container element for request parameters that is included directly in the body of a SOAP
message.

/idc:getNetworkTopology/idc:topologyType
Required parameter indicating the topology view to return. Currently only the value all is
supported which indicates that an IDC should return its own topology in its entirety.

The response to a getNetworkTopology request looks like the following:
<xsd:element name="getNetworkTopologyResponse"
 type="tns:getTopologyResponseContent" />
<xsd:complexType name="getTopologyResponseContent">
 <xsd:sequence>
 <xsd:element ref="nmwg-cp:topology" minOccurs="1"/>
 </xsd:sequence>
</xsd:complexType>

/idc:getNetworkTopologyResponse
Container element for the topology returned from an IDC.

/idc:getNetworkTopologyResponse/nmwg-cp:topology
The topology element as defined by the NMWG Control Plane [NMWG-CP] schema is the root
element for a description of a network.

13 Brokered Notification

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 44

Implementations may optionally choose to have notification message distributed by a NotificationBroker.
This section outlines the user of the messages defined by the WS-BrokeredNotification [WSNB]
specification in the context of the IDC protocol.

13.1 RegisterPublisher

13.1.1 Request
The RegisterPublisher message is only required for cases where a NotificationBroker is used as
specified by WS-BrokeredNotification [WSBN]. RegisterPublisher is sent from the IDC to the
NotificationBroker to indicate that the IDC would like to distribute notifications through the broker. The
NotificationBroker the registers the IDC by assign it an IDC to be used in all subsequent Notify message
that it will distribute. The format of the message request sent by the IDC is shown below:
<xsd:element name="RegisterPublisher">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="PublisherReference"
 type="wsa:EndpointReferenceType"
 minOccurs="0" maxOccurs="1" />
 <xsd:element name="Topic"
 type="wsn-b:TopicExpressionType"
 minOccurs="0" maxOccurs="unbounded" />
 <xsd:element name="Demand" type="xsd:boolean"
 default="false" minOccurs="0" maxOccurs="1" />
 <xsd:element name="InitialTerminationTime"
 type="xsd:dateTime” minOccurs="0" maxOccurs="1" />
 <xsd:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

/wsnt-br:RegisterPublisher
A container for the parameters used to register a publisher with the NotificationBroker

/wsnt-br:RegisterPublisher/wsnt:PublisherReference
A field containing a URL that identifies the publisher (IDC)

/wsnt-br:RegisterPublisher/wsnt:Topic
An optional list of topics that the IDC will publish. If not specified any topic will be allowed.

/wsnt-br:RegisterPublisher/wsnt:InitialTerminationTime
An optional suggestion of when the registration should expire.

13.1.2 Response
The format of the response sent from the NotificationBroker to the IDC is shown below:
<xsd:element name="RegisterPublisherResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="PublisherRegistrationReference"
 type="wsa:EndpointReferenceType"
 minOccurs="1" maxOccurs="1" />
 <xsd:element name="ConsumerReference"
 type="wsa:EndpointReferenceType"
 minOccurs="0" maxOccurs="1" />
 </xsd:sequence>
 </xsd:complexType>

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 45

</xsd:element>

/wsnt-br:RegisterPublisherResponse
A container for the response

/wsnt-br:RegisterPublisherResponse/wsnt:PublisherRegistrationReference
An identifier of the registration created by the request. The identifier consists of the URL of the
NotificationBroker where the IDC registered and a locally unique ID. See section 13.1.3 for more
information.

/wsnt-br:RegisterPublisherResponse/wsnt:ConsumerReference
The URL of the NotificationBroker where the IDC must send Notify messages it wants
distributed.

13.1.3 Identifying Publisher Registrations
A publisher registers with the NotificationBroker and creates a registration resource. This registration
resource can be managed by using an identifier in a subsequent call. The identifier takes the format of a
WS-Addressing [WSA] EndpointReferenceType where the URL in the wsa:Address field is that of the
NotificationBroker. The wsa:ReferenceParameters must also contain an idc:publisherRegistration
element that can take any form, such as a UUID, as long as its unique to the local domain.
<wsnt-br:PublisherRegistrationReference>
 <wsa:Address>
 https://mydomain.net/NotificationBroker
 </wsa:Address>
 <wsa:ReferenceParameters>
 <idc:publisherRegistrationId>
 urn:uuid:bca0c6f2-c408-482a-b7f5-bb936ae7ff92
 </idc:publisherRegistrationId>
 </wsa:ReferenceParameters>
</wsnt-br:PublisherRegistrationReference>

13.1.4 Examples
In this example the Domain 1 IDC registers with a NotificationBroker also in Domain 1:
<s:Envelope ... >
 <s:Header>
 <!-- WS-Security headers go here -->
 </s:Header>
 <s:Body>
 <wsnt-br:RegisterPublisher>
 <wsnt-br:PublisherReference>
 <wsa:Address>https://domain1.net/IDC</wsa:Address>
 </wsnt-br:PublisherReference>
 </wsnt-br:RegisterPublisher>
 </s:Body>
</s:Envelope>

The Domain 1 NotificationBroker then responds with the following:

<s:Envelope ... >
 <s:Header>
 <!-- WS-Security headers go here -->
 </s:Header>
 <s:Body>
 <wsnt-br:RegisterPublisherResponse>
 <wsnt-br:PublisherRegistrationReference>
 <wsa:Address>

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 46

 https://domain1.net/NotificationBroker
 </wsa:Address>
 <wsa:ReferenceParameters>
 <idc:publisherRegistrationId>
 urn:uuid:bca0c6f2-c408-482a-b7f5-bb936ae7ff92
 </idc:publisherRegistrationId>
 </wsa:ReferenceParameters>
 </wsnt-br:PublisherRegistrationReference>
 <wsnt-br:ConsumerReference>
 <wsa:Address>
 https://domain1.net/NotificationBroker
 </wsa:Address>
 </wsnt-br:ConsumerReference>
 </wsnt-br:RegisterPublisherResponse>
 </s:Body>
</s:Envelope>

13.2 DestroyRegistration

13.2.1 Request
If an IDC no longer wants to publish notifications to a NotificationBroker it can call the
DestroyRegistration operation. The format of this call’s request in the IDC context is as follows:
<xsd:element name="DestroyRegistration">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="PublisherRegistrationReference"
 type="wsa:EndpointReferenceType"
 minOccurs="1" maxOccurs="1" />
 <xsd:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:anyAttribute/>
 </xsd:complexType>
</xsd:element>

/wsnt-br:DestroyRegistration
Container for request

/wsnt-br:DestroyRegistration/wsnt-br:PublisherRegistrationReference
The identifier of the publisher registration resource to detroy. It MUST match the corresponding
element included in the RegisterPublisherResponse message.

