
GFD-P-R.174 (OBSOLETED by GFD-P-R.207) Alan W Powell (IBM)
OGF DFDL WG Michael J Beckerle (OCO)
 Stephen M Hanson (IBM)
 January 31,2011

Data Format Description Language (DFDL) v1.0

Specification

Status of This Document

This document provides information to the OGF community on a standard Data
Format Description Language (DFDL). Distribution is unlimited

Copyright Notice

Copyright © Global Grid Forum (2004-2006). All Rights Reserved.
Copyright © Open Grid Forum, (2006-2010). All Rights Reserved.

Abstract

This document is OBSOLETE. It has been superceded by GFD-P-R.207.

This document provides a definition of a standard Data Format Description Language (DFDL).
This language allows description of dense binary and legacy data formats in a vendor-neutral
declarative manner. DFDL is an extension to the XML Schema Description Language (XSDL).

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 2 of 168

Table of contents

Data Format Description Language (DFDL) v1.0 .. 1
1. Introduction ... 6

1.1 Why is DFDL Needed? ... 7
1.2 What is DFDL? .. 7

1.2.1 Simple Example ... 7
1.3 What DFDL is not .. 10
1.4 Scope of version 1.0 ... 10
1.5 Related standards ... 11

2. Notational and Definitional Conventions ... 12
2.1 Failure Types .. 12
2.2 Schema Definition Error .. 12
2.3 Processing Errors: ... 12

2.3.1 Ambiguity of Data Formats .. 13
2.3.2 Schema Component Constraint: Unique Particle Attribution 13

2.4 Validation Errors .. 14
3. Glossary .. 15
4. The DFDL Information Set (Infoset) ... 19

4.1 Information Items .. 19
4.1.1 Document Information Item ... 19
4.1.2 Element Information Items ... 20

4.2 "No Value'' ... 20
4.3 DFDL Information Item Order.. 21
4.4 DFDL Infoset Object model ... 21
4.5 DFDL Augmented Infoset .. 21

5. DFDL Schema Component Model .. 23
5.1 DFDL Subset of XML Schema .. 24
5.2 XSD Facets, min/maxOccurs, default, and fixed .. 26

5.2.1 MinOccurs and MaxOccurs ... 26
5.2.2 MinLength, MaxLength .. 27
5.2.3 MaxInclusive, MaxExclusive, MinExclusive, MinInclusive, TotalDigits, FractionDigits
 27
5.2.4 Pattern ... 27
5.2.5 Enumeration ... 27
5.2.6 Default .. 27
5.2.7 Fixed .. 27

6. DFDL Syntax Basics ... 28
6.1 Namespaces ... 28
6.2 The DFDL Annotation Elements ... 28
6.3 DFDL Properties ... 29

6.3.1 DFDL String Literals ... 30
6.3.2 DFDL Expressions ... 33
6.3.3 DFDL Regular Expressions ... 34
6.3.4 Enumerations in DFDL... 34

7. Syntax of DFDL Annotation Elements .. 35
7.1 Component Format Annotations ... 35

7.1.1 Syntax of Component Format Annotations .. 35
7.1.2 Ref Property ... 36
7.1.3 Property Binding Syntax .. 36
7.1.4 Empty String as a Property Value .. 38

7.2 dfdl:defineFormat - Reusable Data Format Definitions ... 38
7.2.1 Inheritance for dfdl:defineFormat ... 39
7.2.2 Using/Referencing a Named Format Definition ... 39

7.3 The dfdl:assert Annotation Element .. 39
7.3.1 Properties for dfdl:assert .. 39

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 3 of 168

7.4 The dfdl:discriminator Annotation Element ... 41
7.4.1 Properties for dfdl:discriminator ... 41

7.5 The dfdl:defineEscapeScheme Annotation Element .. 44
7.5.1 Using/Referencing a Named escapeScheme Definition.. 44

7.6 The dfdl:escapeScheme Annotation Element ... 45
7.7 The dfdl:defineVariable Annotation Element ... 45

7.7.1 Examples ... 46
7.7.2 Predefined Variables.. 46

7.8 The dfdl:newVariableInstance Annotation Element .. 46
7.8.1 Examples ... 47

7.9 The dfdl:setVariable Annotation Element .. 47
7.9.1 Examples ... 48

8. Property Scoping Rules .. 49
8.1 Providing Defaults for DFDL properties .. 49
8.2 Combining DFDL Representation Properties from a dfdl:defineFormat 50
8.3 Combining DFDL Properties from References ... 50

9. DFDL Processing Introduction .. 55
9.1 Parser Overview .. 55

9.1.1 Resolving Points of Uncertainty. .. 55
9.2 DFDL Data Syntax Grammar .. 56

10. Core Representation Properties and their Format Semantics.. 58
11. Properties Common to both Content and Framing ... 59
12. Framing ... 61

12.1 Aligned Data .. 61
12.1.1 Implicit Alignment ... 62

12.2 Properties for Specifying Delimiters .. 63
12.3 Properties for Specifying Lengths ... 66

12.3.1 dfdl:lengthKind 'explicit' .. 67
12.3.2 dfdl:lengthKind 'delimited' .. 67
12.3.3 dfdl:lengthKind 'implicit' .. 68
12.3.4 dfdl:lengthKind 'prefixed' .. 69
12.3.5 dfdl:lengthKind 'pattern'... 70
12.3.6 dfdl:lengthKind 'endOfParent' .. 71
12.3.7 Elements of Specified Length .. 72
12.3.8 Length of Simple Types with Binary Representations ... 77

13. Simple Types .. 78
13.1 Properties Common to All Simple Types... 78
13.2 Properties Common to All Simple Types with Text representation 79

13.2.1 The dfdl:escapeScheme Properties ... 80
13.3 Properties for Bidirectional support for All Simple Types with Text representation 83
13.4 Properties Specific to Strings with Text representation ... 84
13.5 Properties Specific to Number with Text or Binary representation 86
13.6 Properties Specific to Number with Text representation ... 86

13.6.1 The textNumberPattern Property ... 91
13.6.2 Converting logical numbers to/from text representation .. 97

13.7 Properties Specific to Numbers with Binary representation .. 97
13.7.1 Converting logical numbers to/from binary representation 99

13.8 Properties Specific to Float/Double with Binary representation 99
13.9 Properties Specific to Boolean with Text representation ... 100
13.10 Properties Specific to Boolean with Binary representation 101
13.11 Properties specific to calendar with Text or Binary representation 101

13.11.1 The dfdl:calendarPattern property .. 103
13.12 Properties specific to calendar with Text representation ... 105
13.13 Properties specific to calendar with Binary representation 105
13.14 Properties Specific to Opaque Types (hexBinary) .. 106
13.15 Nils and Default processing ... 106

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 4 of 168

13.15.1 Nils and Defaults on Parsing .. 108
13.15.2 Nils and Defaults on Unparsing .. 109

13.16 Properties for Nillable Elements .. 110
13.17 Properties for Default Value Control .. 112

14. Sequence Groups ... 113
14.1 Empty Sequences ... 113
14.2 Sequence Groups with Delimiters ... 113

14.2.1 Sequence Groups and Separators .. 116
14.3 Unordered Sequence Groups ... 116
14.4 Floating Elements .. 118
14.5 Hidden Groups .. 119

15. Choice Groups .. 121
15.1 Resolving Choices ... 122

16. Arrays and Optional Elements: Properties for Repeating and Variable-Occurrence Data
Items 123

16.1 Repeating and Variable-Occurrence Items and Default Values 124
16.2 Stop Value Delimited Array Number of occurrences ... 124
16.3 Arrays with DFDL Expressions .. 124

17. Calculated Value Properties. .. 125
Example: 2d Nested Array ... 126
Example: Three-Byte Date ... 127

18. External Control of the DFDL Processor .. 130
19. Built-in Specifications .. 131
20. Conformance .. 132
21. Optional DFDL Features ... 133
22. Property Precedence .. 134

22.1 Parsing .. 134
22.1.1 dfdl:element (simple) and dfdl:simpleType .. 134
22.1.2 dfdl:element (complex)... 138
22.1.3 dfdl:sequence and dfdl:group (when reference is to a sequence) 139
22.1.4 dfdl:choice and dfdl:group (when reference is to a choice) 140

22.2 Unparsing .. 140
22.2.1 dfdl:element (simple) and dfdl:simpleType .. 140
22.2.2 dfdl:element (complex)... 145
22.2.3 dfdl:sequence and dfdl:group (when reference is a sequence) 146
22.2.4 dfdl:choice and dfdl:group (when reference is a choice) 147

23. Expression language .. 148
23.1 Expression Language Data Model .. 148
23.2 Variables .. 148

23.2.1 Rewinding of Variable Memory State .. 149
23.2.2 Variable Memory State Transitions .. 149

23.3 General Syntax .. 150
23.4 DFDL Expression Syntax .. 151
23.5 Constructors, Functions and Operators .. 152

23.5.1 Constructor Functions for XML Schema Built-in Types ... 152
23.5.2 Standard XPath Functions ... 153
23.5.3 DFDL Functions ... 156

24. DFDL Regular Expressions .. 158
25. Security Considerations .. 159
26. Authors and Contributors .. 160
27. Intellectual Property Statement... 161
28. Disclaimer ... 162
29. Full Copyright Notice .. 163
30. References.. 164
31. Appendix A:Escape Scheme Use Cases ... 165

31.1 Escape Character same as dfdl:escapeEscapeCharacater...................................... 165

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 5 of 168

31.2 Escape Character different from dfdl:escapeEscapeCharacater 165
31.3 Escape block with different start and end characters .. 166
31.4 Escape block with same start and end characters .. 166

32. Appendix B: Encoding of delimiters different to encoding of data (eg, initiator and
terminator different to data) ... 168

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 6 of 168

1. Introduction

Data interchange is critically important for most computing. Grid computing and all forms of
distributed computing require distributed software and hardware resources to work together.
Inevitably, these resources read and write data in a variety of formats. General tools for data
interchange are essential to solving such problems. Scalable and High Performance Computing
(HPC) applications require high-performance data handling, so data interchange standards must
enable efficient representation of data. Data Format Description Language (DFDL) enables
powerful data interchange and very high-performance data handling.
We envisage three dominant kinds of data in the future, as follows:

1. Textual data defined by a format specific schema such as XML or JSON.
2. Binary data in standard formats.
3. Data with DFDL descriptors.

Textual XML data is the most successful data interchange standard to date. All such data are by
definition new, by which we mean created in the XML era. Because of the large overhead that
XML tagging imposes, there is often a need to compress and decompress XML data. However,
there is a high-cost for compression and decompression that is unacceptable to some
applications. Standardized binary data are also relatively new, and is suitable for larger data
because of the reduced costs of encoding and more compact size. Examples of standard binary
formats are data described by modern versions of ASN.1, or the use of XDR. These techniques
lack the self-describing nature of XML-data. Scientific formats, such as NetCDF and HDF are
used by some communities to provide self-describing binary data. In the future, there may be
standardized binary-encoded XML data as there is a W3C working group that has been formed
on this subject.
It is an important observation that both XML format and standardized binary formats are
prescriptive in that they specify or prescribe a representation of the data. To use them your
applications must be written to conform to their encodings and mechanisms of expression.
DFDL suggests an entirely different scheme. The approach is descriptive in that one chooses an
appropriate data representation for an application based on its needs and one then describes the
format using DFDL so that multiple programs can directly interchange the described data. DFDL
descriptions can be provided by the creator of the format, or developed as needed by third parties
intending to use the format. That is, DFDL is not a format for data; it is a way of describing any
data format. DFDL is intended for data commonly found in scientific and numeric computations,
as well as record-oriented representations found in commercial data processing.
DFDL can be used to describe legacy data files, to simplify transfer of data across domains
without requiring global standard formats, or to allow third-party tools to easily access multiple
formats. DFDL can also be a powerful tool for supporting backward compatibility as formats
evolve.
DFDL is designed to provide flexibility and also permit implementations that achieve very high
levels of performance. DFDL descriptions are separable and native applications do not need to
use DFDL libraries to parse their data formats. DFDL parsers can also be highly efficient. The
DFDL language is designed to permit implementations that use lazy evaluation of formats and to
support seekable, random access to data. The following goals can be achieved by DFDL
implementations:

 Density. Fewest bytes to represent information content (without resorting to
compression). Fastest possible I/O.

 Optimized I/O. Applications can write data aligned to byte, word, or even page
boundaries and to use memory-mapped I/O to insure access to data content with the
smallest number of machine cycles for common use cases without sacrificing general
access.

DFDL can describe the same types of abstract data that other binary or textual data formats can
describe and, furthermore, it can describe almost any possible representation scheme for those
data. For example, DFDL can provide multiple representations of the same logical data and that
data are optimized for specific uses. It is the spirit of DFDL to support canonical data descriptions

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 7 of 168

that correspond closely to the original in-memory representation of the data, and also to provide
sufficient information to write as well as to read the given format.

1.1 Why is DFDL Needed?

DFDL is needed in an era where there are so many standard data formats available, because
there are a number of social phenomena in the way software is developed that have lead to the
situation today where DFDL is needed to standardize descriptions of diverse data formats.
First, programs are very often written speculatively, that is, without any advance understanding of
how important they will become. Given this situation, little effort is expended on data formats
since it remains easier to program the I/O in the most straightforward way possible with the
programming tools in use. Even something as simple as using an XML-based data format is
harder than just using the native I/O libraries of a programming language.
In time, however, it is realized that a software program is important because either many people
are using it, or it has become important for business or organizational needs to start using it in
larger scale deployments. At that point it is often too late to go back and change the data formats.
For example, there may be real or perceived business costs to delaying the deployment of a
program for a rewrite just to change the data formats, particularly if such rewriting will reduce the
performance of the program and increase the costs of deployment. (It takes longer to program,
but at least it's slower when you are done)
Additionally, the need for data format standardization for interchange with other software may not
be clear at the point where a program first becomes 'important'. Eventually, however, the need for
data interchange with the program becomes apparent.
The above phenomena are not something that is going away any time soon. There are, of course,
efforts to smoothly integrate standardized data format handling into programming languages.
Nevertheless, we see a critical role for DFDL since it allows after-the-fact description of a data
format.

1.2 What is DFDL?

DFDL is a language for describing data formats. A DFDL description allows data to be read from
its native format and to be presented as an instance of an information set or indeed converted to
the corresponding XML document. DFDL also allows data to be taken from an instance of an
information set and written out to its native format.
DFDL achieves this by leveraging W3C XML Schema Definition Language (XSDL) 1.0.
[XSDLV1]
An XML schema is written for the logical model of the data. The schema is augmented with
special DFDL annotations. These annotations are used to describe the native representation of
the data. This is an established approach that is already being used today in commercial
systems.
1.2.1 Simple Example

Consider the following XML data:

<w>5</w>

<x>7839372</x>

<y>8.6E-200</y>

<z>-7.1E8</z>

The logical model for this data can be described by the following fragment of an XML schema
document that simply provides description of the name and type of each element:
 <xs:complexType name="example1">

<xs:sequence>

 <xs:element name="w" type="xs:int"/>

 <xs:element name="x" type="xs:int"/>

 <xs:element name="y" type="xs:double"/>

 <xs:element name="z" type="xs:float"/>

</xs:sequence>

 </xs:complexType>

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 8 of 168

Now, suppose we have the same data but represented in a non-XML format. A binary
representation of the data could be visualized like this (shown as hexadecimal):

0000 0005 0077 9e8c

169a 54dd 0a1b 4a3f

ce29 46f6

To describe this in DFDL, we take our original XML schema document that described the data
model and we annotate the type definition as follows:
 <xs:complexType >

 <xs:sequence dfdl:byteOrder="bigEndian">

 <xs:element name="w" type="xs:int">

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:element representation="binary"

 binaryNumberRep="binary"

 byteOrder="bigEndian"

 lengthKind="implicit"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name="x" type="xs:int ">

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:element representation="binary"

 binaryNumberRep="binary"

 byteOrder="bigEndian"

 lengthKind="implicit"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name="y" type="xs:double">

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:element representation="binary"

 binaryFloatRep="ieee"

 byteOrder="bigEndian"

 lengthKind="implicit"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name="z" type="xs:float" >

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:element representation="binary"

 byteOrder="bigEndian"

 lengthKind="implicit"

 binaryFloatRep="ieee" />

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

This simple DFDL annotation expresses that the data are represented in a binary format and that
the byte order will be big endian. This is all that a DFDL parser needs to read the data.

Consider if the same data are represented in a text format:

5,7839372,8.6E-200,-7.1E8

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 9 of 168

Once again, we can annotate the same data model, this time with properties that provide the
character encoding, the field separator (comma) and the decimal separator (period):

<xs:complexType >

 <xs:sequence >

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:sequence encoding=“UTF-8” byteOrder="bigEndian"

 separator="," />

 </xs:appinfo>

 </xs:annotation>

 <xs:element name="w" type="xs:int">

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:element representation=“text”

 encoding=“UTF-8”

 textNumberRep ="standard"

 textNumberPattern="####0"

 textStandardGroupingSeparator=","

 textStandardDecimalSeparator="."

 lengthKind="delimited"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name="x" type="xs:int">

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:element representation=“text”

 encoding=“UTF-8”

 textNumberRep ="standard"

 textNumberPattern="#######0"

 textStandardGroupingSeparator=","

 textStandardDecimalSeparator="."

 lengthKind="delimited"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name="y" type="xs:double">

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:element representation=“text”

 encoding=“UTF-8”

 textNumberRep ="standard"

 textNumberPattern="0.0E+000"

 textStandardGroupingSeparator=","

 textStandardDecimalSeparator="."

 lengthKind="delimited"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name="z" type="xs:float">

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:element representation=“text”

 encoding=“UTF-8”

 textNumberRep ="standard"

 textNumberPattern="0.0E0"

 textStandardGroupingSeparator=","

 textStandardDecimalSeparator="."

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 10 of 168

 lengthKind="delimited"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

</xs:complexType>

1.3 What DFDL is not

DFDL maps data from a non-XML representation to an instance of an information set. This can
be thought of as a data transformation. However, DFDL is not intended to be a general
transformation language and, in particular, DFDL does not intend to provide a mechanism to map
data to arbitrary XML models. There are two specific limitations on the data models that DFDL
can work to:

1. DFDL uses a subset of XML Schema, in particular, you cannot use XML attributes in the
data model.

2. The order of the data in the data model must correspond to the order and structure of the
data being described.

This latter point deserves some elaboration. The XML schema used must be suitable for
describing the physical data format. There must be a correspondence between the XML
schema's constructs and the physical data structures. For example, generally the elements in the
XML schema must match the order of the physical data. DFDL does allow for certain physically
unordered formats as well.
The key concept here is that when using DFDL, you do not get to design an XML schema to your
preference and then populate it from data. That would involve describing the data format, and
describing a transformation for mapping it to the XML schema you have designed. DFDL is only
about the format part of this problem. There are other languages, such as XSLT, which are for
transformation. In DFDL, you describe only the format of the data, and this format constrains the
nature of the XML schema you must use in its description.

1.4 Scope of version 1.0

The goals of version 1.0 are as follows:
1. Leverage XML technology and concepts
2. Support very efficient parsers/formatters
3. Avoid features that require unnecessary data copying
4. Support round-tripping, that is, read and write data in a described format from the same

description
5. Keep simple cases simple
6. Simple descriptions should be "human readable" to the same degree that XSDL is.

The general features of version 1.0 are as follows:

a) Text and binary data parsing and unparsing
b) Validate the data when parsing and unparsing using XSDL validation.
c) Defaulted input and output for missing values
d) Reference – use of a previously read value in subsequent expressions
e) Choice – capability to select among format variations
f) Hidden sequence of elements - description of an intermediate representation not

exposed in the final result
g) Basic Math – in DFDL expressions
h) Out-of-band value handling
i) Speculative parsing to resolve uncertainty.
j) Very general parsing capability: Lookahead/Push-back

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 11 of 168

Version 1.0 of DFDL is a language capable of expressing a wide range of binary and text-based
data formats.
DFDL is capable of describing binary data as found in the data structures of COBOL, C, PL1,
Fortran, etc. In particular, it is able to describe repeating sub-arrays where the length of an array
is stored in another location of the structure.
DFDL is capable of describing a wide variety of textual data formats such as HL7, X12, and
SWIFT. Textual data formats often use syntax delimiters, such as initiators, separators and
terminators to delimit fields.
DFDL has certain composition properties. I.e., two formats can be nested or concatenated and a
working format results.
The following topics have been deferred to future versions of the standard:

- Extensibility: There are real examples of proprietary data format description languages
that we use as our base of experience from which to derive standard DFDL. However,
there are no examples of extensible format description languages. Therefore, while
extensibility is desirable in DFDL, there is not yet a base of experience with extensibility
from which to derive a standard.