13.2.2 Response
<xsd:element name="DestroyRegistrationResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="PublisherRegistrationReference"
 type="wsa:EndpointReferenceType"
 minOccurs="1" maxOccurs="1" />
 <xsd:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:anyAttribute/>
 </xsd:complexType>
</xsd:element>

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 47

/wsnt-br:DestroyRegistrationResponse
Container for request

/wsnt-br:DestroyRegistration/wsnt-br:PublisherRegistrationReference
The identifier of the publisher registration resource that was destroyed. It MUST match the
corresponding element included in the RegisterPublisherResponse message.

13.2.3 Examples
The following example demonstrates the Domain 1 IDC destroying its registration with the Domain 1
NotificationBroker:
<s:Envelope ... >
 <s:Header>
 <!-- WS-Security headers go here -->
 </s:Header>
 <s:Body>
 <wsnt-br:DestroyRegistration>
 <wsnt-br:PublisherRegistrationReference>
 <wsa:Address>
 https://domain1.net/NotificationBroker
 </wsa:Address>
 <wsa:ReferenceParameters>
 <idc:publisherRegistrationId>
 urn:uuid:bca0c6f2-c408-482a-b7f5-bb936ae7ff92
 </idc:publisherRegistrationId>
 </wsa:ReferenceParameters>
 </wsnt-br:PublisherRegistrationReference>
 </wsnt-br:DestroyRegistration>
 </s:Body>
</s:Envelope>

The response returned by the NotificationBroker looks like the following:
<s:Envelope ... >
 <s:Header>
 <!-- WS-Security headers go here -->
 </s:Header>
 <s:Body>
 <wsnt-br:DestroyRegistration>
 <wsnt-br:PublisherRegistrationReference>
 <wsa:Address>
 https://domain1.net/NotificationBroker
 </wsa:Address>
 <wsa:ReferenceParameters>
 <idc:publisherRegistrationId>
 urn:uuid:bca0c6f2-c408-482a-b7f5-bb936ae7ff92
 </idc:publisherRegistrationId>
 </wsa:ReferenceParameters>
 </wsnt-br:PublisherRegistrationReference>
 </wsnt-br:DestroyRegistrationResponse>
 </s:Body>
</s:Envelope>

14 Advanced Subscription Management

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 48

In addition to the operations outlined in section 8 Notification Interface, WS-Notification also specifies
calls for managing subscriptions. These calls are optional for an IDC but MAY be implemented as a
convenience to non-IDC subscribers.

14.1 Unsubscribe

14.1.1 Request
The Unsubscribe operation expires a reservation prior to its termination time. It is not required between
IDCs but can be useful for managing subscriptions. The format of the request is detailed below:
<xsd:element name="Unsubscribe">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="wsnt:SubscriptionReference"
 minOccurs="1" maxOccurs="1" />
 <xsd:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

/wsnt:Unsubscribe
The container element for the unsubscribe parameters

/wsnt:Unsubscribe /wsnt:SubscriptionReference
Indicates which subscription to cancel. This field MUST match the field of the same name
provided in the SubscribeResponse message.

14.1.2 Response
A successful response is provided below:
<xsd:element name=" UnsubscribeResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="wsnt:SubscriptionReference"
 minOccurs="0" maxOccurs="1" />
 <xsd:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

/wsnt:UnsubscribeResponse
A container for the response parameters.

/wsnt:UnsubscribeResponse /wsnt:SubscriptionReference
Indicates which subscription was cancelled. This field MUST match the field of the same name
provided in the SubscribeResponse message and the Unsubscribe message.

14.1.3 Example
An example of Domain 1 unsubscribing from Domain 2 notifications is shown below:
<s:Envelope ... >
 <s:Header>
 <!-- WS-Security headers go here -->
 </s:Header>
 <s:Body>
 <wsnt:Unsubscribe>
 <wsnt:SubscriptionReference>

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 49

 <wsa:Address>
 https://domain2.net/NotificationBroker
 </wsa:Address>
 <wsa:ReferenceParameters>
 <idc:subscriptionId>
 urn:uuid:bca0c6f2-c408-482a-b7f5-bb936ae7ff92
 </idc:subscriptionId>
 </wsa:ReferenceParameters>
 </wsnt:SubscriptionReference>
 </wsnt:Unsubscribe>
 </s:Body>
</s:Envelope>

And the response is as follows:
<s:Envelope ... >
 <s:Header>
 <!-- WS-Security headers go here -->
 </s:Header>
 <s:Body>
 <wsnt:UnsubscribeResponse>
 <wsnt:SubscriptionReference>
 <wsa:Address>
 https://domain2.net/NotificationBroker
 </wsa:Address>
 <wsa:ReferenceParameters>
 <idc:subscriptionId>
 urn:uuid:bca0c6f2-c408-482a-b7f5-bb936ae7ff92
 </idc:subscriptionId>
 </wsa:ReferenceParameters>
 </wsnt:SubscriptionReference>
 </wsnt:UnsubscribeResponse>
 </s:Body>
</s:Envelope>

14.2 PauseSubscription

14.2.1 Request
The PauseSubscription operation temporarily suspends the sending of notifications for a period of time.
Notifications can later be resumed by sending a ResumeSubscription message prior to expiration. It is
not required between IDCs but can be useful for managing subscriptions. The format of the request is
detailed below:
<xsd:element name="PauseSubscription">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="wsnt:SubscriptionReference"
 minOccurs="1" maxOccurs="1" />
 <xsd:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

/wsnt:PauseSubscription
The container element for the pause parameters

/wsnt:PauseSubscription /wsnt:SubscriptionReference

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 50

Indicates which subscription to pause. This field MUST match the field of the same name
provided in the SubscribeResponse message.

14.2.2 Response
A successful response is provided below:
<xsd:element name="PauseSubscriptionResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="wsnt:SubscriptionReference"
 minOccurs="0" maxOccurs="1" />
 <xsd:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

/wsnt:PauseSubscriptionResponse
A container for the response parameters.

/wsnt:PauseSubscriptionResponse /wsnt:SubscriptionReference
Indicates which subscription was paused. This field MUST match the field of the same name
provided in the SubscribeResponse message and the PauseSubscription message.

14.2.3 Example
An example of Domain 1 pausing notifications from Domain 2 is shown below:
<s:Envelope ... >
 <s:Header>
 <!-- WS-Security headers go here -->
 </s:Header>
 <s:Body>
 <wsnt:PauseSubscription>
 <wsnt:SubscriptionReference>
 <wsa:Address>
 https://domain2.net/NotificationBroker
 </wsa:Address>
 <wsa:ReferenceParameters>
 <idc:subscriptionId>
 urn:uuid:bca0c6f2-c408-482a-b7f5-bb936ae7ff92
 </idc:subscriptionId>
 </wsa:ReferenceParameters>
 </wsnt:SubscriptionReference>
 </wsnt:PauseSubscription >
 </s:Body>
</s:Envelope>

And the response is as follows:
<s:Envelope ... >
 <s:Header>
 <!-- WS-Security headers go here -->
 </s:Header>
 <s:Body>
 <wsnt:PauseSubscriptionResponse>
 <wsnt:SubscriptionReference>
 <wsa:Address>
 https://domain2.net/NotificationBroker
 </wsa:Address>

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 51

 <wsa:ReferenceParameters>
 <idc:subscriptionId>
 urn:uuid:bca0c6f2-c408-482a-b7f5-bb936ae7ff92
 </idc:subscriptionId>
 </wsa:ReferenceParameters>
 </wsnt:SubscriptionReference>
 </wsnt:PauseSubscriptionResponse >
 </s:Body>
</s:Envelope>

14.3 ResumeSubscription

14.3.1 Request
The ResumeSubscription operation resumes the sending of notifications for a subscription that was
previously paused. It is not required between IDCs but can be useful for managing subscriptions. The
format of the request is detailed below:
<xsd:element name="ResumeSubscription">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="wsnt:SubscriptionReference"
 minOccurs="1" maxOccurs="1" />
 <xsd:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

/wsnt:ResumeSubscription
The container element for the resume parameters

/wsnt:ResumeSubscription /wsnt:SubscriptionReference
Indicates which subscription to resume. This field MUST match the field of the same name
provided in the SubscribeResponse message.

14.3.2 Response
The format of a successful response is provided below:
<xsd:element name="ResumeSubscriptionResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="wsnt:SubscriptionReference"
 minOccurs="0" maxOccurs="1" />
 <xsd:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

/wsnt:ResumeSubscriptionResponse
A container for the response parameters.

/wsnt:ResumeSubscriptionResponse /wsnt:SubscriptionReference
Indicates which subscription was resumed. This field MUST match the field of the same name
provided in the SubscribeResponse message and the ResumeSubscription message.

14.3.3 Example
An example of Domain 1 resume notifications from Domain 2 is shown below:

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 52

<s:Envelope ... >
 <s:Header>
 <!-- WS-Security headers go here -->
 </s:Header>
 <s:Body>
 <wsnt:ResumeSubscription>
 <wsnt:SubscriptionReference>
 <wsa:Address>
 https://domain2.net/NotificationBroker
 </wsa:Address>
 <wsa:ReferenceParameters>
 <idc:subscriptionId>
 urn:uuid:bca0c6f2-c408-482a-b7f5-bb936ae7ff92
 </idc:subscriptionId>
 </wsa:ReferenceParameters>
 </wsnt:SubscriptionReference>
 </wsnt:ResumeSubscription >
 </s:Body>
</s:Envelope>

And the response is as follows:
<s:Envelope ... >
 <s:Header>
 <!-- WS-Security headers go here -->
 </s:Header>
 <s:Body>
 <wsnt:ResumeSubscriptionResponse>
 <wsnt:SubscriptionReference>
 <wsa:Address>
 https://domain2.net/NotificationBroker
 </wsa:Address>
 <wsa:ReferenceParameters>
 <idc:subscriptionId>
 urn:uuid:bca0c6f2-c408-482a-b7f5-bb936ae7ff92
 </idc:subscriptionId>
 </wsa:ReferenceParameters>
 </wsnt:SubscriptionReference>
 </wsnt:ResumeSubscriptionResponse >
 </s:Body>
</s:Envelope>

15 Appendix A: IDC Topics and Events
Topic Events
idc:IDC RESERVATION_CREATE_CONFIRMED

RESERVATION_MODIFY_CONFIRMED
RESERVATION_CANCEL_CONFIRMED
DOWNSTREAM_PATH_SETUP_CONFIRMED
UPSTREAM_PATH_SETUP_CONFIRMED
DOWNSTREAM_PATH_TEARDOWN_CONFIRMED
UPSTREAM_PATH_TEARDOWN_CONFIRMED
RESERVATION_CREATE_COMPLETED
RESERVATION_MODIFY_COMPLETED
RESERVATION_CANCEL_COMPLETED
PATH_SETUP_COMPLETED
PATH_TEARDOWN_COMPLETED