- Rich Layering: Some formats require data to be described in multiple passes. Combining
these into one DFDL schema requires very rich layering functionality. In these layers one
element's value content becomes the representation of another element. DFDL V1.0
allows description of only a limited kind of layering.

1.5 Related standards

1. Prescriptive systems:
a. JSON
b. W3C binary XML (http://www.w3.org/XML/Binary/)

2. Descriptive systems:

a. ASN1 Encoding Control Notation
b. ITU-T X.692

http://www.w3.org/XML/Binary/

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 12 of 168

2. Notational and Definitional Conventions

The key words must, must not, required, shall, shall not, should, should not, recommended, may,
may not and optional in this document are to be interpreted as described in [RFC 2119]. Note that
for reasons of clarity these words do not always include all the required capitalized in this
document.

Examples are for illustration purposes only and for clarity do not included the required DFDL
properties.

2.1 Failure Types

 Where the phrase "must be consistent with" is used, it is assumed that a conforming DFDL
implementation must check for the consistency and issue appropriate diagnostic messages
when an inconsistency is found.

 There are several kinds of failures that can occur when a DFDL processor is handling data
and/or a DFDL schema.

2.2 Schema Definition Error

When the DFDL schema itself contains an error, it implies that the DFDL processor cannot
process data because the DFDL schema is not meaningful. It may be ambiguous, or contain
conflicting definitions. Equivalently, we can say that there is no possible data that conforms to the
schema; hence, the schema cannot be meaningful. All conforming DFDL processors must detect
all schema definition errors, and must issue some kind of appropriate diagnostic message. The
behavior of a DFDL processor after a schema definition error is detected is out of scope for this
specification.
When a Schema definition error can be detected given only the schema, it is desirable, though
not required by the DFDL standard, that such errors be detected and diagnostic messages issued
before any data are processed. Of course not all schema definition errors can be detected without
reference to data as some representation properties may obtain their values from the data (see
section 2.3.1 Ambiguity of Data Formats).
The expression language included within DFDL is strongly, statically type checkable. This means
that type checking of expressions can be performed without processing data, and
implementations are encouraged to perform this checking statically so that schema definition
errors having to do with type inconsistencies can be detected before processing data.

Note that schema definition errors cannot be suppressed by points of uncertainty.

2.3 Processing Errors:

If a DFDL schema contains no schema definition errors, then there is the additional possibility
that when processing data using a DFDL schema, the data do not conform to the format
described by the schema. This is known as a processing error.

Processing errors can be suppressed by a point of uncertainty. See section 9.1.1 Resolving
Points of Uncertainty.

It is expected that DFDL implementations will provide additional mechanisms for dealing with
effective processing errors such as the means of specifying retry points or the means of skipping
some data so as to recover from the error in some way.
Exceptions that occur in the evaluation of the DFDL expression language are processing errors.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 13 of 168

Non-conformance with the xs:minOccurs constraint is a processing error. Non-conformance with
the xs:maxOccurs constraint is a validation error.

2.3.1 Ambiguity of Data Formats

A data format using delimiters may be ambiguous if the delimiters are not distinct and a data
format description which has fixed data requirements (some elements having required fixed
values), may be ambiguous even with fixed length elements.

1

If the delimiter string values are stored within the data, perhaps as elements of a header part of
the data, then this ambiguity certainly cannot be examined until the data is available.
Given an ambiguous grammar, a DFDL implementation may successfully parse a particular input
data stream. That is, the part of the schema with the ambiguity may not be exercised by a
particular data stream, or the data may parse successfully anyway because the ambiguity may
not cause any kind of failure or processing error.
Hence, to insure compatible behavior, DFDL v1.0 implementations MUST NOT detect grammar
ambiguities as errors. Implementations are of course free to issue warnings to help users identify
these situations, but ambiguity is neither a Schema Definition Error nor a Processing Error.

2.3.1.1 Unparsing Must be Unambiguous

Usually, the behavior of the unparser is symmetric to the behavior of the parser; however, there
are cases where the DFDL schema will accept several equivalent representations for the same
logical data. In this case it would be ambiguous which of these equivalent representations should
be produced by the unparser. The DFDL standard contains representation properties which are
used to eliminate this ambiguity. It is a schema definition error if a DFDL schema is being used to
unparse data and there is any ambiguity about the representation.

2.3.2 Schema Component Constraint: Unique Particle Attribution

A DFDL processor MUST implement the Schema Component Constraint: Unique Particle
Attribution defined in XML Schema Part 1: Structures [XSDLV1] that applies to the DFDL schema
subset.

Two elements overlap if

 They are both element declaration particles whose declarations have the same name and
target namespace.

A content model will violate the unique attribution constraint if it contains two particles which
overlap and which either

 Are both in the particles of a choice group
Or

 Either may validate adjacent information items and the first has xs:minOccurs less than
xs:maxOccurs.

1
 A very complex analysis is required to identify this sort of grammar ambiguity in general. While

we believe this may be decidable for DFDL v1.0, future versions of DFDL may add features (such
as recursive types) which make this analysis undecidable.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 14 of 168

2.4 Validation Errors

Logical validation checks are constraints expressed in XSDL and they apply to the logical content
of the infoset. Hence, parsing must successfully construct the infoset from the representation in
order for validation checks to be meaningful. This implies that validation errors cannot affect the
ability of a DFDL processor to successfully parse or unparse data.

DFDL processors may provide both validating and non-validating behaviors on either or both of
parse and unparse. (A DFDL implementation could support validate on parse, but not support it
on unparse and still be considered conforming.)

The behavior of a DFDL processor after a validation error is not specified by the DFDL language.
An unparse validation error is defined in terms of a parse validation error. Specifically, an unparse
validation error occurs when the physical representation being output would generate a validation
error when parsing the data representation using the same DFDL schema.
When resolving points of uncertainty, validation errors are ignored.

The following DFDL schema constructs are allowed in DFDL and are checked when validating:

1. XSDL pattern facet - (for xs:string type elements only)
2. XSDL minLength, maxLength
3. XSDL minInclusive, minExclusive, maxInclusive, maxExclusive
4. XSDL enumeration
5. XSDL maxOccurs

Note that validation is distinct from the checking of DFDL assert or discriminator predicates.
When a DFDL discriminator or assert is used to discriminate a choice or other point of uncertainty
when parsing, then that assert or discriminator is essential to parsing and it is evaluated
irrespective of whether validation is enabled or disabled.

Note that validation errors cannot be suppressed by points of uncertainty.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 15 of 168

3. Glossary

Adjacent - Two parts of the input/output stream are adjacent if they are at consecutive addresses.

Addressable Unit, or Unit - This is the unit of storage that makes up the input or output stream
holding the representation of the data. The units are bits, bytes, or characters.

Applicable properties - All the DFDL properties that apply to that type of schema construct. For
example all the DFDL properties that apply to an xs:simpleType.

Array - The set of adjacent elements whose XSDL element declaration specifies the potential for
it to have more than one occurrence (xs:maxOccurs > 1 or unbounded). Of course any given
array instance can have any number of elements, including zero elements or exactly 1 element
as long as the occurrence constraints are met. If xs:maxOccurs is 'unbounded' then there is no
constraint to the maximum number of occurrences. An optional element (xs:maxOccurs=1,
xs:minOccurs=0) is not considered to be an array as described in this document. (The term for
any variable-occurrence item, generalizing the notion of variable- occurrence array and optional
element is 'variable-occurrence item'.) Note that a sequence is not to be confused with an array.
A sequence is a complex tuple type for an element; the children of a sequence can be of different
types. All elements of an array have the same type and have the same information item members
except for the value member.

Array Element – an element declaration or reference with xs:maxOccurs>1 or unbounded.

Augmented infoset - When unparsing one begins with the DFDL schema and conceptually with
the logical infoset. As the values of items are filled in by defaulting, and by use of the DFDL
outputValueCalc property (including on hidden items), these new item values augment the
infoset. The resulting infoset is called the augmented infoset.

Byte - The term “byte” refers to an 8-bit octet.

Component - A construct within a DFDL schema that may contain a DFDL annotation..

Content - The content is the bits of data that are interpreted to compute a logical value

Contiguous - An element has a contiguous representation if all parts of its representation are
adjacent in the input/output stream. Most simple types have contiguous representations naturally.
Groups containing elements that are themselves contiguous are also considered to have
contiguous representations irrespective of alignment fill or padding of any kind that exists within
the group. Similarly, arrays containing elements that are themselves contiguous are also
contiguous. An example of a non-contiguous representation would be a nillable element, where a
flag is used to determine whether or not the element is nil, and the location of that flag is not
adjacent to the value representation.

Delimiter - A character or string used to separate, or mark the start and end of, items of data. In
DFDL, dfdl:lengthKind 'delimited' searches for separators and terminators.

Delimiter scanning - When parsing, the process of scanning for a specific item in the data which
marks the end of an item, or the beginning of a subsequent item is referred to as delimiter
scanning, or simply scanning for short. Scanning also takes into account escape schemes so as
to allow the delimiters to appear within data if properly escaped.

DFDL – Data Format Description Language

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 16 of 168

DFDL Processor - A program that uses DFDL schemas in order to process data described by
them.

DFDL Schema - an XML schema containing DFDL annotations to describe data format.

Dynamic extent - This is a characteristic of the data stream. When parsing a declaration or
definition, the collection of bits within the data stream that contain any aspect of the
representation of that element make up the element's dynamic extent.

Dynamic scope - This is a characteristic of parts of the DFDL schema. When a definition or
declaration contains or references another declaration or definition, then the contained definition
or declaration is said to be in the dynamic scope of the enclosing one. The important
characteristic of dynamic scoping is that it traverses references. When parsing, the dynamic
scope of an element declaration includes all definitions and declarations used as part of parsing
that element.

Element - A part of the data described by an element declaration in the schema and presented as
an element information item in the infoset.

Explicit properties - The explicit properties are the combination of any defined locally on the
annotation and any defined on the dfdl:defineFormat annotation referenced by a local dfdl:ref
property.

Fixed-Occurrence Item - An array has fixed number of occurrences when xs:minOccurs =
xs:maxOccurs, or when the DFDL representation properties preclude a variable number of
occurrences. An optional element has a fixed number of occurrences when the DFDL
representation properties preclude a variable number of occurrences.

Format Annotations - the syntactic elements by which format information is decorated onto XML
schemas

Format Properties - the attributes on format annotations which specify characteristics of data
format.

Framing - framing is the term we use to describe the delimiters, length fields, and other parts of
the data stream which are present, and may be necessary to determine the length or position of
the content of an element.

Item - A DFDL information set consists of a number of information items; or just items for short.

Length - When discussing data items and their representations, the term 'length' is used to refer
to the measure of the size of the representation of an item in units of bits, bytes, or characters.
The length of an array is the number of bits, bytes, or characters making up its representation,
and has nothing to do with the number of occurrences, or dimensionality, of the array. Any item or
array has length. Only arrays and optional elements have occurrences.

Lexical scope - In a DFDL Schema document, the lexical scope of any element is the collection of
schema declarations, definitions, and annotations contained within the element textually.

Local properties – Local properties are the properties defined on an annotation in either short,
attribute or element form

Logical layer - A DFDL Schema with all the DFDL annotations ignored is an ordinary XSDL
schema. The logical structure described by this XSDL is called the DFDL logical layer.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 17 of 168

Optional Element - this term refers to an element declaration or reference with xs:maxOccurs=’1’,
and xs:minOccurs=’0’.

Optional Item - an item with xs:minOccurs=’0’, so that it is in fact possible for there to be no
occurrences at all. Optional Elements are optional items obviously, but Variable-occurrence
arrays where xs:minOccurs=0 are also optional items.

Number of Occurrences - used to discuss dimensionality of arrays and the presence/absence of
optional elements.

Potentially represented - an element declaration in the schema describes a potentially
represented item if that element declaration does not have an inputValueCalc property. Whether
the element declaration describes an item that is actually represented or not depends on whether
the element declaration is for a required or optional element, and whether the element has a
corresponding value in the augmented infoset.

Physical layer – A DFDL Schema adds format annotations onto an XSDL language schema. The
annotations describe the physical representation or physical layer of the data.

Point of uncertainty - A point of uncertainty occurs in the data stream when there is more than
one schema component that might occur at that point.

Representation Property – The properties on a component format annotations that affect the
representation of the element. These are all the properties with the exception of dfdl:ref.

Required Element - A scalar element is required. An element of a fixed-occurrence array is
required. An element of a variable-occurrence array is required if its index is less than or equal to
the value of xs:minOccurs. All other elements are not required.

Required property – A DFDL property that must have a value. The required properties for each
xs:schema component are listed in the Property Precedence tables in section 23.

Scalar Element – Not an array and not optional. Specifically xs:maxOccurs=1 and
xs:minOccurs=1. Scalar is not to be confused with 'simple'. Scalar is only about the
dimensionality of the data, not its complexity/simplicity.

Scan – examine the input data bytes looking for delimiters such as separators and terminators.

Scanned length: When dfdl:lengthKind=”delimited”, or “pattern”, and additionally when
dfdl:lengthKind=“endOfParent”, and the parent has scanned length (recursively).

Schema - The set of all declarations and definitions in the schema, including all included and
imported schemas taken together. This includes both the XSDL declarations and definitions, and
the DFDL definitions provided in the top-level DFDL annotations.

Schema Definition Order – the order that the schema components are defined in a schema
document.

Specified length - An item has specified length when dfdl:lengthKind=”implicit”, “explicit”, or
“prefixed”, and additionally, if dfdl:lengthKind=”endOfParent”, and the parent has specified length
(recursively).

Speculative Parsing – When the parser reaches a point of uncertainty it attempts to parse each
option in turn until one is known to exist or known not to exist.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 18 of 168

Target length - When unparsing, the length (in dfdl:lengthUnits) of an item's representation is the
target length. The length of the logical data item in the infoset may be shorter or longer than the
target length, in which case padding or truncation may be required to make the logical data
conform to the target length. Rules for when padding and truncation occur, and how they are
applied is specific to simple data types, and are controlled by a number of DFDL format
properties.

Unpadded length - This is the length of the representation an item of the infoset, prior to any filling
or padding which might be introduced due to dfdl:lengthKind="prefixed" or
dfdl:lengthKind="explicit". It is equal to or smaller than the target length.

Variable-Occurrence Item - Optional elements have a variable number of occurrences (0 or 1)
and arrays also can have a variable number of occurrences (when xs:minOccurs <
xs:maxOccurs). So when we say an item with a variable number of occurrences, this can mean
either an optional element, or an array where xs:minOccurs < xs:maxOccurs. In either array or
optional elements, we have the additional constraint that the DFDL representation properties do
not preclude a variable number of occurrences.

2

2
 When dfdl:occursCountKind='expression' and dfdl:occursCount has a literal constant as its

value, or an expression that statically evaluates to a constant, then the DFDL properties are
specifying exactly the number of occurrences for all instances and so are said to preclude a
variable number of occurrences. If dfdl:occursCount has a formula as its expressed value, then
the DFDL properties do not preclude a variable number of occurrences.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 19 of 168

4. The DFDL Information Set (Infoset)

This section defines an abstract data set called the DFDL Information Set (Infoset). Its purpose
is to define the content that must be provided:

 To an invoking application by a DFDL parser when parsing DFDL-described data using a
DFDL Schema;

 To a DFDL unparser by an invoking application when generating DFDL-described data
using a DFDL Schema

The DFDL Infoset contains enough information so that a DFDL schema can be defined that will
unparse the infoset and reparse the resultant datastream to produce the same infoset..
There is no requirement for DFDL-described data to be valid in order to have a DFDL information
set.
DFDL information sets may be created by methods (not described in this specification) other than
parsing DFDL-described data.
A DFDL information set consists of a number of information items; or just items for short. The
information set for any well-formed DFDL-described data will contain at least a document
information item and one element information item. An information item is an abstract description
of a part of some DFDL-described data: each information item has a set of associated named
members. In this specification, the member names are shown in square brackets, [thus]. The
types of information item are listed in Section 4.1 Information Items.
The DFDL Information Set does not require or favor a specific interface or class of interfaces.
This specification presents the information set as a modified tree for the sake of clarity and
simplicity, but there is no requirement that the DFDL Information Set be made available through a
tree structure; other types of interfaces, including (but not limited to) event-based and query-
based interfaces, are also capable of providing information conforming to the DFDL Information
Set.
The terms "information set" and "information item" are similar in meaning to the generic terms
"tree" and "node", as they are used in computing. However, the former terms are used in this
specification to reduce possible confusion with other specific data models.
The DFDL Information Set is similar in purpose to the XML Information Set [XMLInfo], however, it
is not identical, nor a perfect subset, as there are important differences.

4.1 Information Items

An information set contains two different types of information items, as explained in the following
sections. Every information item has members. For ease of reference, each member is given a
name, indicated [thus].

4.1.1 Document Information Item

There is exactly one document information item in the information set, and all other information
items are accessible through the [root] member of the document information item.
There is no specific DFDL schema component that corresponds to this item. It is a concrete
artifact describing the information set.
The document information item has the following members:

1. [root] The element information item corresponding to the root element declaration of the
DFDL Schema.

2. [dfdlVersion] String. The version of the DFDL specification to which this information set
conforms. For DFDL V1.0 this is 'dfdl-1.0'

3. [schema] String. A reference to a DFDL schema associated with this information set, if
any. If not empty, the value must be an absolute Schema Component Designator
[http://www.w3.org/TR/xmlschema-ref].

http://dataformat.org/dfdl-1.0

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 20 of 168

4.1.2 Element Information Items

There is an element information item for each value parsed from the non-hidden DFDL-
described data. This corresponds to an instance of a non-hidden element declaration of simple
type in the DFDL Schema and is known as a simple element information item.
There is an element information item for each explicitly declared structure in the DFDL-
described data. This corresponds to an instance of an element declaration of complex type in the
DFDL Schema and is known as a complex element information item.
In this information set, as in an XML document, an array is just a set of adjacent elements with
the same name and namespace. (To represent the array explicitly, introduce a new complex type
element to contain the array elements only.)
One of the element information items is the [root] member of the document information item,
corresponding to the root element declaration of a DFDL Schema, and all other element
information items are accessible by recursively following its [children] member.
An element information item has the following members:

1. [namespace] String. The namespace, if any, of the element. If the element does not
belong to a namespace, the value is the empty string.

2. [name] String. The local part of the element name.

3. [document] The document information item representing the DFDL information set that
contains this element. This element is empty except in the root element of an information
set.

4. [datatype] String. The name of the XML Schema 1.0 built-in simple type to which the
value corresponds. DFDL supports a subset of these types listed in section 5.1 DFDL
Subset of XML Schema. In a complex element information item this member has no
value.

5. [dataValue] The value in the value space (as defined by XML Schema Part 2: Datatypes
[XSDLV1]) of the [datatype] member or special value nil. In a complex element
information item this member has no value.
For information items of datatype xs:string, the value is the ISO 10646 character codes of
the string and 'implicit' (also known as logical), left-to-right bidirectional ordering and
orientation. During parsing, characters whose value is unknown or unrepresentable in
ISO 10646 are replaced by the Unicode Replacement Character U+FFFD. During
unparsing, characters that are unrepresentable in the target encoding will be replaced by
the replacement character for that encoding.

6. [children] An ordered set of zero or more element information items. The order they
appear in the set is the order implied by the DFDL Schema. ‘Ordered set’ is not formally
defined here, but two operations are assumed: ‘count’ gives the number of information
items, and ‘at (index)’ gives the element at ordinal position ‘index’ starting from 1. In a
simple element information item this member has no value. In a document information
item this member contains exactly one element information item.

7. [parent] The complex element information item which contains this information item in its
[children] member. In the root element of an information set this member is empty.

8. [schema] String. A reference to a schema component associated with this information
item, if any. If not empty, the value must be an absolute or relative Schema Component
Designator.

4.2 "No Value''

Some members may sometimes have the value no value, and it is said that such a member has
no value. This value is distinct from all other values. In particular it is distinct from the empty

http://www.w3.org/TR/xmlschema-2/

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 21 of 168

string, the empty set, and the empty list, each of which simply has no members, and the special
value nil.