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 53

RESERVATION_CREATE_FAILED
RESERVATION_MODIFY_FAILED
RESERVATION_CANCEL_FAILED
PATH_SETUP_FAILED
PATH_REFRESH_FAILED
PATH_TEARDOWN_FAILED

idc:INFO RESERVATION_CREATE_COMPLETED
RESERVATION_MODIFY_COMPLETED
RESERVATION_CANCEL_COMPLETED
PATH_SETUP_COMPLETED
PATH_REFRESH_COMPLETED
PATH_TEARDOWN_COMPLETED
RESERVATION_CREATE_FAILED
RESERVATION_MODIFY_FAILED
RESERVATION_CANCEL_FAILED
PATH_SETUP_FAILED
PATH_REFRESH_FAILED
PATH_TEARDOWN_FAILED

idc:DEBUG RESERVATION_CREATE_RECEIVED
RESERVATION_CREATE_ACCEPTED
RESERVATION_CREATE_STARTED
RESERVATION_MODIFY_RECEIVED
RESERVATION_MODIFY_ACCEPTED
RESERVATION_MODIFY_STARTED
RESERVATION_CANCEL_RECEIVED
RESERVATION_CANCEL_ACCEPTED
RESERVATION_CANCEL_STARTED
PATH_SETUP_RECEIVED
PATH_SETUP_ACCEPTED
PATH_SETUP_STARTED
PATH_REFRESH_RECEIVED
PATH_REFRESH_ACCEPTED
PATH_REFRESH_STARTED
PATH_TEARDOWN_RECEIVED
PATH_TEARDOWN_ACCEPTED
PATH_TEARDOWN_STARTED
RESERVATION_LIST_RECEIVED
RESERVATION_LIST_STARTED
RESERVATION_LIST_COMPLETED
RESERVATION_LIST_RETURNED
RESERVATION_QUERY_RECEIVED
RESERVATION_QUERY_STARTED
RESERVATION_QUERY_COMPLETED
RESERVATION_QUERY_RETURNED
RESERVATION_CREATE_FORWARD_STARTED
RESERVATION_CREATE_FORWARD_ACCEPTED
RESERVATION_MODIFY_FORWARD_STARTED
RESERVATION_MODIFY_FORWARD_ACCEPTED
RESERVATION_CANCEL_FORWARD_STARTED
RESERVATION_CANCEL_FORWARD_ACCEPTED
PATH_SETUP_FORWARD_STARTED
PATH_SETUP_FORWARD_ACCEPTED
PATH_REFRESH_FORWARD_STARTED
PATH_REFRESH_FORWARD_ACCEPTED
PATH_TEARDOWN_FORWARD_STARTED
PATH_TEARDOWN_FORWARD_ACCEPTED

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 54

RESERVATION_LIST_FORWARD_STARTED
RESERVATION_LIST_FORWARD_COMPLETED
RESERVATION_QUERY_FORWARD_STARTED
RESERVATION_QUERY_FORWARD_COMPLETED
RESERVATION_EXPIRES_IN_1DAY
RESERVATION_EXPIRES_IN_7DAYS
RESERVATION_EXPIRES_IN_30DAYS
RESERVATION_PERIOD_STARTED
RESERVATION_PERIOD_FINISHED
IDC_STARTED

idc:ERROR IDC_FAILED
RESERVATION_CREATE_FAILED
RESERVATION_MODIFY_FAILED
RESERVATION_CANCEL_FAILED
PATH_SETUP_FAILED
PATH_REFRESH_FAILED
PATH_TEARDOWN_FAILED
LIST_RESERVATION_FAILED
QUERY_RESERVATION_FAILED

16 Appendix B: The Meta-scheduler Model

The IDC protocol supports a meta-scheduler model of messaging. In the meta-scheduler model a
centralized service, called a meta-scheduler, accepts an end-user’s request then individually contacts
each relevant domain’s IDC. Figure 16.1 shows a diagram describing the meta-scheduler model:

Figure 16.1 An example of the meta-scheduler model with 3 domains

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 55

In the figure an end-user sends a request to a meta-scheduler that involves resources on three domains.
The meta-scheduler individually contacts the IDCs of domains 1,2, and 3 and no interaction occurs
between IDCs. Each IDC returns the result of the request and the meta-scheduler aggregates their
information and returns it to the end-user. The IDC protocol specifies some, but certainly not all,
mechanisms to support this type of messaging model.

The IDC protocol DOES NOT define an interface between the end-user and the meta-scheduler;
however, the current version of this specification DOES provide limited support for interaction between
meta-schedulers and IDCs. This can be achieved by sending the requests specified in the optional end-
user SOAP interface as defined in section 5 of this document. Each of these requests sent by the meta-
scheduler MUST currently only reference resources in the domain on which an IDC resides. The meta-
scheduler is still an area of extensive research in this protocol, and support may be extended in future
versions of the IDC protocol.

17 Appendix C: Create Reservation Example

This section contains an example of the messages sent and received by an end-user creating a
reservation. The example demonstrates a request for a reservation between the source and destination
displayed in Figure 2.2. The request message is shown below:
<soap:Envelope ...>
 <soap:Header>
 [end-user security credentials]
 </soap:Header>
 <soap:Body…>
 <idc:createReservation>
 <idc:startTime>1210847896</idc:startTime>
 <idc:endTime>1213847896</idc:endTime>
 <idc:bandwidth>1000</idc:bandwidth>
 <idc:description>1 Gbps example</idc:description>
 <idc:pathInfo>
 <idc:pathSetupMode>timer-automatic<idc:pathSetupMode>
 <idc:layer2Info>
 <idc:srcEndpoint>hostname.domain1.net<idc:srcEndpoint>
 <idc:destEndpoint>hostname.domain3.net<idc:destEndpoint>
 </idc:layer2Info>
 </idc:pathInfo>
 </idc:createReservation>
 </soap:Body>
</soap:Envelope>

After the Domain 1 IDC receives the above message and validates its parameters, converts the provided
names to URNs using a lookup mechanism, and immediately returns the following response to the user:
<soap:Envelope ...>
 <soap:Body …>
 <idc:createReservationResponse>
 <idc:globalReservationId>domain1.net-
1</idc:globalReservationId>
 <idc:status>ACCEPTED</idc:status>
 <idc:pathInfo>
 <idc:pathSetupMode>timer-automatic<idc:pathSetupMode>

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 56

 <idc:layer2Info>
 <idc:srcEndpoint>
 urn:ogf:network:domain=domain1.net:node=1:port=1:link=1
 </idc:srcEndpoint>
 <idc:destEndpoint>
 urn:ogf:network:domain=domain3.net:node=2:port=1:link=1
 </idc:destEndpoint>
 </idc:layer2Info>
 </idc:pathInfo>
 </idc:createReservationResponse>
 </soap:Body>
</soap:Envelope>

Domain 1 then begins processing the reservation. It calculates a path that’s not oversubscribed and
determines which VLANs are available on the local links since the technology type of the requested link
indicates VLANS should be used. It determines Domain 2 is the next domain in the path and sends the
following idc:forward message to Domain 2’s IDC:
<soap:Envelope ...>
 <soap:Body …>
 <idc:forward>
 <idc:payloadSender>user1</idc:payloadSender>
 <idc:payload>
 <idc:createReservation>
 <idc:globalReservationId>domain1.net-
1</idc:globalReservationId>
 <idc:startTime>1210847896</idc:startTime>
 <idc:endTime>1213847896</idc:endTime>
 <idc:bandwidth>1000</idc:bandwidth>
 <idc:description>1 Gbps example</idc:description>
 <idc:pathInfo>
 <idc:pathSetupMode>timer-automatic<idc:pathSetupMode>
 <idc:path>
 <nmwg-cp:hop id=”1”>
 <nmwg-cp:link id=”
 urn:ogf:network:domain=domain1.net:node=1:port=1:link=1”>
 <trafficEngineeringMetric>
 10
 </trafficEngineeringMetric>
 <SwitchingCapabilityDescriptors>
 <switchingcapType>l2sc</switchingcapType>
 <encodingType>ethernet</encodingType>
 <switchingCapabilitySpecificInfo>
 <interfaceMTU>9000</interfaceMTU>
 <vlanRangeAvailability>
 3220-3224
 </vlanRangeAvailability>
 <suggestedVLANRange>3221</suggestedVLANRange>
 </switchingCapabilitySpecificInfo>

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 57

 </SwitchingCapabilityDescriptors>
 </nmwg-cp:link>
 </nmwg-cp:hop>
 <nmwg-cp:hop id=”2”>
 <nmwg-cp:link id=”
 urn:ogf:network:domain=domain1.net:node=2:port=1:link=1”>
 <trafficEngineeringMetric>
 10
 </trafficEngineeringMetric>
 <SwitchingCapabilityDescriptors>
 <switchingcapType>l2sc</switchingcapType>
 <encodingType>ethernet</encodingType>
 <switchingCapabilitySpecificInfo>
 <interfaceMTU>9000</interfaceMTU>
 <vlanRangeAvailability>
 3220-3224
 </vlanRangeAvailability>
 <suggestedVLANRange>3221</suggestedVLANRange>
 </switchingCapabilitySpecificInfo>
 </SwitchingCapabilityDescriptors>
 </nmwg-cp:link>
 </nmwg-cp:hop>
 <nmwg-cp:hop id=”3”>
 <nmwg-cp:linkIdRef>
 urn:ogf:network:domain=domain2.net:node=1:port=1:link=1
 </nmwg-cp:linkIdRef>
 </nmwg-cp:hop>
 <nmwg-cp:hop id=”4”>
 <nmwg-cp:linkIdRef>
 urn:ogf:network:domain=domain2.net:node=2:port=1:link=1
 </nmwg-cp:linkIdRef>
 </nmwg-cp:hop>
 <nmwg-cp:hop id=”5”>
 <nmwg-cp:linkIdRef>
 urn:ogf:network:domain=domain3.net:node=1:port=1:link=1
 </nmwg-cp:linkIdRef>
 </nmwg-cp:hop>
 <nmwg-cp:hop id=”6”>
 <nmwg-cp:linkIdRef>
 urn:ogf:network:domain=domain3.net:node=2:port=1:link=1
 </nmwg-cp:linkIdRef>
 </nmwg-cp:hop>
 </idc:path>
 <idc:layer2Info>
 <idc:srcVtag tagged=”true”>3221</idc:srcVtag>
 <idc:destVtag tagged=”true”>3221</idc:destVtag>
 <idc:srcEndpoint>

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 58

 urn:ogf:network:domain=domain1.net:node=1:port=1:link=1
 </idc:srcEndpoint>
 <idc:destEndpoint>
 urn:ogf:network:domain=domain3.net:node=2:port=1:link=1
 </idc:destEndpoint>
 </idc:layer2Info>
 </idc:pathInfo>
 </idc:createReservation>
 </idc:payload>
 </idc:forward>
 </soap:Body>
</soap:Envelope>

Notice that the Domain 1 links are filled in and its listing potential VLANs that other domains can use in
their resource scheduling decision. When Domain 2 receives this request it returns the following:
<soap:Envelope ...>
 <soap:Body …>
 <idc:forwardResponse>
 <idc:contentType>createReservation</idc:contentType>
 <idc:createReservationResponse>
 <idc:globalReservationId>domain1.net-
1</idc:globalReservationId>
 <idc:status>ACCEPTED</idc:status>
 <idc:pathInfo>
 [PATHINFO from Domain 1 repeated here]
 </idc:pathInfo>
 </idc:createReservationResponse>
 </idc:forwardResponse>
 </soap:Body>
</soap:Envelope>
After sending that reply Domain 2 calculates a path, fills in the domain 2 links in the path and forwards
the request to Domain 3. Domain 3 also returns a reply simlar to above (NOTE: The forward and
forwardResponse are not shown to save space). Finally Domain 3 selects the exact resources (in this
case that includes VLAN) it will use and triggers a RESERVATION_CREATE_CONFIRMED event as
shown below:
<soap:Envelope ...>
<soap:Body …>
 <wsnt:Notify>
 <wsnt:NotificationMessage>
 <wsnt:Topic Dialect="http://docs.oasis-open.org/wsn/t-
1/TopicExpression/Full">idc:IDC</ns5:Topic>
 <wsnt:ProducerReference>
 <wsa:Address>https://domain3.net/IDC</Address>
 <wsa:ReferenceParameters>
 <idc:subscriptionId>
 urn:uuid:097387e5-6b7c-4eec-a6c7-09a0466065e7
 </idc:subscriptionId>
 </wsaReferenceParameters>
 </wsnt:ProducerReference>
 <wsnt:Message>
 <idc:event id="event-1646550480">