4.3 DFDL Information Item Order

On parsing and unparsing information items will be presented in the order they are defined in the
DFDL Schema.

4.4 DFDL Infoset Object model

By way of illustration, the DFDL information set is presented below as an object model using a
Unified Modeling Language (UML) class diagram, augmented using the Object Constraint
Language (OCL) [http://www.omg.org/technology/documents/modeling_spec_catalog.htm].
The structure of the information set follows the Composite design pattern. In case of
inconsistency or ambiguity, the preceding discussion takes precedence.
DFDL is able to describe the format of the physical representation for data whose structure
conforms to this model. Note that this model allows hierarchically nested data, but does not allow
representation of arbitrary connected graphs of data objects.

Figure 1 DFDL Infoset Object Model

4.5 DFDL Augmented Infoset

When unparsing one begins with the DFDL schema and conceptually with the logical infoset. As
the values of items are filled in by defaulting, and by use of the dfdl:outputValueCalc property
(including on hidden items) (see section 117 Calculated Value Properties.), these new item
values augment the infoset. The resulting infoset is called the augmented infoset.

An element declaration in the schema describes a potentially represented item if that element
declaration does not have a dfdl:inputValueCalc property (see section 17 Calculated Value
Properties.). Whether the element declaration describes an item that is actually represented or
not depends on whether the element declaration is for a required or optional element, and
whether the element has a corresponding value in the augmented infoset.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 22 of 168

In expressions, the function dfdl:representationLength() can be called to determine the
representation length of an item. If an element declaration is not potentially represented, then
dfdl:representationLength() is defined to return 0.

When unparsing, an element declaration and the infoset are considered as follows below. An
implementation may use any technique consistent with this algorithm:

a) If the element declaration has a dfdl:outputValueCalc property then the expression which is
the dfdl:outputValueCalc property value is evaluated and the resulting value becomes the value
of the element item in the augmented infoset. Any pre-existing value for the infoset item is
superseded by this new value.
References to other augmented infoset items from within the outputValueCalc expression must
obtain their values from the augmented infoset directly (when the value is already present) or by
recursively using these methods (a) and (b) as needed.

 b) If the element declaration has no corresponding value in the augmented infoset, and the
element declaration is for a required item, and it has a default value specified, then an element
item having the default value is created in the augmented infoset.

c) If any infoset item’s value is requested recursively as a part of (a) above and (a) does not
apply, and the corresponding value is not present, and (b) does not apply then it is a processing
error.
Given this augmented infoset, then if the potentially represented element declaration has a
corresponding infoset item then that item is converted to its representation according to its DFDL
properties. If the element declaration is for a required item, and there is no value in the
augmented infoset then it is a processing error.
Because rule (a) above is used even if the augmented infoset item already exists and has a
value, it is possible for an outputValueCalc expression to be evaluated multiple times. DFDL
implementations are free to cache values and avoid this repeated evaluation for efficiency, as the
semantics of DFDL require that the outputValueCalc expression return the same value every time
it is evaluated.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 23 of 168

5. DFDL Schema Component Model

When using DFDL, the format of data is described by means of a DFDL Schema.
The DFDL Schema Component Model is shown in conceptual UML in Figure 2. First we show the
model for elements, groups and the top of the type hierarchy.

The shaded boxes have direct corresponding element syntax and therefore appear in DFDL
schema

Figure 2 DFDL Schema UML diagram

The simple types are shown in Figure 3. The graph shows all the types defined by XML Schema
version 1.0, and the subset of these types supported by DFDL are shown as shaded.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 24 of 168

DFDL built-in types

duration

anySimpleType

string QName NOTATION float double decimal boolean base64Binary hexBinary anyURI

normalizedString

token

language Name NMTOKEN

NMTOKENSNCName

ID IDREF ENTITY

IDREFS ENTITIES

integer

long nonPositiveInteger

negativeInteger positiveInteger unsignedLong

unsignedInt

unsignedShort

unsignedByte

int

short

byte

date time dateTime gYear gYearMonth gMonth gMonthDay gDay

nonNegativeInteger

Figure 3 DFDL simple types

These types are defined as they are in XML Schema, with exceptions for:

String – In DFDL a string can contain any character codes. None are reserved. (Including
the character with character code U+0000, which is not permitted in XML documents.)

Each object defined by a class in the above UML is called a DFDL Schema component.
We express the DFDL Schema Model using a subset of the XML Schema Description Language
(XSDL). XSDL provides a standardized schema language suitable for expressing the DFDL
Schema Model.
A DFDL Schema is an XML schema containing only a restricted subset of the constructs
available in full W3C XML Schema Description Language. Within this XML schema, special DFDL
annotations are distributed that carry the information about the data format or representation.
A DFDL Schema is a valid XML schema. However, the converse is not true since the DFDL
Schema Model does not include many concepts that appear in XML schema.

5.1 DFDL Subset of XML Schema

The DFDL subset of XSDL is a general model for hierarchically-nested data. It avoids the XSDL
features used to describe the peculiarities of XML as a syntactic textual representation of data,
and features that are simply not needed by DFDL.
The following lists detail the similarities and differences between general XSDL and this subset.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 25 of 168

DFDL Schemas consist of:

 Standard XSDL namespace management

 Standard XSDL import and management for multiple file schemas

 Local element declarations with dimensionality via xs:maxOccurs and xs:minOccurs.

 Global element declarations

 ComplexType definitions with empty or element-only content

 DFDL appinfo annotations describing the data format

 These simple types: string, float, double, decimal, integer, long, int, short, byte,
nonNegativeInteger, unsignedLong, unsignedInt, unsignedShort, unsignedByte, boolean,
date, time, dateTime, hexBinary

 These facets: minLength, maxLength, minInclusive, maxInclusive, minExclusive,
maxExclusive, totalDigits, fractionDigits, enumeration, pattern (for xs:string type only)

 Fixed values

 Default values

 'sequence' model groups (without xs:minOccurs and xs:maxOccurs)

 'choice' model groups (without xs:minOccurs and xs:maxOccurs)

 Simple type derivations derived by restriction from the allowed built-in types

 Reusable Groups: named model group definitions can only contain one model group

 Element references with dimensionality via xs:maxOccurs and xs:minOccurs.

 Group references without dimensionality

 xs:nillable="true" only on elements of simple type.

 Appinfo annotations for sources other than DFDL are permitted and ignored

 Unions; the memberTypes must be derived from the same simple type. DFDL
annotations are not permitted on union members.

3

 XML Entities

Note: xs:nonNegativeInteger is treated as an unsigned xs:integer.

The following constructs from XML Schema are not used as part of the DFDL Schema Model of
DFDL v1.0 schemas; however, they are all reserved

4
 for future use since the data model may be

extended to use them in future versions of DFDL:

 Attribute declarations (local or global)

 Attribute references

 Attribute group definitions

 complexType derivations where the base type is not AnyType.

 complex types having mixed content or simple content

 List simple types

 Union simple types where the member types are not derived from the same simple type.

 These atomic simple types: normalizedString, token, Name, NCName, QName,
language, positiveInteger, nonPositiveInteger, negativeInteger, gYear, gYearMonth,
gMonth, gMonthDay, gDay, ID, IDREF, IDREFS, ENTITIES, ENTITY, NMTOKEN,
NMTOKENS, NOTATION, anyURI, base64Binary

 xs:maxOccurs and xs:minOccurs on model groups

 xs:minOccurs = 0 on branches of xs:choice model groups

 Identity Constraints

 Substitution Groups

 'all' groups

 xs:any element wildcards

3
 The purpose of unions is to allow multiple constraints via facets such as multiple independent

range restrictions on numbers. This enhances the ability to do rich validation of data.
4
 By reserved we mean that conforming DFDL v1.0 implementations MAY NOT assign semantics

to them.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 26 of 168

 Redefine - This version of DFDL does not support xs:redefine. DFDL schemas must not
contain xs:redefine directly or indirectly in schemas they import or include.

 Nillability on elements of complex type.

 whitespace facet

 recursively-defined types and elements (defined by way of type, group, or element
references)

5.2 XSD Facets, min/maxOccurs, default, and fixed

XSD element declarations and references can carry several attributes and properties that express
constraints on the described data. These constraints are mainly use for validation but are also
used by the dfdl:checkConstraints DFDL expression language function. These attributes and
properties include:

 the facets

 xs:minOccurs, xs:maxOccurs

 default

 fixed

The facets are:

 minLength maxLength

 pattern

 enumeration

 maxInclusive, maxExclusive, minExclusive, minInclusive

 totalDigits, fractionDigits

The following sections describe these in more detail.

5.2.1 MinOccurs and MaxOccurs

The xs:minOccurs value is used:

 To determine if an element declaration or reference is scalar or array

 To determine the required minimum number of occurrences of an array both when
parsing and unparsing

The xs:maxOccurs value is used:

 To determine if an element declaration or reference is scalar or array

 When dfdl:occursCountKind=”fixed”, then the xs:maxOccurs value is the fixed number of
occurrences of the array elements. It is a schema definition error if xs:minOccurs is not
equal to xs:maxOccurs.

 If validating, to determine the maximum acceptable number of occurrences of an array
both when parsing and unparsing.

It is a processing error when an array is found to have a number of occurrences not conforming to
the xs:minOccurs constraints in the absence of a default value specification.
Note that specifically, this is not a validation error, it is a processing error. For example, if the
array occurrences are delimited, we might be able to successfully separate them from each other
and the surrounding data depending on the delimiter specifications; however, if the number of
these occurrences is not conforming to the xs:minOccurs cardinality constraints then it is a
processing error.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 27 of 168

5.2.2 MinLength, MaxLength

These facets are used:

 When dfdl:lengthKind=”implicit”. In that case the length is given by the value of
xs:maxLength. In this case minLength if specified is required to be equal to maxLength
(schema definition error otherwise).

 For validation of variable length string elements.
It is a processing error when a fixed-length string is found to have a number of characters not
equal to the fixed number. For example, if a fixed-length string also has delimiters we might be
able to successfully separate it from the surrounding elements depending on the delimiter
specifications; however, if the length of the fixed-length string is not equal to the number specified
as the fixed length then it is a processing error (not simply a validation error).

5.2.3 MaxInclusive, MaxExclusive, MinExclusive, MinInclusive, TotalDigits,

FractionDigits

 Used for validation only
The format of numbers is not derived from these facets. Rather dfdl properties are used to specify
the format.

5.2.4 Pattern

 Allowed only on elements of type xs:string or derived from it.

 Used for validation only
It is important to avoid confusion of the pattern facet with other uses of regular expressions that
are needed in DFDL. For example, to determine the length of an element by regular expression
matching.

Note: in XSD, pattern is about the lexical representation of the data, and since all is text there,
everything has a lexical representation. In DFDL only strings are guaranteed to have a lexical and
logical value that is identical.

5.2.5 Enumeration

Enumerations are used to provide a list of valid values in XSD.

 Used for validation only

Note: in DFDL we do not use XSD enumeration as a means to define symbolic constants. These
are captured using dfdl:defineVariable constructs so they can be referenced from expressions.

5.2.6 Default

The 'default' attribute is used:

 To provide the logical value of a required element while parsing when the element is
missing. See 13.15 Nils and Default processing

 To provide the logical value of a required element when unparsing when element is
missing. See 13.15 Nils and Default processing

5.2.7 Fixed

The 'fixed' attribute is used:

 To constrain the logical value of an element when validating.

 To provide the logical value of a required element while parsing when the element is
missing. See 13.15 Nils and Default processing

 To provide the logical value of a required element when unparsing when element is
missing. See 13.15 Nils and Default processing

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 28 of 168

6. DFDL Syntax Basics

Using DFDL, a data format is described by placing special annotations at various positions within
an XML schema. This XML schema conveys the basic structure of the data format, while the
annotations fill in the detail. Annotations are used to describe aspects such as the file encoding
and byte ordering, as well as declaring variables for reference elsewhere, and specifying
properties that govern the capabilities of the DFDL processor. A DFDL processor requires these
annotations, along with the structural information of the enclosing XML schema, to make sense of
the physical data model.

6.1 Namespaces

The xs:appinfo source URI http://www.ogf.org/dfdl/ is used to distinguish DFDL annotations from
other annotations.
The element and attribute names in the DFDL syntax are in a namespace defined by the URI
http://www.ogf.org/dfdl/dfdl-1.0/. All symbols in this namespace are reserved. DFDL
implementations may not provide extensions to the DFDL standard using names in this
namespace. Within this specification, the namespace prefix for DFDL is “dfdl” referring to the
namespace http://www.ogf.org/dfdl/dfdl-1.0/.

Attributes on DFDL annotations that are not in the DFDL or notarget namespace are ignored.

A DFDL Schema document contains XML schema annotation elements that define and assign
names to parts of the format specification. These names are defined using the target namespace
of the schema document where they reside. A DFDL schema document can include or import
another schema document, and namespaces work in the usual manner for XML schema
documents. The schema is the schema including all additional schemas referenced through
import and include. Generally, in this specification, when we refer to the DFDL Schema we mean
the schema. When we refer to a specific document we will use the term DFDL Schema
document.

6.2 The DFDL Annotation Elements

DFDL annotations must be positioned specifically where DFDL annotations are allowed within an
XML schema document. These positions are known as annotation points. When an annotation is
positioned at an annotation point, it binds some additional information to the schema component
that encloses it. The description of a data format is achieved by correctly placing annotations on
the structural components of the schema.
DFDL specifies a collection of annotations for different purposes.

Annotation Element(s) Description

assert Defines a test to be used to ensure the data are well formed. Assert

is used only when parsing data. See section 7.3

choice Defines the physical data format properties of an xs:choice group.

See section 7.1.1

discriminator Defines a test to be used when resolving a point of uncertainty such

as choice branches or optional elements. A dfdl:discriminator is used

only when parsing data to resolve the point of uncertainty to one of

the alternatives. See section 7.4

defineEscapeScheme Defines a named, reusable escapeScheme See section 7.5

defineFormat Defines a reusable data format by collecting together other

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 29 of 168

annotations and associating them with a name that can be

referenced from elsewhere. See section 7.2

defineVariable Defines a variable that can be referenced elsewhere. This can be

used to communicate a parameter from one part of processing to

another part. See section 7.7

element Defines the physical data format properties of an xs:element and

xs:element reference. See section 7.1.1

escapeScheme Defines the scheme by which quotation marks and escape

characters can be specified. This is for use with delimited text

formats. See section 7.6

format Defines the physical data format properties for multiple DFDL

schema constructs. Used on an xs:schema and as a child of a

dfdl:defineFormat annotation. This includes aspects such as the

encodings, field separator, and many more. See section 7.1

group Defines the physical data format properties of an xs:group reference.

See section 7.1.1

newVariableInstance Creates a new instance of a variable. See section 7.8

property Used in the syntax of format annotations. See section 7.1.3.2.

setVariable Sets the value of a variable whose declaration is in scope See

section 7.9

sequence Defines the physical data format properties of an xs:sequence

group. See section 7.1.1

simpleType Defines the physical data format properties of an xs:simpleType.

See section 7.1.1

Table 1 - DFDL Annotation Elements

6.3 DFDL Properties

Properties on DFDL annotations may be one or more of the following types

 DFDL string literal
The property value is a string that represents a sequence of literal bytes or characters
which appear in the data stream.

 DFDL expression
The property value is a DFDL subset XPath 2.0 expression that returns a value derived
from other property values and/or from the DFDL infoset.

 DFDL regular expression
The property value is a regular expression that can be used as a pattern to calculate the
length of an element by applying that pattern to the sequence of literal bytes or
characters which appear in the data stream.

 Enumeration
The property value is one of the allowed values listed in the property description. An
enumeration is of type string unless otherwise stated.

 Logical Value.
The property value is a string that describes a logical value. The type of the logical value
is one of the XML schema simple types.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 30 of 168

 QName
The property value is an XML Qualified Name as specified in “Namespaces in XML “
[XMLNS10]

Some properties accept a list or union of types

 List of DFDL String Literals or Logical Values
The property value is a space-separated list of the specified type. When parsing, if more
than one string literal in the list matches the portion of the data stream being evaluated
then the longest matching value in the list must be used. When unparsing, the first value
in the list must be used

 Union of types and expressions.
The property value is a union of DFDL expression and exactly one of the other types. The
expression must resolve to a value of the other type.

 Union of types.
The property value is a union of two or more types. The type is dependent on the value of
another property. For example dfdl:nilValue can be a List of DFDL String Literals or a List
of Strings depending on dfdl:nilKind

6.3.1 DFDL String Literals

DFDL String Literals represent a sequence of literal bytes or characters which appear in the data
stream. This presents the following challenges

- the literal characters in the data stream might not be in the same encoding as the DFDL
schema

- it may be necessary to specify a literal character which is not valid in an XML document
- it may be necessary to specify one or more raw byte values

The DFDL specification defines a language for describing any arbitrary sequence of bytes and
characters. The full grammar is supplied in Appendix E, but the essential details are given below.

A DFDL string literal can describe any of the following types of literal data in any combination:

- a single literal character in any encoding
- a string of literal characters in any encoding
- a bi-directional character string
- one or more characters from a set of related characters (e.g. end-of-line characters)
- a literal byte value

6.3.1.1 Character strings in DFDL String Literals

A literal string in a DFDL Schema is written in the character set encoding specified by the XML
directive that begins all XML documents:

<?xml version="1.0" encoding="UTF-8" ?>

In this example, the DFDL schema is written in UTF-8, so any literal strings contained in it, and
particularly string literals found in its representation property bindings in the format annotations,
are expressed in UTF-8.
However, these strings are being used to describe features of text data that are commonly in
other character sets. For example, we may have EBCDIC data that is comma separated. A
comma in EBCDIC does not have the same character code as a Unicode comma. However,
when we indicate that an item is "," (comma) separated and we specify this using a string literal
along with specifying the 'encoding' property to be 'ebcdic-cp-us' then this means that the data
are separated by EBCDIC commas regardless of what character set encoding is used to write the
DFDL Schema.

<?xml version="1.0" encoding="UTF-8" ?>

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 31 of 168

....

....

....<dfdl:format encoding='ebcdic-cp-us' separator=","/>

.....

When a DFDL processor uses the separator expressed in this manner, the string literal "," is
translated into the character set encoding of the data it is separating as specified by the encoding
representation property. Hence, in this case we would be searching the data for a character with
codepoint 0x6B (the EBCDIC comma), not a UTF-8 or Unicode (0x2C) comma which is what
exists in the DFDL schema document file.

Character strings can include bidirectional data.

6.3.1.2 DFDL Character Entities in String Literals

DFDL character entities specify a single Unicode character and provides a convenient way to
specify code points that appear in the data stream but would be difficult to specify in XML strings.
For example, common non-printable characters or code points, such as 0x00, that are not valid in
XML documents. DFDL entities are based on XML entities, which can also be used in a DFDL
schema.

DfdlCharEntity ::= DfdlEntity |
DecimalCodePoint |
HexadecimalCodePoint

DfdlEntity ::= '%' DfdlEntityName ';'

DfdlEntityName ::= 'NUL'|'SOH''|'STX'|'ETX'|
'EOT'|'ENQ'|'ACK'|'BEL'|
'BS'|'HT'|'LF'|'VT'|'FF'|
'CR'|'SO'|'SI'|'DLE'|
'DC1'|'DC2'|'DC3'|'DC4'|
'NAK'|'SYN'|'ETB'|'CAN'|
'EM'|'SUB'|'ESC'|'FS'|
'GS'|'RS'|'US'|'SP'|
'DEL'|'NBSP'|'NEL'|'LS'

DecimalCodePoint ::= '%#' [0-9]+ ';'

HexadecimalCodePoint ::= '%#x' [0-9a-fA-F]+ ';'

Table 2 DFDL Character Entity syntax

%% - Inserts a single literal "%" into the string literal. This "%" is subject to character set
translation as is any other character.

A HexadecimalCodePoint provides a hexadecimal representation of the character's code point in
ISO/IEC 10646.
A DecimalCodePoint provides a decimal representation of the character's code point in ISO/IEC
10646.
A dfdlEntityName one of the mnemonics given in the following tables.