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 59

 <idc:type>RESERVATION_CREATE_CONFIRMED</idc:type>
 <idc:timestamp>1210847836</idc:timestamp>
 <idc:userLogin>user1</idc:userLogin>
 <idc:resDetails>
 <idc:status>INCREATE</idc:status>
 <idc:login>user1</idc:login>
 <idc:globalReservationId>
 domain1.net-1
 </idc:globalReservationId>
 <idc:startTime>1210847896</idc:startTime>
 <idc:endTime>1213847896</idc:endTime>
 <idc:bandwidth>1000</idc:bandwidth>
 <idc:description>1 Gbps example</idc:description>
 <idc:pathInfo>
 <idc:pathSetupMode>timer-automatic<idc:pathSetupMode>
 <idc:path>
 <nmwg-cp:hop id=”1”>
 <nmwg-cp:link id=”
 urn:ogf:network:domain=domain1.net:node=1:port=1:link=1”>
 <trafficEngineeringMetric>
 10
 </trafficEngineeringMetric>
 <SwitchingCapabilityDescriptors>
 <switchingcapType>l2sc</switchingcapType>
 <encodingType>ethernet</encodingType>
 <switchingCapabilitySpecificInfo>
 <interfaceMTU>9000</interfaceMTU>
 <vlanRangeAvailability>
 3220-3224
 </vlanRangeAvailability>
 <suggestedVLANRange>3221</suggestedVLANRange>
 </switchingCapabilitySpecificInfo>
 </SwitchingCapabilityDescriptors>
 </nmwg-cp:link>
 </nmwg-cp:hop>
 <nmwg-cp:hop id=”2”>
 <nmwg-cp:link id=”
 urn:ogf:network:domain=domain1.net:node=2:port=1:link=1”>
 <trafficEngineeringMetric>
 10
 </trafficEngineeringMetric>
 <SwitchingCapabilityDescriptors>
 <switchingcapType>l2sc</switchingcapType>
 <encodingType>ethernet</encodingType>
 <switchingCapabilitySpecificInfo>
 <interfaceMTU>9000</interfaceMTU>
 <vlanRangeAvailability>
 3220-3224

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 60

 </vlanRangeAvailability>
 <suggestedVLANRange>3221</suggestedVLANRange>
 </switchingCapabilitySpecificInfo>
 </SwitchingCapabilityDescriptors>
 </nmwg-cp:link>
 </nmwg-cp:hop>
 <nmwg-cp:hop id=”3”>
 <nmwg-cp:link id=”
 urn:ogf:network:domain=domain2.net:node=1:port=1:link=1”>
 <trafficEngineeringMetric>
 10
 </trafficEngineeringMetric>
 <SwitchingCapabilityDescriptors>
 <switchingcapType>l2sc</switchingcapType>
 <encodingType>ethernet</encodingType>
 <switchingCapabilitySpecificInfo>
 <interfaceMTU>9000</interfaceMTU>
 <vlanRangeAvailability>
 3220-3224
 </vlanRangeAvailability>
 <suggestedVLANRange>3221</suggestedVLANRange>
 </switchingCapabilitySpecificInfo>
 </SwitchingCapabilityDescriptors>
 </nmwg-cp:link>
 </nmwg-cp:hop>
 <nmwg-cp:hop id=”4”>
 <nmwg-cp:link id=”
 urn:ogf:network:domain=domain2.net:node=2:port=1:link=1”>
 <trafficEngineeringMetric>
 10
 </trafficEngineeringMetric>
 <SwitchingCapabilityDescriptors>
 <switchingcapType>l2sc</switchingcapType>
 <encodingType>ethernet</encodingType>
 <switchingCapabilitySpecificInfo>
 <interfaceMTU>9000</interfaceMTU>
 <vlanRangeAvailability>
 3220-3224
 </vlanRangeAvailability>
 <suggestedVLANRange>3221</suggestedVLANRange>
 </switchingCapabilitySpecificInfo>
 </SwitchingCapabilityDescriptors>
 </nmwg-cp:link>
 </nmwg-cp:hop>
 <nmwg-cp:hop id=”5”>
 <nmwg-cp:link id=”
 urn:ogf:network:domain=domain3.net:node=1:port=1:link=1”>

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 61

 <trafficEngineeringMetric>
 10
 </trafficEngineeringMetric>
 <SwitchingCapabilityDescriptors>
 <switchingcapType>l2sc</switchingcapType>
 <encodingType>ethernet</encodingType>
 <switchingCapabilitySpecificInfo>
 <interfaceMTU>9000</interfaceMTU>
 <vlanRangeAvailability>
 3221
 </vlanRangeAvailability>
 </switchingCapabilitySpecificInfo>
 </SwitchingCapabilityDescriptors>
 </nmwg-cp:link>
 </nmwg-cp:hop>
 <nmwg-cp:hop id=”6”>
 <nmwg-cp:link id=”
 urn:ogf:network:domain=domain3.net:node=2:port=1:link=1”>
 <trafficEngineeringMetric>
 10
 </trafficEngineeringMetric>
 <SwitchingCapabilityDescriptors>
 <switchingcapType>l2sc</switchingcapType>
 <encodingType>ethernet</encodingType>
 <switchingCapabilitySpecificInfo>
 <interfaceMTU>9000</interfaceMTU>
 <vlanRangeAvailability>
 3221
 </vlanRangeAvailability>
 </switchingCapabilitySpecificInfo>
 </SwitchingCapabilityDescriptors>
 </nmwg-cp:link>
 </nmwg-cp:hop>
 </idc:path>
 <idc:layer2Info>
 <idc:srcVtag tagged=”true”>3221</idc:srcVtag>
 <idc:destVtag tagged=”true”>3221</idc:destVtag>
 <idc:srcEndpoint>
 urn:ogf:network:domain=domain1.net:node=1:port=1:link=1
 </idc:srcEndpoint>
 <idc:destEndpoint>
 urn:ogf:network:domain=domain3.net:node=2:port=1:link=1
 </idc:destEndpoint>
 </idc:layer2Info>
 </idc:pathInfo>
 </idc:resDetails>
 </idc:event>
 </wsnt:Message>

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 62

 </wsnt:NotificationMessage>
 </wsnt:Notify>
</soap:Body>
</soap:Envelope>
Domain 2 receives this event, also finalizes the VLANS and passes a similar message back to Domain 1
(this message is not shown but the only different is that the VLANS for hops 3 and 4 are selected).
Domain 1 finalizes it resources and throws the following RESERVATION_CREATE_COMPLETED event
to indicate the reservation was reserved:
<soap:Envelope ...>
<soap:Body …>
 <wsnt:Notify>
 <wsnt:NotificationMessage>
 <wsnt:Topic Dialect="http://docs.oasis-open.org/wsn/t-
1/TopicExpression/Full">idc:IDC</ns5:Topic>
 <wsnt:ProducerReference>
 <wsa:Address>https://domain3.net/IDC</Address>
 <wsa:ReferenceParameters>
 <idc:subscriptionId>
 urn:uuid:097387e5-6b7c-4eec-a6c7-09a0466065e7
 </idc:subscriptionId>
 </wsaReferenceParameters>
 </wsnt:ProducerReference>
 <wsnt:Message>
 <idc:event id="event-1646550480">
 <idc:type>RESERVATION_CREATE_COMPLETED</idc:type>
 <idc:timestamp>1210847836</idc:timestamp>
 <idc:userLogin>user1</idc:userLogin>
 <idc:resDetails>
 <idc:status>PENDING</idc:status>
 <idc:login>user1</idc:login>
 <idc:globalReservationId>
 domain1.net-1
 </idc:globalReservationId>
 <idc:startTime>1210847896</idc:startTime>
 <idc:endTime>1213847896</idc:endTime>
 <idc:bandwidth>1000</idc:bandwidth>
 <idc:description>1 Gbps example</idc:description>
 <idc:pathInfo>
 <idc:pathSetupMode>timer-automatic<idc:pathSetupMode>
 <idc:path>
 <nmwg-cp:hop id=”1”>
 <nmwg-cp:link id=”
 urn:ogf:network:domain=domain1.net:node=1:port=1:link=1”>
 <trafficEngineeringMetric>
 10
 </trafficEngineeringMetric>
 <SwitchingCapabilityDescriptors>
 <switchingcapType>l2sc</switchingcapType>
 <encodingType>ethernet</encodingType>
 <switchingCapabilitySpecificInfo>
 <interfaceMTU>9000</interfaceMTU>
 <vlanRangeAvailability>

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 63

 3220-3224
 </vlanRangeAvailability>
 <suggestedVLANRange>3221</suggestedVLANRange>
 </switchingCapabilitySpecificInfo>
 </SwitchingCapabilityDescriptors>
 </nmwg-cp:link>
 </nmwg-cp:hop>
 <nmwg-cp:hop id=”2”>
 <nmwg-cp:link id=”
 urn:ogf:network:domain=domain1.net:node=2:port=1:link=1”>
 <trafficEngineeringMetric>
 10
 </trafficEngineeringMetric>
 <SwitchingCapabilityDescriptors>
 <switchingcapType>l2sc</switchingcapType>
 <encodingType>ethernet</encodingType>
 <switchingCapabilitySpecificInfo>
 <interfaceMTU>9000</interfaceMTU>
 <vlanRangeAvailability>
 3220-3224
 </vlanRangeAvailability>
 <suggestedVLANRange>3221</suggestedVLANRange>
 </switchingCapabilitySpecificInfo>
 </SwitchingCapabilityDescriptors>
 </nmwg-cp:link>
 </nmwg-cp:hop>
 <nmwg-cp:hop id=”3”>
 <nmwg-cp:link id=”
 urn:ogf:network:domain=domain2.net:node=1:port=1:link=1”>
 <trafficEngineeringMetric>
 10
 </trafficEngineeringMetric>
 <SwitchingCapabilityDescriptors>
 <switchingcapType>l2sc</switchingcapType>
 <encodingType>ethernet</encodingType>
 <switchingCapabilitySpecificInfo>
 <interfaceMTU>9000</interfaceMTU>
 <vlanRangeAvailability>
 3221
 </vlanRangeAvailability>
 </switchingCapabilitySpecificInfo>
 </SwitchingCapabilityDescriptors>
 </nmwg-cp:link>
 </nmwg-cp:hop>
 <nmwg-cp:hop id=”4”>
 <nmwg-cp:link id=”
 urn:ogf:network:domain=domain2.net:node=2:port=1:link=1”>