Mnemonic Meaning Unicode value

NUL null U+0000

SOH start of heading U+0001

STX start of text U+0002

ETX end of text U+0003

EOT end of transmission U+0004

ENQ enquiry U+0005

ACK acknowledge U+0006

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 32 of 168

BEL bell U+0007

BS backspace U+0008

HT horizontal tab U+0009

LF line feed U+000A

VT vertical tab U+000B

FF form feed U+000C

CR carriage return U+000D

SO shift out U+000E

SI shift in U+000F

DLE data link escape U+0010

DC1 device control 1 U+0011

DC2 device control 2 U+0012

DC3 device control 3 U+0013

DC4 device control 4 U+0014

NAK negative acknowledge U+0015

SYN synchronous idle U+0016

ETB end of transmission block U+0017

CAN cancel U+0018

EM end of medium U+0019

SUB substitute U+001A

ESC escape U+001B

FS file separator U+001C

GS group separator U+001D

RS record separator U+001E

US unit separator U+001F

SP space U+0020

DEL delete U+007F

NBSP no break space U+00A0

 NEL Next line U+0085

 LS Line separator U+2028

Table 3 DFDL Entities

6.3.1.3 DFDL Character Classes Entities in DFDL String Literals

The following DFDL character classes are provided to specify one or more characters from a set
of related characters.

DfdlCharClass ::= '%' DfdlCharClassName ';'

DfdlCharClassName ::= 'NL' | 'WSP' | 'WSP*' | 'WSP+' | 'ES'

Table 4 DFDL Character Class Entity syntax

Mnemonic Meaning Unicode value

NL Newline
On parse any NL character or combination of

characters
On unparse the value of the

dfdl:outputNewLine property is output

 U+000A LF

 U+000D CR

 U+000D U+000A CRLF

 U+0085 NEL

 U+2028 LS

WSP Single whitespace
On parse any white space character

On unparse a space (U+0020) is output

 U0009-U000D (Control
characters)

 U0020 SPACE

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 33 of 168

 U0085 NEL

 U00A0 NBSP

 U1680 OGHAM SPACE
MARK

 U180E MONGOLIAN
VOWEL SEPARATOR

 U2000-U200A (different
sorts of spaces)

 U2028 LSP

 U2029 PSP

 U202F NARROW NBSP

 U205F MEDIUM
MATHEMATICAL SPACE

 U3000 IDEOGRAPHIC
SPACE

WSP* Optional Whitespaces
On parse whitespace characters are ignored

On unparse nothing is output

Same as WSP

WSP+ Whitespaces
On parse one or more whitespace characters

are ignored. It is an processing error if no
whitespace character is found

On unparse a space (U+0020) is output

Same as WSP

ES Empty String
Used in space separated lists when empty

string is one of the values
(may only be used for the nilValue property)

Table 5 DFDL Generic Entities

Using these DFDL entities one can create string literals which are a mix of text and hex-specified
data.

6.3.1.4 DFDL Byte Value Entities in DFDL String Literals

DFDL byte value entities provide a way to specify a single byte as it appears in the data stream
without any character set translation. To specify a string of byte values, a sequence of two or
more byte value entities must be used.

ByteValue ::= '%#r' [0-9a-fA-F]{2} ';'

Table 6 DFDL Byte Value Entity syntax

6.3.2 DFDL Expressions

Some DFDL properties allow DFDL expressions [see section 23 Expression language] to be
used so that the property can be set dynamically at processing-time.

The general syntax of expressions is “{“ expression “}”

The rules for recognizing DFDL expressions are

 Must start with a '{' in the first position and end with '}' in the last position.

 '{' in any other position if treated as a literal

 '}' in any position other than the last position is treated as a literal.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 34 of 168

 '{{' as the first characters are treated as the literal '{' and not a DFDL expression.

DFDL expressions reference other items in the infoset or augmented infoset using absolute or
relative paths. Relative paths are evaluated when the component containing the expression is
referenced not when it is declared. For example a global element may have a DFDL property
which is an expression that contains a relative path to another element. The relative path is
evaluated when the global element is referenced from an element reference.
DFDL expressions that are used to provide the value of DFDL properties in the dfd:format
annotation on the xs:schema MAY NOT contain relative paths.

6.3.3 DFDL Regular Expressions

The DFDL lengthPattern property expects a regular expression to be specified. The DFDL
Regular Expression language is defined in the section 24 DFDL Regular Expressions.

6.3.4 Enumerations in DFDL

Some DFDL properties accept an enumerated list of valid values. It is a schema definition error if
a value other than one of the enumerated values is specified. The case of the specified value
must match the enumeration. An enumeration is of type string unless otherwise stated.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 35 of 168

7. Syntax of DFDL Annotation Elements

This section describes the syntax of each of the DFDL annotation elements along with discussion
of their basic meanings.

The DFDL annotation elements are listed in Table 1 - DFDL Annotation Elements

7.1 Component Format Annotations

A data format can be 'used' or put into effect for a part of the schema by use of the component
format annotation elements.
There are specific annotations for each type of schema component that supports only the
representation properties applicable to that component. The table below gives the specific
annotation for each schema component.

Schema component DFDL annotation

xs:choice dfdl:choice

xs:element dfdl:element

xs:element reference dfdl:element

xs:group reference dfdl:group

xs:schema dfdl:format

xs:sequence dfdl:sequence

xs:simpleType dfdl:simpleType

Table 7 DFDL Component Annotations

In addition the dfdl:format annotation is used in a dfdl:defineFormat annotation to define a named
reusable set of representation properties that can be referenced from any component specific
format annotation.
A dfdl:format annotation at the top level of a schema, that is as an annotation child element on
the xs:schema, provides a set of default properties for the lexically enclosed schema document.
See 8.1 Providing Defaults for DFDL properties.

Example of dfdl component annotation:

<xs:schema ...>

...

 <xs:element name="foo">

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:element ref=”aBaseConfig”

 representation="text"

 encoding="UTF-8"/>

 </xs:appinfo>

 </xs:annotation>

 <xs:complexType>

...content here is described by the specified representation properties

...

</xs:element>

...

</xs:schema>

7.1.1 Syntax of Component Format Annotations

Property Name Description

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 36 of 168

ref QName

Reference to a named dfdl:defineFormat annotation that
provides a reusable set of DFDL format properties

The ref property is always local to the component format
annotation on which it is used, even when specified on a
format annotation on the xs:schema element.

See 7.2 dfdl:defineFormat - Reusable Data Format
Definitions

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence,
dfdl:choice, dfdl:group

representation properties All other attributes on format annotation elements are
representation property bindings. These are defined in
sections starting with section 9 DFDL Processing
Introduction

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence,
dfdl:choice, dfdl:group

Table 8 Component Annotation Syntax

7.1.2 Ref Property

A named, reusable, dfdl:defineFormat definition is used by referring to its name from a format
annotation using the 'ref' attribute. For example:

<dfdl:element ref=”reusableDef" encoding="ebcdic-cp-us" />

The behavior of this dfdl:defineFormat definition is as if all representation properties defined by
the named dfdl:defineFormat definition were instead written directly on this format annotation;
however, these are superseded by any representation properties that are defined here such as
the encoding property in the example above.

7.1.3 Property Binding Syntax

The format properties may be specified in one of three forms:
1. Attribute form
2. Element form
3. Short form

A DFDL property may be specified using any form with the following exceptions

 The ref property may be specified in attribute or short form

 The escapeSchemeRef property may be specified in attribute or short form

 The hiddenGroupRef property may be specified in attribute or short form

 The prefixLengthType property may be specified in attribute or short form

It is a schema definition error if the same property is specified in more than one form at the same
annotation point.

7.1.3.1 Property Binding Syntax: Attribute Form

Within the format annotation elements are bindings for properties of the form:

 Property='Value'

For example:

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 37 of 168

 <dfdl:format

 encoding=”utf-8”

 separator=”%NL;”

 />

 </xs:appinfo>

 </xs:annotation>

The Property is the name of the property. The Value is an XML string literal corresponding to a
value of the appropriate type.

7.1.3.2 Property Binding Syntax: Element Form

The representation properties can sometimes have complex syntax, so an element form for
representation property bindings is provided as element content within the format element. This is
provided to ease syntactic expression difficulties:
Element form looks like this:

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:format>

 <dfdl:property name='encoding'>utf-8</dfdl:property>

 <dfdl:property name='separator'>%NL;</dfdl:property>

 </dfdl:format>

 </xs:appinfo>

</xs:annotation>

Element form is mostly used for properties that themselves contain the quotation mark characters
and escape characters so that they can be expressed without concerns about confusion with the
XSDL syntax use of these same characters. CDATA encapsulation can be used so as to allow
malformed XML and mismatched quotes to be easily used as representation property values:

<dfdl:property name=’initiator’><[CDATA[<!--]]></dfdl:property>

7.1.3.3 Property Binding Syntax:Short Form

To save textual clutter, short-form syntax for format annotations is also allowed. Attributes which
are in the namespace "dfdl" and whose local name matches one of the DFDL representation
properties are assumed to be equivalent to specific DFDL long-form annotations.
For example the two forms below are equivalent in that they describe the same data format. The
first is a short-form of the second:

<xs:element name="foo">

 <xs:complexType>

 <xs:sequence dfdl:separator="%HT;" >

 ...

 </xs:sequence>

 </xs:complexType>

</xs:element>

<xs:element name="foo">

 <xs:complexType>

 <xs:sequence>

 <xs:annotation><xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:sequence separator="%HT;" />

 </xs:appinfo></xs:annotation>

 ...

 </xs:sequence>

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 38 of 168

 </xs:complexType>

</xs:element>

Another example:

<xs:sequence dfdl:separator=",">

 <xs:element name="foo" type="xs:int" maxOccurs="unbounded"

 dfdl:representation="text"

 dfdl:textNumberRep="standard"

 dfdl:initiator="["

 dfdl:terminator=”]”/>

 <xs:element name="foo" type="xs:int" maxOccurs="unbounded">

 <xs:annotation><xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:element representation="text"

 textNumberRep="standard"

 initiator=”[“

 terminator="]"/>

 </xs:appinfo></xs:annotation>

</xs:element>

</xs:sequence>

7.1.4 Empty String as a Property Value

DFDL provides no mechanism to un-set a property. Setting a representation property's value to
the empty string doesn't remove the value for that property, but sets it to the empty string value.
This may not be appropriate as a value for certain properties.
For example, in delimited text representations, it is sensible for the separator to be defined to be
the empty string. This turns off use of separator delimiters. For many other string-valued
properties, it is a schema definition error to assign them the empty string value. For example, the
character set encoding property cannot be set to the empty string.

7.2 dfdl:defineFormat - Reusable Data Format Definitions

One or more dfdl:defineFormat annotation elements can appear within the annotation children of
the xs:schema element. The dfdl:defineFormat elements may only appear as annotation children
of the xs:schema element.
The order of their appearance does not matter, nor does their position relative to other non-
annotation children of the xs:schema.
Each dfdl:defineFormat has a required name attribute.
The construct creates a named data format definition. The value of the name attribute is of XML
type NCName. The format name will become a member of the schema’s target namespace.
These names must be unique within the namespace.
If multiple format definitions have the same 'name' attribute, in the same namespace, then it is a
schema definition error.
Here is an example of a format definition:

<xs:schema ...>

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:defineFormat name=”myConfig” >

 <dfdl:format representation=”text”

 ref=”textSpecialFormat1” />

 </dfdl:defineFormat>

 </xs:appinfo>

</xs:annotation>

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 39 of 168

...

</xs:schema>

A dfdl:defineFormat serves only to supply a named definition for a format for reuse from other
places. It does not cause any use of the representation properties it contains to describe any
actual data.
7.2.1 Inheritance for dfdl:defineFormat

A dfdl:defineFormat declaration can inherit from another named format definition by use of the ref
attribute of the dfdl:format annotation. This allows a single-inheritance hierarchy that reuses
definitions. When one definition extends another in this way, any property definitions contained in
its direct elements override those in any inherited definition.
Conceptually, the ‘ref’ inheritance chains can be flattened and removed by copying all inherited
property bindings and then superseding those for which there is a local binding. Throughout this
document we will assume inheritance is fully flattened. That is, all ‘ref’ inheritance is first removed
by flattening before any other examination of properties occurs.
7.2.2 Using/Referencing a Named Format Definition

See section 7.1.2 Ref Property

7.3 The dfdl:assert Annotation Element

The dfdl:assert annotation element is used to assert truths about a DFDL model that are used
only when parsing to ensure that the data are well-formed. These checks are separate from
validation checking and are performed even when validation is off. This distinction is needed to
ensure that switching validation off does not affect parsing.

Examples of dfdl:assert elements are below:

<dfdl:assert message="Value is not zero.” test=”{ ../x ne 0}” />

<dfdl:assert message="Precondition violation.” >

 <[CDATA[{../x le 0 and ../y ne "-->" and ..y ne "<!—" }]]>

</dfdl:assert>

<dfdl:assert message=”Postcondition violation.” testKind='expression'>

 {../x ne “’”}

</dfdl:assert>

7.3.1 Properties for dfdl:assert

DFDL asserts can be placed on components within a DFDL model. These dfdl:asserts contain a
test expression or a test pattern. The dfdl:assert is said to be successful if the test expression
evaluates to true or the test pattern returns a non-zero length match, and unsuccessful if the test
expression evaluates to false or the test pattern returns a zero length match. An unsuccessful
dfdl:assert causes a processing error.

The dfdl:testKind attribute specifies whether an expression or pattern is used by the dfdl:assert.
The expression or pattern can be expressed as an attribute or as a value.

<dfdl:assert test="{test expression}" />

<dfdl:assert >

 {test expression}

</dfdl:assert>

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 40 of 168

It is a schema definition error if a property is specified in more than one form.
It is a schema definition error if both a test expression and a test pattern are specified.

A dfdl:assert can be an annotation on:

 a local xs:element declaration,

 an xs:element reference,

 an xs:group reference,

 an xs:sequence

 an xs:choice.

More than one dfdl:assert may be used at an annotation point. The dfdl:asserts will be evaluated
in the order defined in the schema.

Property Name Description

testKind Enum (optional)

Valid values are 'expression', 'pattern'
Default value is 'expression'

Specifies whether a DFDL expression or DFDL regular expression is used in
the dfdl:assert.

Annotation: dfdl:assert

test DFDL Expression

Applies when dfdl:testKind is 'expression'

A DFDL expression that evaluates to true or false. If the expression
evaluates to true then parsing continues. If the expression evaluates to false
then a processing error is raised.

Any element referred to by the expression must have already been
processed or is a descendent of this element.

The expression must have been evaluated by the time this element and it
descendents have been processed.

If a processing error occurs during the evaluation of the test expression then
the dfdl:assert also fails.

It is a schema definition error if dfdl:test is the empty string and the value is
not specified and dfdl:testKind is 'expression' or not specified
.

Annotation: dfdl:assert

testPattern DFDL Regular Expression

Applies when dfdl:testKind is 'pattern'

A DFDL regular expression that is executed against the data stream starting
at the start of the component on which the dfdl:assert is positioned.

If the length of the match is zero then the dfdl:assert evaluates to false and a
processing error is raised.
If the length of the match is non-zero then the dfdl:assert evaluates to true.

If a processing error occurs during the evaluation of the test regular

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 41 of 168

expression then the dfdl:assert also fails.

It is a schema definition error if dfdl:testPattern is the empty string and the
value is not specified and dfdl:testKind is 'pattern'.

Annotation: dfdl:assert

message String

Defines text to be used as a diagnostic code or for use in an error message.
The DFDL specification does not specify how a DFDL processor uses this
message text.

Annotation: dfdl:assert

Table 9 dfdl:assert properties

7.4 The dfdl:discriminator Annotation Element

DFDL discriminators are used to resolve points of uncertainty that cannot be resolved by
speculative parsing. They can also be used to force a resolution earlier during the parsing of a
group so that subsequent parsing errors are treated as processing errors of a known component
rather than a failure to find a component.

A discriminator determines the existence or non-existence of a component. If the discriminator is
successful then the component is known to exist and any subsequent errors will not cause
backtracking at points of uncertainty. If a discriminator is unsuccessful then the component is
known not to exist and backtracking occurs immediately.

If the complex type of an element contains a sequence group as its content then if the sequence
group is known not to exist, then the element is known not to exist.

Examples of dfdl:discriminator annotation are below :

<dfdl:discriminator >

 {../recType eq 0}

</dfdl:discriminator>

<dfdl:discriminator test="{ ../recType eq 0}" />

When the discriminator’s expression evaluates to "false", then it causes a processing error, and
the discriminator is said to fail.
.
7.4.1 Properties for dfdl:discriminator

A DFDL discriminator contains a test expression that is an expression that evaluates to true or
false. The discriminator is said to be successful if the test evaluates to true and unsuccessful (or
fails) if the test evaluates to false.

The dfdl:testKind attribute specifies whether an expression or pattern is used by the
dfdl:discriminator. The expression or pattern can be expressed as an attribute or as a value.

<dfdl:discriminator test="{test expression}" />

<dfdl:discriminator >

 {test expression}

</dfdl:discriminator>

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 42 of 168

It is a schema definition error if a property is specified in more than one form.
It is a schema definition error if both a test expression and a test pattern are specified.

A dfdl:discriminator can be an annotation on

 a local xs:element declaration

 an xs:element reference

 an xs:group reference (when the top level of a choice branch)

 an xs:sequence (when the top level of a choice branch)

 an xs:choice (when the top level of a choice branch)

Any one annotation point can contain only a single dfd:discriminator or one or more dfdl:asserts,
but not both. It is a schema definition error otherwise

Property Name Description

testKind Enum

Valid values are 'expression', 'pattern'
Default value is 'expression'

Specifies whether a DFDL expression or DFDL regular expression is used in
the dfdl:discriminator .

Annotation: dfdl:discriminator

test DFDL Expression

Applies when dfdl:testKind is 'expression'

A DFDL expression that evaluates to true or false. If the expression
evaluates to true then the discriminator succeeds and parsing continues. If
the expression evaluates to false then the discriminator fails and a
processing error is raised.

If a processing error occurs during the evaluation of the test expression then
the discriminator also fails.

Any element referred to by the expression must have already been
processed or is a descendent of this element.

The expression must have been evaluated by the time this element and it
descendents have been processed or when a processing error occurs when
processing this element or its descendents.

It is a schema definition error if dfdl:test is the empty string and the value is
not specified and dfdl:testKind is 'expression' or not specified

Annotation: dfdl:discriminator

testPattern DFDL Regular Expression

Applies when dfdl:testKind is 'pattern'

A DFDL regular expression that is executed against the data stream starting
at the start of the component on which the dfdl:discriminator is positioned.

If the length of the match is zero then the dfdl:discriminator evaluates to false
and a processing error is raised.
If the length of the match is non-zero then the dfdl:discriminator evaluates to
true.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 43 of 168

It is a schema definition error if dfdl:testPattern is the empty string and the
value is not specified and dfdl:testKind is 'pattern'.

Annotation: dfdl:discriminator

message String

Defines text to be used as a diagnostic code or for use in an error message.
The DFDL specification does not specify how a DFDL processor uses this
message text.

Annotation: dfdl:discriminator

Table 10 dfdl:discriminator properties

<xs:sequence>

<xs:choice>

<xs:element name='branchSimple' >

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:discriminator test='{. eq "a"}' />

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

<xs:element name='branchComplex' >

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:discriminator test='{./identifier eq "b"}' />

 </xs:appinfo>

 </xs:annotation>

 <xs:complexType >

 <xs:element name='identifier' />

 …..

 </xs:complexType>

 </xs:element>

<xs:element name='branchNestedComplex' >

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:discriminator test='{./Header/identifier eq "c"}'/>

 </xs:appinfo>

 </xs:annotation>

 <xs:complexType >

 <xs:sequence>

 <xs:element name='Header' />

 <xs:complexType >

 <xs:sequence>

 <xs:element name='identifier' />

 …..

 </xs:sequence>

 </xs:complexType>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:choice>

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 44 of 168

</xs:sequence>

7.5 The dfdl:defineEscapeScheme Annotation Element

One or more dfdl:defineEscapeScheme annotation elements can appear within the annotation
children of the xs:schema. The dfdl:defineEscapeScheme elements may only appear as
annotation children of the xs:schema.
The order of their appearance does not matter, nor does their position relative to other annotation
or non-annotation children of the xs:schema.
Each dfdl:defineEscapeScheme has a required name attribute and a required
dfdl:escapeScheme child element.
The construct creates a named escape scheme definition. The value of the name attribute is of
XML type NCName. The name will become a member of the schema’s target namespace. These
names must be unique within the namespace among escape schemes.
If multiple dfdl:defineEscapeScheme definitions have the same 'name' attribute, in the same
namespace, then it is a schema definition error.
Each dfdl:defineEscapeScheme annotation element contains a dfdl:defineEscapeScheme
annotation element as detailed below.
Here is an example of an escapeScheme definition:

<xs:schema ...>

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:defineEscapeScheme name=”myEscapeScheme”>

 ...