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 64

 <trafficEngineeringMetric>
 10
 </trafficEngineeringMetric>
 <SwitchingCapabilityDescriptors>
 <switchingcapType>l2sc</switchingcapType>
 <encodingType>ethernet</encodingType>
 <switchingCapabilitySpecificInfo>
 <interfaceMTU>9000</interfaceMTU>
 <vlanRangeAvailability>
 3221
 </vlanRangeAvailability>
 </switchingCapabilitySpecificInfo>
 </SwitchingCapabilityDescriptors>
 </nmwg-cp:link>
 </nmwg-cp:hop>
 <nmwg-cp:hop id=”5”>
 <nmwg-cp:link id=”
 urn:ogf:network:domain=domain3.net:node=1:port=1:link=1”>
 <trafficEngineeringMetric>
 10
 </trafficEngineeringMetric>
 <SwitchingCapabilityDescriptors>
 <switchingcapType>l2sc</switchingcapType>
 <encodingType>ethernet</encodingType>
 <switchingCapabilitySpecificInfo>
 <interfaceMTU>9000</interfaceMTU>
 <vlanRangeAvailability>
 3221
 </vlanRangeAvailability>
 </switchingCapabilitySpecificInfo>
 </SwitchingCapabilityDescriptors>
 </nmwg-cp:link>
 </nmwg-cp:hop>
 <nmwg-cp:hop id=”6”>
 <nmwg-cp:link id=”
 urn:ogf:network:domain=domain3.net:node=2:port=1:link=1”>
 <trafficEngineeringMetric>
 10
 </trafficEngineeringMetric>
 <SwitchingCapabilityDescriptors>
 <switchingcapType>l2sc</switchingcapType>
 <encodingType>ethernet</encodingType>
 <switchingCapabilitySpecificInfo>
 <interfaceMTU>9000</interfaceMTU>
 <vlanRangeAvailability>
 3221
 </vlanRangeAvailability>

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 65

 </switchingCapabilitySpecificInfo>
 </SwitchingCapabilityDescriptors>
 </nmwg-cp:link>
 </nmwg-cp:hop>
 </idc:path>
 <idc:layer2Info>
 <idc:srcVtag tagged=”true”>3221</idc:srcVtag>
 <idc:destVtag tagged=”true”>3221</idc:destVtag>
 <idc:srcEndpoint>
 urn:ogf:network:domain=domain1.net:node=1:port=1:link=1
 </idc:srcEndpoint>
 <idc:destEndpoint>
 urn:ogf:network:domain=domain3.net:node=2:port=1:link=1
 </idc:destEndpoint>
 </idc:layer2Info>
 </idc:pathInfo>
 </idc:resDetails>
 </idc:event>
 </wsnt:Message>
 </wsnt:NotificationMessage>
 </wsnt:Notify>
</soap:Body>
</soap:Envelope>
The event above is passed to both the original requester and Domain 2. Domain 2 passes the message
exactly to Domain 3. Once completed the resources are held in every domain.

18 Security Considerations

The IDC security mechanisms are based on the WS-Security v1.1 [WS-Sec] standards. The IDC
implements SOAP messages, secured by WS-Security using the XML Signature standard [DigSig]. The
details of the IDC security implementation are described in Section 4 Security.

19 Contributors and Editors

There were multiple contributors to this document and the content described within. We will not attempt
to list them all here. However for comments, questions, suggestions and anything else relating to this
document, please send to one or more of the following document editors:

• Tom Lehman (USC/ISI), tlehman@east.isi.edu
• Chin Guok (ESnet), chin@es.net
• Andy Lake (ESnet), andy@es.net
• Radoslaw Krzywania (PSNC), radek.krzywania@man.poznan.pl
• Michal Balkcerkiewicz (PSNC), michalb@man.poznan.pl

20 Intellectual Property Statement
The OGF takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Copies of claims of rights made
available for publication and any assurances of licenses to be made available, or the result of an attempt

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 66

made to obtain a general license or permission for the use of such proprietary rights by implementers or
users of this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to practice this
recommendation. Please address the information to the OGF Executive Director.

21 Disclaimer
This document and the information contained herein is provided on an “As Is” basis and the OGF
disclaims all warranties, express or implied, including but not limited to any warranty that the use of the
information herein will not infringe any rights or any implied warranties of merchantability or fitness for a
particular purpose.

22 Full Copyright Notice
Copyright (C) Open Grid Forum (2010). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works. However, this document
itself may not be modified in any way, such as by removing the copyright notice or references to the
OGF or other organizations, except as needed for the purpose of developing Grid Recommendations in
which case the procedures for copyrights defined in the OGF Document process must be followed, or as
required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its
successors or assignees.

23 References

[NMWG-CP] Network Measurement Working Group (NMWG) Control Plane Schemas.

Based on Revision 378 of NMWG Schemas.
[CNTL-PLANE] The IDCP Control Plane Web Site, http://www.controlplane.net
[DigSig] XML-Signature Syntax and Processing: D. Eastlake 3rd,J. Reagle, D. Solo,

RFC3275 Sept 2002. http://www.ietf.org/rfc/rfc3275.txt
[RFC2119] S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels," RFC

2119, Harvard University, March 1997. http://www.ietf.org/rfc/rfc2119.txt
[SOAP] “SOAP Version 1.2 Part 1: Messaging Framework”, W3C Recommendation.

http://www.w3.org/TR/soap12-part1/
[WSDL] “Web Services Description Language (WSDL) 1.1”, W3C Note.

http://www.w3.org/TR/wsdl
[WSBN] http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf
[WSN] http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
[WSA] http://www.w3.org/2005/08/addressing
[WS-Sec] “Web Services Security SOAP Message Security 1.1 (WS-Security 2004)”,

OASIS Standard Specification, 1 February 2006. http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

[XML-Infoset] “XML Information Set”, W3C Recommendation. http://www.w3.org/TR/xml-
infoset/

[XPath] “XML Path Language (XPath) Version 1.0”, W3C Recommendation.

GFD-I.170 October 24, 2010

nsi-wg@ogf.ofg 67

http://www.w3.org/TR/xpath
[XML Schema] W3C Recommendation, "XML Schema Part 1: Structures,"2 May 2001.

http://www.w3.org/TR/xmlschema11-1/
W3C Recommendation, "XML Schema Part 2: Datatypes," 2 May 2001.
http://www.w3.org/TR/xmlschema11-2/

[URI] T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI):
Generic Syntax," RFC 2396, MIT/LCS, U.C. Irvine, Xerox Corporation, August
1998. http://www.ietf.org/rfc/rfc2396.txt

[URN] R. Moats, “URN Syntax”, RFC 2141, AT&T, May 1997.
http://www.ietf.org/rfc/rfc2141.txt