 <dfdl:escapeScheme escapeCharacter=’/’ />

 ...

 </dfdl:defineEscapeScheme>

 </xs:appinfo>

 </xs:annotation>

...

</xs:schema>

A dfdl:defineEscapeScheme serves only to supply a named definition for an escapeScheme for
reuse from other places. It does not cause any use of the representation properties it contains to
describe any actual data.
7.5.1 Using/Referencing a Named escapeScheme Definition

A named, reusable, escape scheme is used by referring to its name from an
escapeSchemeRef property on an element. For example:

<xs:element name="foo" type="xs:string" >

 <xs:annotation><xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:element representation="text"

 escapeSchemeRef="myEscapeScheme"/>

 </xs:appinfo></xs:annotation>

</xs:element>

http://www.ogf.org/dfdl/%E2%80%9D

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 45 of 168

7.6 The dfdl:escapeScheme Annotation Element

The escapeScheme annotation is used within a dfdl:defineEscapeScheme annotation to group
the properties of an escape scheme and allows a common set of attributes to be defined that can
be reused.
An escape scheme defines the properties that describe the text escaping rules in force when data
such as text delimiters are present in the data. There are two variants on such schemes,

- The use of a single escape character to cause the next character to be interpreted
literally. The escape character itself is escaped by the escape escape character.

- The use of a pair of escape strings to cause the enclosed group of characters to be
interpreted literally. The ending escape string is escaped by the escape escape
character.

On parsing, the escape scheme is applied after padding characters are trimmed and on
unparsing before padding characters are added.
DFDL does not provide a substitution mechanism similar to XML which would replace a character
entity such as < with its literal value <.
The syntax of escapeScheme is defined in Section 13.2.1
The dfdl:escapeScheme Properties

7.7 The dfdl:defineVariable Annotation Element

Variables provide a means for communication within a DFDL schema. They are defined as top-
level elements in a schema and therefore have global scope. .
A new variable is introduced using dfdl:defineVariable:

<dfdl:defineVariable

 name = NCName

 type? = qname

defaultValue? = logical value or dfdl expression

external? = ‘false’ | ‘true’ >

<!-- Content: logical value or dfdl expression (default value) -->

</dfdl:defineVariable>

The name of a newly defined variable is placed into the target namespace of the schema
containing the annotation. Variable names are distinct from format, escape scheme and number
format names and so cannot conflict with them. A variable can have any simple type.
The defaultValue is optional. This is a literal value or an expression which evaluates to a
constant, and it can be specified as an attribute or as the element value. The expression must not

contain forward references to elements which have not yet been processed nor to the current component. If
specified the default value must match the type of the variable (otherwise it is a schema definition
error).
Note that the syntax supports both a dfdl:defaultValue attribute and the 'defaultValue' being
specified by the element value. Only one or the other may be present. (Schema definition error
otherwise.)
Note the value of the name attribute is an NCName. The name of a variable is defined in the
target namespace of the schema containing the definition. If multiple dfdl:defineVariable
definitions have the same ‘name’ attribute in the same namespace then it is a schema definition
error.
The scope of a variable name covers the entire schema in which it is defined. A default instance
of the variable is created (with global scope) at the point of definition. Further instances of the
variable may subsequently be created on schema elements. If the variable has a default value,
this will used as the default value for any instances of the variable (unless overridden when the
instance is created).
The external attribute is optional. If not specified it takes the default value ‘false’. If true the value
may be provided by the DFDL processor and this external value will be used as the global default

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 46 of 168

value (overriding any dfdl:defaultValue specified on the dfdl:defineVariable). The mechanism by
which the processor provides this value is unspecified and implementation specific.
There is no required order between dfdl:defineVariable and other schema level annotations that
may refer to the variable. For example, dfdl:defineFormat.

7.7.1 Examples

<dfdl:defineVariable name="EDIFACT_DS" type="xs:string"

 defaultValue="," />

<dfdl:defineVariable name="codepage" type="xs:string"

 external=”true”>utf-8</dfdl:defineVariable>

7.7.2 Predefined Variables

The following variables are predefined

Name Namespace URI Type Default value External

encoding http://www.ogf.org/dfdl/dfdl-1.0/ xs:string 'UTF-8' true

byteOrder http://www.ogf.org/dfdl/dfdl-1.0/ xs:string 'bigEndian’ true

binaryFloatRep http://www.ogf.org/dfdl/dfdl-1.0/ xs:string 'ieee’ true

outputNewLine http://www.ogf.org/dfdl/dfdl-1.0/ xs:string '%LF;' true

Table 11 Pre-defined variables

These variables are expected to be commonly set externally so are predefined for convenience.

 <xs:element name=”title” type=”xs:string”>

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:element encoding="{$dfdl:encoding}" />

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

7.8 The dfdl:newVariableInstance Annotation Element

Scoped instances of defined variables are created using dfdl:newVariableInstance:

<dfdl:newVariableInstance

 ref = qname

defaultValue? = logical value or dfdl expression

<!-- Content: logical value or dfdl expression (value) -->

</dfdl:newVariableInstance>

Since an initial instance is created when the variable is defined, the use of
dfdl:newVariableInstance is optional. It would be used if an instance with restricted scope is
required.
The dfdl:newVariableInstance annotation can be used on any element, element reference, group
reference, sequence or choice.
The scope of the instance of variable name is the dynamic scope of the schema component and
its contents and so is inherited by any contained constructs or construct references.
The ref attribute is a QName. That is, it may be qualified with a namespace prefix.
An optional dfdl:defaultValue for the instance may be specified. It can be specified as an
attribute or as the element value. The expression must not contain forward references to elements which

have not yet been processed nor to the current component. If specified the default value must match
the type of the variable as specified by dfdl:defineVariable. If the instance is not assigned a new

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 47 of 168

default value then it will inherit the default value specified by dfdl:defineVariable or externally
provided by the DFDL processor. If a default value is not specified (and has not been specified by
dfdl:defineVariable) then the value of this instance is undefined until explicitly set (using
dfdl:setVariable).
If a default value is specified this initial value of the instance will be set when the instance is
created. The value will override any (global) default value which was specified by
dfdl:defineVariable or which was provided externally to the DFDL processor. A variable instance
with a valid value (specified or default) can be referenced anywhere within the scope of the
element on which the instance was created.
Note that the syntax supports both a dfdl:defaultValue attribute and the 'defaultValue' being
specified by the element value. Only one or the other may be present. (Schema definition error
otherwise.)
It is a schema definition error to have more than one newVariableInstances for the same variable
at any given point in the document.
There is no short form syntax for creating variable instances.

7.8.1 Examples

<dfdl:newVariableInstance ref="EDIFACT_DS" defaultValue=","/>

<dfdl:newVariableInstance ref="lengthUnitBits">

 { if dfdl:property("lengthUnits")eq "bits" then 1 else 8 }

</dfdl:newVariableInstance>

7.9 The dfdl:setVariable Annotation Element

Variable instances get their values either by default, by assignment when instantiated or by
subsequent assignment using the dfdl:setVariable annotation.

<dfdl:setVariable

 ref = qname

 value? = logical value or dfdl expression

<!-- Content: logical value or dfdl expression (value) -->

</dfdl:setVariable>

The dfdl:setVariable annotation can be used on an element, simpleType, element reference,
group reference, sequence or choice.

The ref attribute is a QName. That is, it may be qualified with a namespace prefix.
The syntax supports both a dfdl:value attribute and the 'value' being specified by the element
value. Only one or the other may be present. (Schema definition error otherwise.)
The value must match the type of the variable as specified by dfdl:defineVariable.
A dfdl:setVariable value expression may refer to the value of this element using a relative path
value "." . Use of relative path expressions is recommended wherever possible as this will allow
the behavior of the parser to be more effectively scoped. However this practice is not enforced
and there may be situations in which use of an absolute path is in fact required.
The declaration of a variable must be in scope at the point of the assignment, and at the point of
reference.
In normal processing, the value of an instance can only be set once using dfdl:setVariable.
Attempting to set the value of the variable instance for a second time is a schema definition error.
In addition, if a reference to the variable's value has already occurred and returned a default
value, then no assignment (even a first one) can occur. An exception to this behavior occurs
whenever the DFDL processor backtracks because it is processing multiple arms of a choice or
as a result of speculative parsing. In this case the variable state is also rewound.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 48 of 168

A dfdl:setVariable will override any default value specified on either dfdl:defineVariable or
dfdl:newVariableInstance, or externally.
It is a schema definition error to have more than one dfdl:setVariable for the same variable at any
given point in the document.
There is no short form syntax for variable assignment.

7.9.1 Examples

<xs:element name="ds" type="xs:string">

 <xs:annotation>< xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:setVariable ref="EDI:EDIFACT_DS" value="{.}" />

 <dfdl:setVariable ref="delta"> {.} </dfdl:setVariable>

 </xs:appinfo></xs:annotation>

</xs:element>

In the above example, the element named "ds" contains the string to be used as the
EDI:EDIFACT_DS delimiter at other places in the data, so the above defines the value of the
EDI:EDIFACT_DS variable to take on the value of this element.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 49 of 168

8. Property Scoping Rules

This section describes the rules that govern the scope over which DFDL representation
properties apply
The scope of the representational properties on each of the component format annotations is give
in Table 12 DFDL annotation scoping

Annotation Point Property Scope

Schema declaration dfdl:format representation properties apply lexically over all
components in the schema

Element declaration dfdl:element properties apply locally

Element reference dfdl:element properties apply locally

Simple type definition dfdl:simpleType properties apply locally

Sequence dfdl:sequence properties apply locally

Choice dfdl:choice properties apply locally

Group reference dfdl:group properties apply locally

Table 12 DFDL annotation scoping

Note: This table lists DFDL annotations on schema components. DFDL annotations can also be
placed on other DFDL annotations, such as a dfdl:format on a dfdl:defineFormat, to provide a
named reusable resource. In this case the annotation applies only where the named format is
referenced.
DFDL representation properties explicitly defined on annotations, other than a dfdl:format on an
xs:schema declaration, apply locally to that component only. The explicitly defined properties are
the combination of any defined locally on the annotation and any defined on the dfdl:defineFormat
annotation referenced by a local dfdl:ref property. When a property is defined both locally and on
the dfdl:defineFormat, the locally defined property takes precedence.
The dfdl:format annotation on the top level xs:schema declaration provides defaults for the DFDL
representation properties at every DFDL-annotatable component contained in the schema
document. They do not apply to any components in any included or imported schema document
(these may have their own defaults).

8.1 Providing Defaults for DFDL properties

A dfdl:format annotation on the top level xs:schema declaration may provide defaults for some or
all the DFDL representation properties at every annotation point within the schema document.
The default properties may be specified in short, attribute or element form.
The dfdl:ref property is not a representation property so no default can be set.
The dfdl:escapeSchemeRef property provides a default reference to a dfdl:defineEscapeScheme,
the properties of dfdl:escapeScheme are not defaulted individually.
DFDL representation properties defined explicitly on a component apply only to that component
and override the default value of that property provided by an xs:schema dfdl:format annotation.

The example below demonstrates the overriding of a format encoding property. The 'ASCII'

dfdl:format encoding is the default value for the title element, but then it is overridden by the

locally defined utf-8 format encoding, which takes precedence.

<xs:schema>

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:format encoding="ASCII" />

 </xs:appinfo>

 </xs:annotation>

<xs:element name=”book”>

 <xs:complexType>

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 50 of 168

 <xs:sequence>

 <xs:element name=”title” type=”xs:string”>

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:element encoding="utf-8" />

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name=”pages” type=”xs:int”/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

8.2 Combining DFDL Representation Properties from a dfdl:defineFormat

The DFDL representation properties contained in a referenced dfdl:defineFormat are combined
with any DFDL representation properties defined locally on a construct as if they had been
defined locally. If the same property is defined locally in and in the referenced dfdl:defineFormat
then the local property takes precedence. The combined set of explicit DFDL properties has
precedence over any defaults set by a dfdl:format on the xs:schema.

<xs:schema>

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:defineFormat name='myFormat'>

 <dfdl:format encoding="ASCII" />

 </dfdl:defineFormat>

 </xs:appinfo>

 </xs:annotation>

<xs:element name=”book”>

 <xs:complexType>

 <xs:sequence>

 <xs:element name=”title” type=”xs:string”>

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:element ref='myFormat' encoding="UTF-8" />

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name=”pages” type=”xs:int”/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

The example above demonstrates the overriding of an encoding property. The 'ASCII' format
encoding from the 'myFormat' is overridden by the UTF-8 format encoding, which as a locally
defined property takes precedence.

8.3 Combining DFDL Properties from References

The DFDL properties from the following types of reference are combined using the rules below:

 An xs:element and its referenced xs:simpleType restriction,

 An xs:element reference and its referenced global xs:element

 An xs:group reference and an xs:sequence or xs:choice in its referenced global xs:group

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 51 of 168

 An xs:simpleType restriction and its base xs:simpleType restriction

Rules

1. Create an empty working set of "explicit" properties. Create an empty working set of
"default" properties.

2. Move to the innermost schema component in the chain of references.
3. a) Assemble its applicable "explicit" properties from its local dfdl:ref (if present) and its

local properties (if present), the latter overriding the former (that is, local wins).

Combine these with the current working set of "explicit" properties.
It is a schema definition error if there is the same property appears twice.
The result is a new working set of "explicit" properties

b) Obtain applicable "default" properties from dfdl:format annotation on the xs:schema
that contains the component (if present). Combine these with the current working set of
"default" properties, the latter overriding the former (that is, inner wins). Result is a new
working set of "default" properties.

4. Move to the schema component that references the current component, and repeat step
3. If there is no referencing component, move to step 5.

5. Combine the resultant sets of properties. The "explicit" properties take priority, "defaults"
only used when no "explicit" is present. It is a schema definition error if a required
property is in neither the "explicit" nor the "default" working sets.

"Applicable" properties are all the DFDL properties that apply to that type of schema component.
For example all the DFDL properties that apply to an xs:simpleType.

<xs:simpleType name="newType">

 <xs:annotation>

 < xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:simpleType alignment="16"/>

 </xs:appinfo>

 </xs:annotation>

 <xs:restriction base="xs:integer">

 <xs:maxInclusive value="10"/>

 </xs:restriction>

</xs:simpleType>

<xs:element name="testElement1" type="newType">

 <xs:annotation>

 < xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:element representation="binary"/>

 </xs:appinfo>

 </xs:annotation>

</xs:element>

The locally defined dfdl:alignment property with value '16' from the xs:simpleType 'newType' is
combined with the locally defined dfdl:representation property with value 'binary' and applied to
element 'testElement1',

<xs:simpleType name="otherNewType">

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:simpleType alignment="64"/>

 </xs:appinfo>

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 52 of 168

 </xs:annotation>

 <xs:restriction base="newType">

 <xs:maxInclusive value="5"/>

 </xs:restriction>

</xs:simpleType>

<xs:simpleType name="newType">

 <xs:annotation>

<xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:simpleType representation='binary'/>

 </xs:appinfo>

</xs:annotation>

 <xs:restriction base="xs:int">

 <xs:maxInclusive value="10"/>

 </xs:restriction>

</xs:simpleType>

The locally defined dfdl:representation property with value 'binary' is combined with the locally
defined dfdl:alignment property with value '64' from the xs:simpleType restriction 'otherNewType'

<xs:sequence>

 <xs:element ref="testElement1">

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:element

 binaryNumberRep ="binary"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

</xs:sequence>

<xs:element name="testElement1" type="newType">

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:element representation="binary"/>

 </xs:appinfo>

 </xs:annotation>

</xs:element>

<xs:simpleType name="newType">

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:simpleType alignment="16"/>

 </xs:appinfo>

 </xs:annotation>

 <xs:restriction base="xs:int">

 <xs:maxInclusive value="10"/>

 </xs:restriction>

</xs:simpleType>

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 53 of 168

The locally defined dfdl:alignment property with value '16' from the xs:simpleType 'newType' is
combined with the locally defined dfdl:representation property with value 'binary' and locally
defined dfdl:binaryNumberRep with a value of 'binary'

<!-- SCHEMA1 -->

<xs:schema targetNamespace="" xmlns:tns1="http://tns1">

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:format encoding="ASCII" byteOrder="littleEndian"

 inputValueCalc="" outputValueCalc=""

 initiator="" terminator=""

 sequenceKind="ordered" />

 </xs:appinfo>

 </xs:annotation>

<xsd:import namespace="http://tns2" schemaLocation="SCHEMA2.xsd"/>

 <xs:element name=”book”>

 <xs:complexType>

 <xs:group ref="tns2:ggrp1" dfdl:separator=","></xs:group>

 </xs:complexType>

 </xs:element>

</xs:schema>

<!-- SCHEMA2 -->

<xs:schema targetNamespace="" xmlns:tns2="http://tns2">

 <xs:annotation>

 <xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:format encoding="UTF-8" byteOrder="littleEndian"

 inputValueCalc="" outputValueCalc=""

 initiator=""

 sequenceKind="ordered" />

 </xs:appinfo>

 </xs:annotation>

 <xs:group name="ggrp1" >

 <xs:sequence dfdl:separatorPosition="infix" >

 <xs:element name="customer" type="xs:string"

 dfdl:length="8" dfdl:lengthKind="explicit"

 />

 </xs:sequence>

 </xs:group>

</xs:schema>

The DFDL properties applied to the xs:sequence in xs:group "ggrp1" in SCHEMA2 when
referenced from the group reference in SCHEMA1 are

1. dfdl:separator="," from the group reference in SCHEMA1
2. dfdl:separatorPosition="infix" from the group declaration in SCHEMA2
3. dfdl:encoding="UTF-8", dfdl:inputValueCalc="", dfdl:outputValueCalc="" , dfdl:initiator=''"

from the default dfdl:format annotation in SCHEMA2

http://tns2/

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 54 of 168

4. dfdl:terminator ="" from the default dfdl:format annotation in SCHEMA1

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 55 of 168

9. DFDL Processing Introduction

A DFDL Parser is an application or code library that can take as input:

 A DFDL schema

 A data stream.

It is able to use the DFDL description to interpret the data stream and realize the DFDL
Information Model. This information set could then be written out (for example it could be realized
as an XML text string) or it could be accessed by an application through an API (for example, a
DOM-like tree could be created in memory for access by applications).

Symmetrically, there is a notion of a DFDL Unparser. The unparser works from an instance of the
DFDL Information Model, a DFDL annotated schema and writes out to a target data stream in the
appropriate representation formats.
Often both parser and unparser would be implemented in the same body of software and so we
do not always distinguish them. Collectively they are called the DFDL Processor. The parser and
unparser may, of course, be different bodies of software. Conforming DFDL processors may
optionally implement an unparser.

9.1 Parser Overview

The DFDL logical parser is a recursive-descent parser [RDP] having guided, but potentially
unbounded look ahead that is used to resolve points of uncertainty. (See 9.1.1 Resolving Points
of Uncertainty.). A DFDL parser reads a specification (the DFDL schema) and it recursively walks
down and up the schema as it processes the data. This is done in a manner consistent with the
scoping of properties and variables described in Section 8 Property Scoping Rules.
The unbounded look ahead means that there are situations where the parser must speculatively
attempt to parse data where the occurrence of a processing error causes the parser to suppress
the error, back out and make another attempt.
Implementations of DFDL may provide control mechanisms for limiting the speculative search
behavior of DFDL parsers. The nature of these mechanisms is beyond the scope of the DFDL
specification which defines the behavior of conforming parsers only on correct data. That is, data
that can be parsed without any effective processing errors.
The logical parser recursively descends the DFDL schema beginning with the element
declaration specified (in an implementation specific manner, see Section 18) of the distinguished
root node of the schema passed to the DFDL processor. Depending on the kind of schema
construct encountered and the DFDL annotations on it, and the pre-existing context, the parser
performs specific parsing operations on the data stream. These parsing operations typically
recognize and consume data from the stream and construct values in the logical model. For
values of complex types and for arrays, these logical model values may incorporate values
created by recursive parsing.
DFDL Implementations are free to use whatever techniques for parsing they wish so long as the
semantics are equivalent to that of the speculative recursive-descent logical parser described in
this specification. It is required that implementations distinguish the various kinds of errors
(schema definition error, processing error, etc.) no matter what time they are detected. Some
implementations may not detect certain schema definition errors until data are being parsed;
however, they must still distinguish schema definition errors (which indicate that the schema itself
is not meaningful), from parsing errors (which indicate that the input data doesn’t satisfy the
requirements of the schema), or unparsing errors (which indicate that the infoset does not satisfy
the requirements of the schema).

9.1.1 Resolving Points of Uncertainty.

A point of uncertainty occurs in the data stream when there is more than one schema component
that might occur at that point. Points of uncertainty can be nested.
A point of uncertainty is caused when one of the following constructs is used in a DFDL schema

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 56 of 168

1. An xs:choice
2. An unordered xs:sequence (dfdl:sequenceKind='unordered')
3. An xs:element which is optional (xs:minOccurs = 0, xs:maxOccurs=1)
4. An xs:element is an array with a variable number of occurrences (xs:minOccurs not

equal to xs:maxOccurs, and xs:maxOccurs > 1)
5. An xs:sequence containing one or more floating elements.

An xs:choice point of uncertainty is resolved by parsing each choice branch in schema definition
order until one is known to exist. It is a processing error if none of the choice branches are known
to exist.

An unordered xs:sequence point of uncertainty is resolved by parsing for the child components of
the sequence in schema definition order at each point in the data stream where a component can
exist until the required number of each child components is known to exist or the sequence is
terminated by delimiters or specified length.

An optional element point of uncertainty is resolved by parsing the element until it is either known
to exist or known not to exist.

For an array element with a variable number of occurrences. the point of uncertainty is resolved
for each occurrence separately. The array is known to exist if one of its occurrences exists.

A sequence with a floating child element point of uncertainty is resolved by parsing for the
expected ordered component at that point in the data stream. If the expected component is
known not to exist then an instance of each floating component is parsed in schema definition
order.

A component is known to exist when

1. All the syntax and content (initiator if defined, content and terminator if defined) of the
component are successfully parsed and any dfdl:assert if defined evaluates to true.

2. A dfdl:discriminator on the component evaluates to true.
3. A xs:sequence or xs:choice with dfdl:initiatedContent 'yes' and initiator for the component

is found

A component known not to exist when

1. A dfdl:assert on the component evaluates to false or a processing error occurs while
evaluating the expression.

2. A dfdl:discriminator on the component evaluates to false or a processing error occurs
while evaluating the expression.

3. An xs:sequence or xs:choice with dfdl:initiatedContent 'yes' and initiator is not found.
4. A processing error occurs when parsing the component. Processing errors include, but

are not limited to, failure to convert the data to the built-in logical type. Validation errors
do not cause a component to be known not to exist.

DFDL discriminators are described in section: 7.4 The dfdl:discriminator Annotation Element

9.2 DFDL Data Syntax Grammar

Data in a format describable via a DFDL schema obeys the grammar given here. A given DFDL
schema is read by the DFDL processor to provide specific meaning to the terminals and
decisions in this grammar.
The bits of the data are divided into two broad categories:
1 Content
2 Framing

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 57 of 168

The content is the bits of data that are interpreted to compute a logical value.
Framing is the term we use to describe the delimiters, length fields, and other parts of the data
stream which are present, and may be necessary to determine the length or position of the
content of DFDL Infoset items.
Note that sometimes the framing is not strictly necessary for parsing, but adds useful redundancy
to the data format, allowing corrupt data to be more robustly detected, and sometimes the framing
adds human readability to the data format.
In our grammar tables below primitive content is in italic font. The primitive content is one subset
of the grammar’s terminal symbols. The terminal symbols that are framing are shown in bold italic
font.

Productions

Document = Element

Element = SimpleElement | ComplexElement

SimpleElement = ElementLeftFraming SimpleContent RightFraming
ComplexElement = ElementLeftFraming ComplexContent RightFraming

ElementLeftFraming = LeftFraming PrefixLength
PrefixLength = SimpleContent

LeftFraming = LeadingAlignment Initiator

RightFraming = Terminator TrailingAlignment

LeadingAlignment = LeadingSkip AlignmentFill
TrailingAlignment = TrailingSkip

SimpleContent = LeftPadding SimpleRepresentation RightPadOrFill
ComplexContent = Sequence | Choice

Sequence = LeftFraming SequenceContent RightFraming

SequenceContent = [PrefixSeparator SequenceItem [Separator SequenceItem]*
PostfixSeparator] FinalUnusedRegion

SequenceItem = Element | Array | ComplexContent

Choice = LeftFraming ChoiceContent RightFraming
ChoiceContent = [Element | Array | ComplexContent] FinalUnusedRegion

Array = [Element [Separator Element]* [Separator StopValue]]
StopValue = SimpleElement

Table 13 DFDL Grammar Productions

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 58 of 168

10. Core Representation Properties and their Format Semantics

The next sections specify the core set of DFDL v1.0 properties that may be used in DFDL
annotations in DFDL Schemas to describe data formats.
It is a schema definition error when a DFDL schema does not contain a definition for a
representation property that is needed to interpret the data. For example, a DFDL schema
containing any textual data must provide a definition of the character set 'encoding' property for
that textual data, and if it is not part of the format properties context for that data, then it is a
schema definition error.
Furthermore, no default values are provided for representation properties as built-in definitions by
any DFDL processor. This requires DFDL schemas to be explicit about the representation
properties of the data they describe, and avoids any possibility of DFDL schemas that are
meaningful for some DFDL processors but not others.
The properties are organized as follows:

 Common to both Content and Framing (see 11)

 Common Framing, Position, and Length (see 12)

 Simple Type Content (see 13)

 Sequence Groups (see 14)

 Choice Groups (see 15)

 Arrays and optional elements (see 16)

 Calculated Values (see 17)

Where properties are specific to a physical representation, the property name may choose to
reflect this. Where properties are related to a specific logical type grouping (defined below), the
property name may choose to reflect this.

A limited number of properties can take a DFDL expression which must return a value of the type
required for the property. Those properties that take an expression explicitly state in the
description. Other properties do not take an expression.

The property description defines which schema component that the property may be specified on.
In addition all the DFDL properties may be specified on a dfdl:format annotation.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 59 of 168

11. Properties Common to both Content and Framing

Property Name Description

byteOrder Enum or DFDL Expression

Valid values ‘bigEndian’, ‘littleEndian’.

This property can be computed by way of an expression which returns the
string 'bigEndian' or 'littleEndian'. The expression must not contain forward

references to elements which have not yet been processed.

Note that there is, intentionally, no such thing as 'native' endian
5
.

This also applies to character data for multi-byte character sets when the
encoding is not specific. E.g., UTF-16 and UTF-32. Note that when the
character set encoding is specific about the byte order (e.g., UTF-16BE),
then the byteOrder property is ignored when processing text/strings having
that encoding.

Note: The Unicode byte order mark is treated as a normal character and
does not affect encoding.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice,
dfdl:group

encoding Enum or DFDL Expression

Values are IANA charsets or CCSID
6
s.

This property can be computed by way of an expression which returns the
appropriate string. The expression must not contain forward references to
elements which have not yet been processed.

Note that there is, deliberately, no concept of 'native' encoding
7
.

Conforming DFDL v1.0 processors must accept at least 'UTF-8'', 'UTF-16',
'UTF-16BE', 'UTF-16LE', 'ASCII', and 'ISO-8859-1' as encoding names.
Encoding names are case-insensitive, so 'utf-8' and 'UTF-8' are equivalent.
The 'UTF-16' encoding requires that dfdl:byteOrder is defined.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice,
dfdl:group

utf16Width Enum

Valid values are 'fixed', variable'.

Applies only when encoding is 'UTF-16', 'UTF-16BE', UTF16-LE' or their
CCSID equivalents.

Specifies whether the encoding 'UTF-16' should be treated as a fixed or

5
 The concept of native-endian is avoided in DFDL since a DFDL schema containing such a

property binding does not contain a complete description of data, but rather an incomplete one
which is parameterized by characteristics of the machine and implementation where the DFDL
processor is executed. In DFDL this same behavior is achieved using variables or, for example,
by use of external setting of pre-defined variables to set dfdl:byteOrder.
6
 CCSID stands for Coded Character Set ID, a decimal number representation for a codepage

specifier..[CCSID].
7
 The concept of native character encoding is avoided in DFDL since a DFDL schema containing

such a property binding does not contain a complete description of data, but rather an incomplete
one which is parameterized by characteristics of the operating environment where the DFDL
processor executes. In DFDL this same behavior is achieved through use of true
parameterization using variables or, for example, by use of external setting of pre-defined
variables to set dfdl:encoding.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 60 of 168

variable width encoding. 'UTF-16' is a variable width encoding and 'UCS-2'
is the fixed width subset. However it is common for users to specify 'UTF-
16' when they mean when they should be specifying 'UCS-2' This property
effectively converts 'UTF-16' to 'UCS-2'.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice,
dfdl:group

ignoreCase Enum

Valid values are 'yes', 'no'.

Whether mixed case data is accepted when matching delimiters and data
values, such as dfdl:textBooleanTrue, on input.

On unparsing always use the delimiters or value as specified.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice,
dfdl:group

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 61 of 168

12. Framing

Several properties are common across the various framing styles or are used to distinguish them.
Generally these have to do with position and length for text, bit fields, or opaque data.

12.1 Aligned Data

Alignment properties control the leading alignment and trailing alignment regions.
The following properties are used to define alignment rules.

Property Name Description

alignment Non-negative Integer or 'implicit'

A non-negative number that gives the alignment required for the beginning
of the item. If alignment is required then the size of the AlignmentFill
grammar region will be non-zero if the item must be aligned to a boundary.

The alignment of a child component must be less than or equal the
alignment of its parent element, sequence or choice.

‘implicit' specifies that the natural alignment for the representation type is
used. See the table of implicit alignments Table 14 Implicit Alignment in
bits for simple elements. The 'implicit' alignment of complex elements and
groups is the alignment of its child with the greatest alignment. If
alignment is 'implicit' then alignmentUnits is ignored.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice,
dfdl:group

alignmentUnits Enum

Valid values are ‘bits’ or ‘bytes’

Scales the alignment so alignment can be specified in either units of bits or
units of bytes.

Only used when dfdl:alignment not 'implicit'

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice,
dfdl:group

fillByte DFDL String Literal

A single byte specified as a DFDL byte value entity or a single character. If
a character is specified, it must be a single-byte character in the applicable
encoding.

Used on unparsing to fill empty space such as between two aligned
elements.

Used to fill these regions specified in the grammar: RightPadOrFill,
FinalUnusedRegion, LeadingSkip, AlignmentFill, and TrailingSkip.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice,
dfdl:group

leadingSkip Non-negative Integer

A non-negative number of bytes or bits, depending on dfdl:alignmentUnits,
to skip before alignment is applied. Gives the size of the grammar region
having the same name.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice,
dfdl:group

trailingSkip Non-negative Integer

A non-negative number of bytes or bits, depending on dfdl:alignmentUnits,
to skip after the element, but before considering the alignment of the next

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 62 of 168

element. Gives the size of the grammar region having the same name.

If dfdl:trailingSkip is specified when dfdl:lengthKind is 'delimited' or
'endOfParent' then a dfdl:terminator must be specified.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence, dfdl:choice,
dfdl:group

There are two properties which control the data alignment by controlling the length of the
Alignment Fill Region

 alignment - an integer 1 or greater

 alignmentUnits - bits or bytes

An element's representation is aligned to N units if P is the first position in the representation and
P mod N = 1. When parsing, the position of the first unit of the data stream is 1.

For example, if alignment=4, and alignmentUnits='bytes', then the element's representation must
begin at 1 or 1 plus a multiple of a 4 bytes. I.e., 1, 5, 9, 13, 17 and so on.

The length of the alignment fill region is measured in bits. If alignmentUnits is ‘bytes’ then we
multiply the alignment value by 8 to get the bit alignment, B. If the current position (first position
after the end of the previous element) value is bit position N, then the length of the alignment fill
region is the smallest non-negative integer L such that (L + N) mod B = 1. The position of the first
bit of the aligned element is P = L + N.

 To avoid ambiguity when parsing, optional elements and variable-occurrence arrays where the
minimum number of occurrences is zero cannot have alignment properties different from the
items that follow them. It is a schema definition error otherwise. This avoids the possibility that the
following item is incorrectly parsed as if it were a valid optional element or variable-occurrence
array element.
The leading skip and trailing skip regions length are controlled by two properties of corresponding
names and the dfdl:alignmentUnits property..

12.1.1 Implicit Alignment

When dfdl:alignment is 'implicit' the following alignment values are applied for each logical type.

 Representation

 text binary

String 8 Not applicable

Float 8 32

Double 8 64

Decimal, Integer,
nonNegativeInteger

8 packed/bcd :8 binary: 8

Long,
UnsignedLong

8 packed/bcd : 8 binary: 64

Int, UnsignedInt 8 packed/bcd : 8 binary: 32

Short,
UnsignedShort

8 packed/bcd : 8 binary: 16

Byte, UnsignedByte 8 packed/bcd : 8 binary: 8

DateTime 8 packed/bcd: 8 binarySeconds: 32,
binaryMilliseconds:64

Date 8 packed/bcd : 8 binarySeconds: 32,
binaryMilliseconds:64

Time 8 packed/bcd : 8 binarySeconds: 32,
binaryMilliseconds:64

Boolean 8 32

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 63 of 168

HexBinary Not applicable 8

Table 14 Implicit Alignment in bits

Note: Specifying the implicit alignment in bits does not imply that dfdl:lengthUnits 'bits' can be
specified for all simple types.

12.2 Properties for Specifying Delimiters

The following properties apply to all elements (and sequence and choice groups as shown later)
that use text delimiters to delimit, that is, to initiate and/or terminate data. Delimiters can apply to
binary data; however it is often called 'text' delimiters because it is much more commonly used for
textual data formats.

Property Name Description

initiator List of DFDL String Literals or DFDL Expression

Specifies a whitespace separated list of alternative literal
strings one of which marks the beginning of the element or
group of elements.

This property can be computed by way of an expression
which returns a string containing a whitespace separated
list of DFDL String Literals. The expression must not
contain forward references to elements which have not yet
been processed.

The Initiator region contains one of the initiator strings
defined by dfdl:initiator.

When an initiator is specified, it is a processing error if the
component is required and if one of the values is not found.
If dfdl:initiator is "" (the empty string), then the initiator region
is of length zero, and no initiator is expected.

On unparsing the first initiator in the list is automatically
inserted into the Initiator region.

If dfdl:ignoreCase is 'yes' then the case of the string is
ignored by the parser.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence,
dfdl:choice, dfdl:group

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 64 of 168

terminator List of DFDL String Literals or DFDL Expression

Specifies a whitespace separated list of alternative text
strings that one of which marks the end of an element or
group of elements. The strings MUST be searched for in
the longest first order.

This property can be computed by way of an expression
which returns a string of whitespace separated list of
values. The expression must not contain forward
references to elements which have not yet been
processed.

The Terminator region contains the terminator string.

If dfdl:terminator is "" (the empty string), then the terminator
region is of length zero, and no terminator is expected.

When a terminator is expected it is a processing error if one
of the values is not found. However, if
dfdl:documentFinalTerminatorCanBeMissing is specified
then it is not an error if the last terminator in the data
stream is not found.

On unparsing the first terminator in the list is automatically
inserted in the Terminator region.

If dfdl:ignoreCase is 'yes' then the case of the string is
ignored by the parser.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence,
dfdl:choice, dfdl:group

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 65 of 168

emptyValueDelimiterPolicy Enum

Valid values are 'none', 'initiator', 'terminator' or 'both'

Indicates that when an element in the data stream is empty,
an initiator (if one is defined), a terminator (if one is defined),
both an initiator and a terminator (if defined) or neither must
be present.

Ignored if both dfdl:initiator and dfdl:terminator are "" (empty
string).

'initiator' indicates that, on parsing, if the content region is
empty then the dfdl:initiator must be present. It also
indicates that on unparsing when the content region is
empty that the dfdl:initiator will be output.

'terminator' indicates that, on parsing, if the content region is
empty then the dfdl:terminator must be present. It also
indicates that on unparsing when the content region is
empty the dfdl:terminator will be output.

'both' indicates that, on parsing, if the content region is
empty both the dfdl:initiator and dfdl:terminator must be
present. On unparsing when the content region is empty the
dfdl:initiator followed by the dfdl:terminator will be output.

'none' indicates that if the content region is empty neither
the dfdl:initiator or dfdl:terminator must be present. On
unparsing when the content region is empty nothing will be
output.

It is a schema definition error if emptyValueDelimiterPolicy
set to 'none' or 'terminator' when the parent xs:sequence
has dfdl:initiatedContent 'yes'.

Annotation: dfdl:element, dfdl:simpleType

documentFinalTerminatorCanBeMi
ssing

Enum

Valid values are 'yes', 'no'

When the documentFinalTerminatorCanBeMissing property
is true, then when an element is the last element in the
data stream, then on parsing, it is not an error if the
terminator is not found.

For example, if the data are in a file, and the format
specifies lines terminated by the newline character
(typically LF or CRLF), then if the last line is missing its
newline, then this would normally be an error, but if
documentFinalTerminatorCanBeMissing is true, then this
is not a processing error.

On unparsing the terminator is always written out regardless
of the state of this property.

Annotation: dfdl:format (on xs:schema only)

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 66 of 168

outputNewLine DFDL String Literal or DFDL Expression

Specifies the character or characters that will be used to
replace the %NL; character class entity during unparse

It is a schema definition error if any of the characters are not
in the set of characters allowed by the DFDL entity %NL;

It is a schema definition error if the DFDL entity %NL; is
specified

This property can be computed by way of an expression
which returns DFDL string literal. The expression must not
contain forward references to elements which have not yet
been processed.

Annotation: dfdl:element, dfdl:simpleType, dfdl:sequence,
dfdl:choice, dfdl:group

12.3 Properties for Specifying Lengths

These properties are used to determine the representation length of an element and apply to
elements of all types (simple and complex).

Property Name Description

lengthKind Enum

Controls how the representation length of the component is determined.

Valid values are: 'explicit', 'delimited', 'prefixed', 'implicit', 'pattern',
'endOfParent'

A full description of each enumeration is given in the later sections.

'explicit' means the length of the item is given by the dfdl:length property

'delimited' means the item is delimited by a terminator or separator

‘prefixed’ means the length of the item is given by an immediately preceding
prefix field specified using prefixLengthType.

‘implicit means the length is to be determined in terms of the type of the
element and its schema-specified properties if any.

‘pattern’ means the length of the item is given by a regular expression
specified using the dfdl:lengthPattern property.

‘endOfParent’ means that the item is terminated by the termination of the
containing construct.

Annotation: dfdl:element, dfdl:simpleType

lengthUnits Enum

Valid values ‘bytes’, ‘characters’, '‘bits’.

Specifies the units to be used whenever a length is being used to extract
or write data. Applicable when lengthKind is ‘explicit’, 'implicit' (for
xs:string and xs:hexBinary) or ‘prefixed’.

'characters' may only be used for simple elements with representation
'text' and complex elements where all the simple child elements must be
dfdl:representation 'text', dfdl:lengthUnits 'characters' and the same
dfdl:encoding as the parent.

'bits' may only be used for xs:boolean, xs:unsignedByte,
xs:unsignedShort, xs:unsignedInt, and xs:unsignedLong simple types
with representation 'binary'.

 Annotation: dfdl:element, dfdl:simpleType

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 67 of 168

12.3.1 dfdl:lengthKind 'explicit'

When lengthKind='explicit' the length of the item is given by the dfdl:length property, and is
measured in units given by dfdl:lengthUnits. Used on parsing and unparsing.

Property Name Description

length Non-negative Integer or DFDL Expression.

Only used when lengthKind is ’explicit’.

Specifies the length of this element in units specified by dfdl:lengthUnits.

This property can be computed by way of an expression which returns a
non-negative integer. The expression must not contain forward
references to elements which have not yet been processed.

Annotation: dfdl:element, dfdl:simpleType

When dfdl:lengthKind 'explicit', the method of extracting data that is described in section: 12.3.7
Elements of Specified Length

12.3.2 dfdl:lengthKind 'delimited'

On parsing, the length of an element with dfdl:lengthKind 'delimited' is determined by scanning
the datastream for any of

 the element’s terminator (if specified)

 an enclosing construct’s separator or terminator

 the end of an enclosing element designated by its known length

 the end of the data stream

dfdl:lengthKind 'delimited' may be specified for

 elements of xs:simpleTypes with dfdl:representation 'text'

 elements of number or calendar xs:simpleTypes with representation 'binary' and
binaryNumberRep or binaryCalendarRep 'packed' or 'bcd'

 element of xs:complexType.

The rules for resolving ambiguity between delimiters are:

1. When two delimiters have a common prefix, the longest delimiter has precedence.
2. When two delimiters have exactly the same value, the innermost (most deeply nested)

delimiter has precedence.
3. When the separator and terminator on a group have the same value, the separator has

precedence.

On unparsing the length of an element in the data stream is the representation length of the
value, padded to dfdl:textOutputMinLength or xs:minLength if dfdl:textPadKind is 'padChar'

12.3.2.1 Simple Elements of Specified Length within Delimited Constructs

When a simple element has a specified length then delimiter scanning is suspended for the
duration of the processing of the specified-length element.
This allows formats to be parsed which are not scanable in that they contain non-character data.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 68 of 168

12.3.3 dfdl:lengthKind 'implicit'

When dfdl:lengthKind is ‘implicit', the length is determined in terms of the type of the element and
its schema-specified properties.

For complex elements, 'implicit' means the length is determined by the combined lengths of the
contained children, that is the ComplexContent region.

For simple elements the length is fixed and is given in Table 15 Length in bits for simpleTypes
when dfdl:lengthKind='implicit' .

 Representation

 text binary

String maxlength Not applicable

Float Not allowed 32

Double Not allowed 64

Decimal, Integer,
nonNegativeInteger

Not allowed packed/bcd :
Not allowed

binary: Not allowed

Long,
UnsignedLong

Not allowed packed/bcd :
Not allowed

binary: 64

Int, UnsignedInt Not allowed packed/bcd :
Not allowed

binary: 32

Short,
UnsignedShort

Not allowed packed/bcd :
Not allowed

binary: 16

Byte, UnsignedByte Not allowed packed/bcd :
Not allowed

binary: 8

DateTime Not allowed packed/bcd:
Not allowed

binarySeconds: 32,
binaryMilliseconds:64

Date Not allowed packed/bcd :
Not allowed

binarySeconds: 32,
binaryMilliseconds:64

Time Not allowed packed/bcd :
Not allowed

binarySeconds: 32,
binaryMilliseconds:64

Boolean Length of longest of
textBooleanTrue and
textBooleanFalse

32

HexBinary Not applicable maxlength

Table 15 Length in bits for simpleTypes when dfdl:lengthKind='implicit'

 'Not Allowed' means that there is no implicit length for the combination of simple type and
representation and it is a schema definition error if dfdl:lengthKind='implicit' is specified.

 Packed/bcd means binaryNumberRep is 'packed' or 'bcd'

 Binary means binaryNumberRep is 'binary'

 binarySeconds means binaryCalendarRep is 'binarySeconds'

 binaryMilliseconds means binaryCalendarRep is 'binaryMilliseconds'

 maxLength means xs:maxlength

Note: Specifying the implicit length in bits does not imply that dfdl:lengthUnits 'bits' can be
specified for all simple types.

When dfdl:lengthKind is 'implicit', the method of extracting data that is described in section: 12.3.7
Elements of Specified Length

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 69 of 168

12.3.4 dfdl:lengthKind 'prefixed'

When dfdl:lengthKind is ‘prefixed’ the length of the element is given by the PrefixLength region
specified using prefixLengthType. The property prefixIncludesPrefixLength also can be used to
adjust the length appropriately.

When dfdl:lengthKind is 'prefixed' the method of extracting data that is described in section:
12.3.7 Elements of Specified Length

Property Name Description

prefixIncludesPrefixLength Enum

Valid values are 'yes', 'no'

Whether the length given by a prefix includes the length of the prefix
as well as the length of the content region.

Used only when lengthKind=’prefix’.

Annotation: dfdl:element, dfdl:simpleType

prefixLengthType QName

Name of a simple type derived from xs:integer or any subtype of it.

This type, with its DFDL annotations specifies the representation of the
length prefix, which is in the PrefixLength region.

It is a schema definition error if the xs:simpleType specifies
dfdl:lengthKind 'delimited' or 'endOfParent' or a dfdl:outputValueCalc

Annotation: dfdl:element, dfdl:simpleType

The representation of the element is in two parts.

1. The 'length prefix' is an integer which specifies the length of the element's content. The
representation of the length prefix is described by a simple type which is identified using
the dfdl:prefixLengthType property.

2. The content of the element.

When parsing, the length of the element’s content is obtained by parsing the simple type
specified by dfdl:prefixLengthType to obtain an integer value. Note that all required properties
must be present on the specified simple type or defaulted because there is no element
declaration to supply any missing required properties.

If the dfdl:prefixIncludesPrefixLength property is 'yes' then the length of the element's content is
the value of the length prefix minus the length of the representation of the length prefix.

When unparsing, the length of the element’s content must be determined first. The length of a
simple element in the data stream is the representation length of the value, padded to
dfdl:textOutputMinLength or xs:minLength if dfdl:textPadKind is 'padChar'. The length of a
complex element is the combined length of its children including their initiators, separators and
terminators.
Then the value of the prefix length must be calculated using dfdl:prefixIncludesPrefixLength.
Then the prefix length can be written to the data stream using the properties on the
dfdl:prefixLengthType, and finally the element's content can be written to the data stream.

. Consider this example:

<xs:element name="myString" type="xs:string"

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 70 of 168

 dfdl:lengthKind="prefixed"

 dfdl:prefixIncludesPrefixLength="false"

 dfdl:prefixLengthType="packed3"/>

<xs:simpleType name="packed3"
 dfdl:representation="binary"

 dfdl:binaryNumberRep ="packed"

 dfdl:lengthKind="explicit"

 dfdl:length="2" >
 <xs:restriction base="integer" />

</xs:simpleType>

In the above, the string has a prefix element of type 'packed3' containing 3 packed decimal digits.
The property dfdl:prefixIncludesPrefixLength is an enumeration which allows the length
computation to be varied to include or exclude the length of the prefix element itself.
The prefix element's value contains the length measured in units given by dfdl:lengthUnits.
When unparsing data, the value of the prefix is computed automatically and inserted into the data
before the element.

12.3.5 dfdl:lengthKind 'pattern'

The dfdl:lengthKind ‘pattern’ means the length of the element is given by a regular expression
specified using the dfdl:lengthPattern property. The DFDL processor scans the data stream to
determine a string value that is the longest match to a regular expression. The pattern is only
used on parsing,

Property Name Description

lengthPattern DFDL Regular Expression.

Only used when lengthKind is ’pattern’.

Specifies a regular expression that, on parsing, is executed against the
datastream to determine the length of the element.

 The data stream beginning at the starting offset of the content region of
the element is interpreted as a stream of characters in the encoding of
the element, and the regular expression contained in the
dfdl:lengthPattern property is executed against that stream of
characters. When the element is complex this is the dfdl:encoding of the
complex element itself. Child content contained within the element must
be scannable (see below).
Escape schemes are not applied when executing the regular expression.

If the regular expression returns a matched length of zero (i.e. no match
) then the element has a zero-length representation. If the element is not
allowed to have a zero-length representation then the appropriate
processing error is reported. Otherwise, normal processing of nils and
default values occurs.

It is a processing error if conversion of data into a string based on the
character set encoding causes an error due to illegal bit patterns that are
not legal for the encoding.

Annotation: dfdl:element, dfdl:simpleType

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 71 of 168

On unparsing if the element is complex then the length of the element is the length of its children.
If the element is simple then the length is given in Table 16 Unparse lengths (in bits) for
dfdl:lengthKind 'pattern'.

 Representation

 text binary

String unpadded length Not applicable

Float unpadded length 32

Double unpadded length 64

Decimal, Integer,
nonNegativeInteger

unpadded length Minimum number of bytes to represent
significant digits and sign

Long,
UnsignedLong

unpadded length packed/bcd : as
decimal

binary: 64

Int, UnsignedInt unpadded length packed/bcd : as
decimal

binary: 32

Short,
UnsignedShort

unpadded length packed/bcd : as
decimal

binary: 16

Byte, UnsignedByte unpadded length packed/bcd : as
decimal

binary: 8

DateTime unpadded length packed/bcd : as
decimal

binarySeconds: 32,
binaryMilliseconds:64

Date unpadded length packed/bcd : as
decimal

binarySeconds: 32,
binaryMilliseconds:64

Time unpadded length packed/bcd : as
decimal

binarySeconds: 32,
binaryMilliseconds:64

Boolean Length of
textBooleanTrue or
textBooleanFalse

32

HexBinary Not applicable Length of infoset value

Table 16 Unparse lengths (in bits) for dfdl:lengthKind 'pattern'

12.3.5.1 Pattern-Based Lengths - Scanability

Any element (complex, simple text, simple binary) may have a dfdl:lengthKind 'pattern' as long as
the bytes in the content region of the element are legal in the stated encoding of that element.
Where a complex element has children with binary representation in practice this means an 8-bit
ASCII encoding.

Binary data can be handled by way of treating it as text with encoding='iso-8859-1'. In this case
the text is interpreted as in the iso-8859-1 character encoding, and the correspondence of byte
values in the data to a string in the DFDL infoset is one to one. That is, byte with value N,
produces an infoset character with character code N.

12.3.6 dfdl:lengthKind 'endOfParent'

The dfdl:lengthKind ‘endOfParent’ means that the element is terminated by the end of the data
stream or the end of an enclosing complex element, sequence or choice. The enclosing
component must have an identifiable end point, such as a known length, a delimiter, or end of
data stream. The enclosing component does not have to be the immediate parent of the element,
but there must be no other elements defined between the element specifying 'endOfParent' and
the end of the enclosing component.

A dfdl:lengthKind of 'endOfParent' can only be used on simple elements in the following
locations:

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 72 of 168

 When the immediate parent is a sequence, on the final element in the sequence

 When the immediate parent is a choice, on any element that is a branch of the choice

 A global element declaration that is the document root.

 A simple type or global element declaration referenced by one of the above.

It is a schema definition error if the element has a terminator.
It is a schema definition error if the element has dfdl:trailingSkip not equal to 0.
It is a schema definition error if the element has maxOccurs > 1.
It is a schema definition error if any other element is defined between this element and the end of
the enclosing component.

The dfdl:lengthKind 'endOfParent' is used when the length of an element is defined by an
enclosing element . For example, the parent is a fixed length element then an element with
dfdl:lengthKind 'endOfParent' will consume all the remaining data up to the length of the parent. A
dfdl:lengthKind 'endOfParent' can also be used to allow the last element to consume the data up
to the end of the data stream.
This is distinct from situation where the lengths of the elements of a sequence are known but are
not sufficient to fill the fixed length parent. In that case the remaining data are ignored on parsing
and filled with dfdl:fillByte on unparsing.

12.3.7 Elements of Specified Length

An element has a specified length when dfdl:lengthKind is 'explicit', 'implicit' or 'prefixed'. The
units that the length represents are specified by the dfdl:lengthUnits property, expect when
dfdl:lengthKind is 'implicit' and the simpleType is not xs:string or xs:hexBinary.
If dfdl:lengthUnits='bytes' then the value of the length property gives the exact length in bytes.
If dfdl:lengthUnits='characters' then the length in bytes will depend on the encoding of the
characters. If the encoding property specifies a fixed-width encoding then the length in bytes is
(character width*length). If the encoding property specifies a variable-width encoding then the
length in bytes will depend on the actual characters in the element's value. The dfdl:lengthUnits
'characters' may only be used when dfdl:representation is 'text'.
If dfdl:lengthUnits='bits' then the value of the length property gives the exact length in bits. 'Bits'
may only be used for a limited set of schema types. See section: 12.3.7.2 Length of Bit Fields

Using specified length, it is possible for an element to have representation length longer than
needed to represent just the data. For example, a simple text element may be padded in the
RightPadOrFill region if the data is not long enough.

12.3.7.1 Length of Simple Elements with dfdl:representation 'text'

Textual data is defined to mean either data of type string (independent of representation), or data
where the representation property is 'text'.
.

12.3.7.1.1 Character Width

The width of a character is the length of its representation in bytes and depends on the
dfdl:encoding property.
Character encodings are themselves either intrinsically fixed or variable width, but this is modified
by additional properties.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 73 of 168

fixed, 1 byte (e.g.,
ASCII)

fixed, 2
byte
(e.g.,

UCS-2)

fixed, 4 byte
(e.g., UTF-32)

variable (e.g., Shift_JIS,
UTF-8, UTF-16)

1 2 4

Variable width.

Min = 1, Max = encoding
dependent, 2

Table 17 Character Widths

We define the term fixed width encoding to mean an encoding and associated other
representation properties where the value in the bottom row of the above table is a fixed integer.
The term variable width encoding is the opposite. In a variable width encoding, the characters
have a minimum and a maximum length. The maximum depends on the encoding, but is typically
either 3 (Shift-JIS), or 4 (UTF-8).

UTF-16, UTF16LE and UTF16BE are a variable width encodings, however when dfdl:utf16Width
is 'fixed' they are treated as a 2 byte fixed width encoding.

12.3.7.1.2 Text Length in Characters when Specified in Bytes

If a simple element has dfdl:representation=’text’ but dfdl:lengthUnits=’bytes’ then the following
rules apply:

- The length of the simple content region is the length in bytes, the length being calculated
using the normal rules.

- When parsing, as many characters as possible are extracted from the bytes of the simple
content region. Any left over bytes are skipped.

- When unparsing, if the simple content region is larger than the encoded length of the
element then the remaining bytes are filled with dfdl:fillByte (This is the grammar
RightPadOrFill region.).

12.3.7.1.3 Byte Order Mark

If a byte-order mark codepoint appears at the start of a UTF-8, UTF-16 or UTF-32 encoded string
then the byte-order mark will be included as part of the string payload

8
. That is, for the UTF-8,

UTF-16 and UTF-32 character encodings, a byte-order-mark codepoint is treated as a character
of the string in DFDL and contributes to the length.
A way of eliminating the byte-order mark so that it does not end up in the infoset is that the byte-
order mark can be modeled as a separate element before the string. This BOM element can be
either required or optional depending on whether one is expected or optional at the beginning of
the string.

8
 Byte-order marks are explicitly stated to be “not characters” in the Unicode standard.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 74 of 168

12.3.7.2 Length of Bit Fields

A bit field is an element of integer type where the lengthUnits=’bits’.
It is a schema definition error if the length of a bit field is too large for the corresponding integer
type, and the length can be statically determined (from the schema only).
It is a runtime schema definition error if the length of a bit field can only be determined
dynamically (for example because it is stored in the data), and the resulting length is too large for
the integer type.

Definition: Bit position
The data stream is assumed to be a collection of consecutively numbered unsigned bytes. Each
byte is a numeric value, and bit position within an individual byte is given by numeric behavior.
 The bits within each byte are numbered, with the most significant bit having position 1, and the
least significant bit having position 8.
This gives every bit in the data stream a specific bit position. Furthermore, the bit position of the
least significant bit of byte N is numerically adjacent to the bit position of the most significant bit of
byte N+1.

Definition: Bit string
For types xs:boolean, xs:unsignedByte, xs:unsignedShort, xs:unsignedInt, and xs:unsignedLong,
it is possible to specify dfdl:lengthUnits='bits', dfdl:lengthKind='explicit', and then provide a
dfdl:length expression. This expression must be a literal integer, the value of which is between
(inclusively) 1 and 32, 8, 16, 32, and 64 respectively for these types. Such an element is called a
bit string for brevity.

If the dfdl:length expression contains a value out of range then it is a schema definition error.
When parsing, if the data stream ends without enough bits to parse a bit string, that is, N bits are
required based on the dfdl:length, but only M < N bits are available, then it is a processing error.
(Note: This is not specific to bit strings. Any binary type whose length cannot be satisfied from the
data will cause a processing error.

Bit strings, Alignment, and dfdl:fillByte
The dfdl:alignmentUnits='bits', and dfdl:alignment='1' can be used to position a bit string
anywhere in the data stream without regard for any other grouping of bits into bytes.
The numeric value of the unsigned integer represented by a bit string is unaffected by alignment.
When unparsing a bit string, alignment may cause the bits of the bit string to occupy only some of
the bits within a byte of the data stream. The bits of data in the alignment fill region are
unspecified by the elements of the DFDL schema, and are not found in the DFDL infoset. Such
unspecified bits are filled in using the value of the dfdl:fillByte property. Corresponding bits from
the dfdl:fillByte value are used to fill in unspecified bits of the data stream. That is, if bit K (K will
be 1 or greater, but less than or equal to 8) of a data stream byte is unspecified, its value will be
taken from bit K of the dfdl:fillByte property value.
Since the value of any bit string element is unaffected by alignment, the logical integer value for a
bit-string is always computed as if the first bit were at position 1 of the bit stream. If the dfdl:length
for the bit-string evaluates to M, then the bit-string conceptually occupies bits 1 to M of a data
stream for purposes of computing its value.
Bits within Bit Strings of Length <= 8
Any time the length in bits is < 8, then when set, the bit at position Z supplies value 2^(M-Z), and
the value of the bit string as an integer is the sum of these values for each of its bits.

Bits within Bit Strings of Length > 8
Call M the length of the bit string element in bits. In general, when M > 8 the contribution of a bit
in position i to the numeric value of a bit string is given by a formula specific to the dfdl:byteOrder.
For dfdl:byteOrder='bigEndian' the value of bit i is given by 2^(M - i).
For dfdl:byteOrder='littleEndian' the value of bit i is given by a more complex formula. The
following pseudo code computes the value of a bit in a littleEndian bit string. It is just a very big

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 75 of 168

expression, but is spread out over many local variables to illustrate the various sub-calculations
clearly. DFDL implementations may use any way of converting bit strings to the corresponding
integer values that is consistent with this:
In the pseudo code below:

 '%' is modular division (division where remainder is returned)

 '/' is regular division (quotient is returned)

 the expression 'a ? b : c' means 'if a is true, then the value is b, otherwise the
value is c'

 littleEndianBitValue(bitPosition, bitStringLength)

 assert bitPosition >= 1;

 assert bitStringLength >= 1;

 assert bitStringLength >= bitPosition;

 numBitsInFinalPartialByte = bitStringLength % 8;

 numBitsInWholeBytes = bitStringLength -

 numBitsInFinalPartialByte;

 bitPosInByte = ((bitPosition - 1) % 8) + 1;

 widthOfActiveBitsInByte = (bitPosition <= numBitsInWholeBytes)

 ? 8 : numBitsInFinalPartialByte;

 placeValueExponentOfBitInByte = widthOfActiveBitsInByte –

 bitPosInByte;

 bitValueInByte = 2^placeValueExponentOfBitInByte;

 byteNumZeroBased = (bitPosition - 1)/8;

 scaleFactorForBytePosition = 2^(8 * byteNumZeroBased);

 bitValue = bitValueInByte * scaleFactorForBytePosition;

 return bitValue;

 Figure 4 Little Endian bit position and value

Examples
Example: consider the first three bytes of the data stream. Imagine their numeric values as 0x5A
0x92 0x00.
Positions:

00000000 01111111 11122222

12345678 90123456 78901234

Bits:

01011010 10010010 00000000

Hex values

 5 A 9 2 0 0

Beginning at bit position 1, (the very first bit) if we consider the first two bytes as a bigEndian
short, the value will be 0x5A92.

 < xs:element name="num" type="unsignedShort"
 dfdl:alignment="1"

 dfdl:alignmentUnits="bytes"

 dfdl:byteOrder="bigEndian"

 dfdl:representation="binary"/>

As a littleEndian short, the value will be 0x925A.

 < xs:element name="num" type="unsignedShort"
 dfdl:alignment="1"

 dfdl:alignmentUnits="bytes"

 dfdl:byteOrder="littleEndian"

 dfdl:representation="binary"/>

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 76 of 168

Now let us examine a bit string of length 13, beginning at position 2.

< xs:sequence>
 < xs:element name="ignored" type="unsignedByte"
 dfdl:alignment="1"

 dfdl:alignmentUnits="bits"

 dfdl:lengthUnits="bits"

 dfdl:length="1"

 dfdl:representation="binary"/>

 < xs:element name="x" type="unsignedShort"
 dfdl:alignment="1"

 dfdl:alignmentUnits="bits"

 dfdl:byteOrder="bigEndian"

 dfdl:lengthUnits="bits"

 dfdl:length="13"

 dfdl:representation="binary"/>

 ...

< /xs:sequence>

Let's examine the same data stream and consider the bit positions that make up element 'x',
which are the bits at positions 2 through 14 inclusive.
Positions:

00000000 01111111 11122222

12345678 90123456 78901234

Bits:

 1011010 100100

Since alignment does not affect logical value, we will obtain the same logical value as if we
realigned the bits. That is, the value is the same as if we began the bits of the element's
representation with bit position 1.

Realigned Positions:

00000000 01111111 11122222

12345678 90123456 78901234

Bits:

10110101 00100

The DFDL schema fragment above gives element ‘x’ the dfdl:byteOrder='bigEndian' property. In
this case the place value of each position is given by 2^(M – i)
PlaceValue positions 2^(M - i)
...11110 00000000

...21098 76543210

Bit values

...10110 10100100

Hex values

 1 6 A 4

The value of element 'x' is 0x16A4. Notice how it is the most-significant byte -- which is the first
byte when big endian -- that becomes the partial byte (having fewer than 8 bits) in the case where
the length of the bit string is not a multiple of 8 bits.

For dfdl:byteOrder='littleEndian'. The place values of the individual bits are not as easily
visualized. However there is still a basic formula (given in the pseudo code in Figure 4 Little
Endian bit position and value.

Looking again at our realigned positions:

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 77 of 168

Realigned Positions:

00000000 01111111 11122222

12345678 90123456 78901234

Bits:

10110101 00100

The place values of each of these bits, for little endian byte order can be seen to be:
PlaceValue positions

00000000 ...11100

76543210 ...21098

Bit values

10110101 ...00100

Hex values

 B 5 0 4

We must reorder the bytes for little endian byte order. The value of element 'x' is 0x04B5. In little
endian form, the first 8 bits make up the first byte, and that contains the least-significant byte of
the logical numeric unsignedShort value. The additional bits of the partial byte are once again the
most significant byte; however, for little endian form, this is the second byte. The second byte
contains only 5 bits, those make up the least significant 5 bits of that byte, but that logical 5-bit
value makes up the most-significant byte of the unsignedShort integer.
Booleans
The properties dfdl:binaryBooleanTrueRep and dfdl:binaryBooleanFalseRep are unsigned
integers. Specifically, their numeric ranges are restricted as if of type xs:unsignedInt, with
additional restriction in range when the dfdl:lengthUnits=’bits’ and dfdl:length are used to specify
fewer than the maximum of 32 bits.

12.3.7.3 Length of Complex Element of Specified Length

A complex element of known length is defining a 'box' in which its child element exist. For
example a fixed length record with a variable number of children that may not fill the full length of
the record.
For example, an element of complex type may have explicit length of 100 bytes, but contain a
sequence of child elements that use up less than 100 bytes of data. In this case the remaining
unused data is called the FinalUnusedRegion. It is skipped when parsing, and is filled with the
dfdl:fillByte on unparsing.
When the dfdl:lengthUnits is 'characters' on a complex element of specified length then the
dfdl:lengthUnits of all its children must be characters also.

12.3.8 Length of Simple Types with Binary Representations

Elements with dfdl:representation 'binary' and dfdl:binaryNumberRep or dfdl:binaryCalendarRep
'packed' or 'bcd' may be delimited or known length. All other elements with dfdl:representation
'binary' must be of known length and it is a schema definition error if dfdl:lengthKind 'delimited' or
'endOfParent', where the parent dfdl:lengthKind is 'delimited'.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 78 of 168

13. Simple Types

The ‘representation’ property identifies the physical representation of the element. The DFDL
logical types are grouped to illustrate which physical representations apply to each logical type.
These properties provide the correct interpretation of the data found in the SimpleContent
grammar region.
The allowable physical representations for each logical type grouping are also shown, where the
logical type groupings are defined as:

Logical type group types

Number xs:double, xs:float, xs:decimal, xs:integer and its restrictions (xs:int,
xs:unsignedLong, etc.)

String xs:string

Calendar xs:dateTime, xs:date, xs:time

Opaque xs:hexBinary

Boolean xs:Boolean

Table 18 Logical type groups

13.1 Properties Common to All Simple Types

Property Name Description

representation Enum

Valid values are dependent on logical type.

Number: ‘text, ‘binary’

String: representation is assumed to be ‘text' and the representation
property is not examined

Calendar: ‘text, ‘binary’

Boolean: ‘text, ‘binary’

Opaque: representation is assumed to be ‘binary’ and the representation
property is not examined.

Annotation: dfdl:element, dfdl:simpleType

The permitted representation properties for each logical type are shown in Table 19: Logical Type
to Representation properties

Logical type dfdl:representation Additional representation
property

String Assumed to be text

Float, Double

text textNumberRep:
standard

binary binaryFloatRep:
ieee, ibm390Hex

Decimal, Integer,
nonNegativeInteger

text textNumberRep:
standard, zoned

binary binaryNumberRep:
packed, bcd, binary

Long, Int, Short,
Byte, UnsignedLong,

text textNumberRep:
standard, zoned

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 79 of 168

Unsignedint,
Unsignedshort,
UnsignedByte

binary binaryNumberRep:
packed, bcd, binary

DateTime, Date,
Time

text

binary binaryCalendarRep:
packed, bcd, binarySeconds,
binaryMilliseconds

Boolean text

binary

HexBinary Assumed to be
binary

Table 19: Logical Type to Representation properties

13.2 Properties Common to All Simple Types with Text representation

Property Name Description

textPadKind Enum

Valid values ‘none’, 'padChar'.

Indicates whether to pad the representation text on unparsing.

‘none’: No padding occurs. When lengthKind is 'implicit' or 'explicit' the
representation text must match the expected length otherwise it is a
processing error.

'padChar': The element is padded using the
dfdl:textStringPadCharacter, dfdl:textNumberPadCharacter,
dfdl:textBooleanPadCharacter or dfdl:textCalendarPadCharacter
depending on the type of the element

When lengthKind is 'implicit' the element is padded to the implicit
length for the type.

When lengthKind is 'explicit' the element is padded to the length given
by the dfdl:length property.
When lengthKind is 'delimited', 'prefixed', 'pattern' or 'endOfParent' the
element is padded to the length given by the xs:minLength facet for
type 'xs:string' or dfdl:textOutputMinLength property for other types.

Annotation: dfdl:element, dfdl:simpleType

textTrimKind Enum

Valid values ‘none’, ‘padChar’

Indicates whether to trim data on parsing.

When 'none' no trimming takes place

When 'padChar' the element is trimmed of the
dfdl:textStringPadCharacter, dfdl:textNumberPadCharacter,
dfdl:textBooleanPadCharacter or dfdl:textCalendarPadCharacter
depending on the type of the element..

Annotation: dfdl:element , dfdl:simpleType

textOutputMinLength Non-negative Integer.

Only used when dfdl:textPadKind is 'padChar' and dfdl:lengthKind is
'delimited', 'prefixed', 'pattern' or 'endOfParent', and type is not
xs:string

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 80 of 168

Specifies the minimum representation length during unparsing for
simple types that do not allow the xs:minlength facet to be specified.
The units are specified by the dfdl:lengthUnits property.
If dfdl:textOutputMinLength is zero or less than the length of the
representation text then no padding occurs.

Annotation: dfdl:element, dfdl:simpleType

escapeSchemeRef Qname or empty String

The name of the dfdl:defineEscapeScheme annotation that provides
the additional properties used to describe the escape scheme. If the
value is the empty string then escaping is explicitly turned off.

See The dfdl:defineEscapeScheme Annotation Element and The
dfdl:escapeScheme Annotation Element

Annotation: dfdl:element, dfdl:simpleType

13.2.1 The dfdl:escapeScheme Properties

The dfdl:escapeScheme annotation is used within a dfdl:defineEscapeScheme annotation to
group the properties of an escape scheme and allows a common set of attributes to be defined
that can be reused.
An escape scheme is needed when the contents of a text element contains sequences of
characters that are the same as an in-scope separator or terminator. If the characters are not
escaped, a parser scanning for a separator or terminator would erroneously find the character
sequence in the contents.
An escape scheme defines the properties that describe the text escaping rules. There are two
variants on such schemes:

- The use of a single escape character to cause the next character to be interpreted
literally. The escape character itself is escaped by the escape escape character.

- The use of a pair of escape strings to cause the enclosed group of characters to be
interpreted literally. The ending escape string is escaped by the escape escape
character.

On parsing, the escape scheme is applied after padding characters are trimmed and on
unparsing before padding characters are added.
DFDL does not provide a substitution mechanism similar to XML that would replace a character
entity such as < with its literal value <.

Property Name Description

escapeKind Enum

Valid values ‘escapeCharacter', 'escapeBlock'

The type of escape mechanism defined in the escape scheme

When ‘escapeCharacter’: On unparsing a single character of the data is
escaped by adding an dfdl:escapeCharacter before it. The following are
escaped if they are in the data

 - Any in-scope terminating delimiter by escaping its first character.

 - dfdl:escapeCharacter (escaped by dfdl:escapeEscapeCharacter)

 - any dfdl:extraEscapedCharacters

 On parsing the dfdl:escapeCharacter and dfdl:escapeEscapeCharacter'
are removed from the data, unless the dfdl:escapeCharacter is preceded
by the dfdl:escapeEscapeCharacter, or the dfdl:escapeEscapeCharacter
does not proceed the dfdl:escapeCharacter.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 81 of 168

When ‘escapeBlock’: On unparsing the entire data are escaped by adding
dfdl:escapeBlockStart to the beginning and dfdl:escapeBlockEnd to the
end of the data. The data is either always escaped or escaped when
needed as specified by dfdl:generateEscapeBlock. If the data is escaped
and contains the dfdl:escapeBlockEnd then first character of each
appearance of the dfdl:escapeBlockEnd is escaped by the
dfdl:escapeEscapeCharacter. On parsing the dfdl:escapeBlockStart is
removed from the beginning of the data and dfdl:escapeBlockEnd is
removed from end of the data and any dfdl:escapeEscapeCharacters are
removed when they precede a dfdl:escapeBlockEnd.

Annotation: dfdl:escapeScheme

escapeCharacter DFDL String Literal or DFDL Expression

Specifies one character that escapes the subsequent character.

Used when dfdl:escapeKind = ‘escapeCharacter’

It is a schema definition error if dfdl:escapeCharacter is empty when
dfdl:escapeKind is ‘escapeCharacter’

This property can be computed by way of an expression which returns a
character. The expression must not contain forward references to
elements which have not yet been processed.

Escape characters contribute to the representation length of the field

Annotation: dfdl:escapeScheme

escapeBlockStart DFDL String Literal

The string of characters that denotes the beginning of a sequence of
characters escaped by a pair of escape strings.

Used when dfdl:escapeKind = ‘escapeBlock’
It is a schema definition error if escapeBlockStart is empty when
dfdl:escapeKind is ‘escapeBlock’

An dfdl:escapeBlockStart string contributes to the representation length of
the field

Annotation: dfdl:escapeScheme

escapeBlockEnd DFDL String Literal

The string of characters that denotes the end of a sequence of characters
escaped by a pair of escape strings.

Used when dfdl:escapeKind = ‘escapeBlock’ .
It is a schema definition error if dfdl:escapeBlockEnd is empty when
dfdl:escapeKind is ‘escapeBlock’

A dfdl:escapeBlockEnd string contributes to the representation length of
the field

Annotation: dfdl:escapeScheme

escapeEscapeCharacter DFDL String Literal or DFDL Expression

Specifies one character that escapes the subsequent escape character or
first character of dfdl:escapeBlockEnd.

Used when dfdl:escapeKind = ‘escapeCharacter’ or ‘escapeBlock’.

This property can be computed by way of an expression which returns a

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 82 of 168

character. The expression must not contain forward references to
elements which have not yet been processed.

If the empty string is specified then no escaping of escape characters
occurs.

It is explicitly allowed for both the dfdl:escapeCharacter and the
dfdl:escapeEscapeCharacter to be the same character. In that case
processing functions as if the dfdl:escapeCharacter escapes itself.

Annotation: dfdl:escapeScheme

extraEscapedCharacters List of DFDL String Literals

A space separated list of single characters that must be escaped in
addition to the in-scope delimiters.
This property only applies on unparsing

Annotation: dfdl:escapeScheme

generateEscapeBlock Enum

Valid values ‘always’, ‘whenNeeded’

Controls when escaping is used on unparsing when dfdl:escapeKind is
‘escapeBlock’.

If ‘always’ then escaping is always occurs as described in dfdl:escapeKind.

If ‘whenNeeded’ then escaping occurs as described in dfdl:escapeKind
when the data contains any of the following :

 any in-scope terminating delimiter

 dfdl:escapeBlockStart at the start of the data

 any dfdl:extraEscapedCharacters

Annotation: dfdl:escapeScheme

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 83 of 168

13.3 Properties for Bidirectional support for All Simple Types with Text representation

Bidirectional text consists of mainly right-to-left text with some left-to-right nested segments (such
as an Arabic text with some information in English), or vice versa (such as an English letter with a
Hebrew address nested within it.)
Note: the bidirectional properties apply to the value of the element and not to the initiator,
terminator or separator if defined.

textBidi Enum

Valid values are 'yes', 'no'

Indicates the text value of the element is bidirectional.

Annotation: dfdl:element, dfdl:simpleType (representation text)

textBidiTextOrdering Enum

Valid values ‘implicit’, ‘visual’.

Defines how bidirectional text is stored in memory.

'Implicit' means that the characters are stored in the order they are read or
typed. That is with the first character in the first position in the data. (This
is also called logical). 'Visual means that the characters are stored in the
order they would be printed or displayed. That is, the last character of a
right to left sequence is in the first position in the data and the first
character of a left to right sequence is in the first position in the data.

Annotation: dfdl:element , dfdl:simpleType (representation text) ,

textBidiOrientation Enum

Valid values ‘LTR’, ‘RTL’, ‘contextual_LTR’, ‘contextual_RTL’.

Indicates how the text should be displayed.

'LTR' means left-to-right

'RTL' mean right to left.

'contextual_LTR' and 'contextual_RTL' means that the orientation should
be taken from the context of the data. The data may contain 'strong'
characters that are either orientation left or orientation right. The term
following contextual (LTR or RTL) specifies what should be the default
orientation when the data are orientation-neutral (i.e. there are no strong
characters).

Annotation: dfdl:element, dfdl:simpleType (representation text)

textBidiSymmetric Enum

Valid values are 'yes', 'no'

Defines whether characters such as < ([{ that have a symmetric character
with an opposite directional meaning: >)] } should be swapped

Annotation: dfdl:element, dfdl:simpleType (representation text)

textBidiTextShaped Enum

Valid values are 'yes', 'no'

Defines whether characters should be shaped on unparsing. Character
shaping occurs when the shape of a character is dependent on its position
in a word.

Annotation: dfdl:element, dfdl:simpleType (representation text)

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 84 of 168

textBidiNumeralShape
s

Enum

Valid values ‘nominal’, ‘national’.

Defines on unparsing whether logical numbers with text representation
should have Arabic shapes (0123456789) or Arabic-Indic (٩٨٧٦٥٤٣٢١٠)

When 'nominal': All numbers are presented using Arabic shapes

When 'national': All numbers are presented using Arabic-Indic shapes.

Annotation: dfdl:element, dfdl:simpleType (number with representation
text)

13.4 Properties Specific to Strings with Text representation

Property Name Description

textStringJustification Enum

Valid values ‘left’, ‘right’, ‘center’

Unparsing:

'left': Justifies to the left and adds padding chars to the string
contents if the string is too short, to the length determined by the
dfdl:textPadKind property.

'right': Justifies to the right and adds padding chars to the string
contents if the string is too short, to the length determined by the
dfdl:textPadKind property.

‘center’: Adds equal padding chars left and right of the string
contents if the string is too short, to the length determined by the
dfdl:textPadKind property. It adds one extra padding char on the
left if needed.

Parsing:

'left': Trims any padding characters from the right of the string,
according to dfdl:textTrimKind property.

'right': Trims any padding characters from the left of the string,
according to dfdl:textTrimKind property.

‘center’ Trims any padding characters from the left and right of the
string, according to dfdl:textTrimKind property.

Annotation: dfdl:element, dfdl:simpleType

textStringPadCharacter DFDL String Literal

The value that is used when padding or trimming string elements.
The value can be a single character or a single byte.

If a character, then it can be specified using a literal character or
using DFDL entities.
If a byte, then it must be specified using a single byte value entity
otherwise it is a schema definition error

If a pad character is specified when dfdl:lengthUnits='bytes' then
the pad character must be a single-byte character.
If a pad byte is specified when dfdl:lengthUnits='characters' then
- the encoding must be a fixed-width encoding

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 85 of 168

- padding and trimming must be applied using a sequence of N
pad bytes, where N is the width of a character in the fixed-width
encoding.

Annotation: dfdl:element, dfdl:simpleType

truncateSpecifiedLengthString

Enum

Valid values are 'yes', 'no'

Used on unparsing only

 'yes' means if the item is a string (that is, the logical type is
xs:string) that is longer than the specified length, the string is
truncated to this length. (See section 12.3.7 Elements of Specified
Length) No exception is raised on unparsing, unless validation
(see Validating messages) is active.

The position from which data is truncated is determined by the
value of the dfdl:textStringJustification property. If the value of the
dfdl:textStringJustification property is 'left', data is truncated from
the right; if the value of the dfdl:textStringJustification property is
'right', data is truncated from the left. However if the value of the
dfdl:textStringJustification property is 'center' or 'none', truncation
does not occur and a processing error occurs if the string is too
long.

Annotation: dfdl:element, dfdl:simpleType (string simple type)

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 86 of 168

13.5 Properties Specific to Number with Text or Binary representation

Property Name Description

decimalSigned Enum

Valid values are 'yes', 'no'

Indicates whether an xs:decimal element is signed. See 13.6.2
Converting logical numbers to/from text representation and 13.7.1
Converting logical numbers to/from binary representation to see
how this affects the presence of the sign in the data stream.

 ‘yes' means that the xs:decimal element is signed

‘no' means that the xs:decimal element is not signed

Annotation: dfdl:element, dfdl:simpleType

13.6 Properties Specific to Number with Text representation

Property Name Description

textNumberRep Enum

Valid values are ‘standard', ‘zoned’,

‘standard' means represented as characters in the ‘encoding’
code page

‘zoned’ means represented as a zoned decimal in the
‘encoding’ code page. Zoned is not supported for float and
double numbers

Annotation: dfdl:element, dfdl:simpleType

textNumberJustification Enum

Valid values ‘left’, ‘right', ‘center’

Controls how the data is padded or trimmed on parsing and
unparsing.

Behavior as for dfdl:textStringJustification.

Annotation: dfdl:element, dfdl:simpleType

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 87 of 168

textNumberPadCharacter DFDL String Literal

The value that is used when padding or trimming number
elements. The value can be a single character or a single byte.
If a character, then it can be specified using a literal character
or using DFDL entities.
If a byte, then it must be specified using a single byte value
entity

If a pad character is specified when dfdl:lengthUnits='bytes'
then the pad character must be a single-byte character.
If a pad byte is specified when dfdl:lengthUnits='characters'
then
- the encoding must be a fixed-width encoding
- padding and trimming must be applied using a sequence of N
pad bytes, where N is the width of a character in the fixed-
width encoding.

Annotation: dfdl:element, dfdl:simpleType

textNumberPattern String

Defines the ICU-like pattern that describes the format of the
text number. The pattern defines where grouping separators,
decimal separators, implied decimal points, exponents,
positive signs and negative signs appear. It permits definition
by either digits/fractions or significant digits. Allows rounding.

When dfdl:textNumberRep is 'standard' this property only
applies when dfdl:textStandardBase is 10. When
dfdl:textNumberRep is 'standard' and dfdl:textStandardBase is
not 10 the number is represented as the minimum number of
characters to represent the digits. There is no sign or virtual
decimal point.

The syntax of dfdl:textNumberPattern is described in section
13.6.1 The textNumberPattern Property

Annotation: dfdl:element, dfdl:simpleType

textNumberRounding Enum

Specifies how rounding is controlled during unparsing.

Valid values ‘pattern' 'explicit'

When dfdl:textNumberRep is 'standard' this property only
applies when dfdl:textStandardBase is 10.

If 'pattern' then the rounding increment is specified in the
dfdl:textNumberPattern using digits '1' though '9'. The rounding
mode is always 'roundHalfEven'. To switch off rounding, do not
use digits '1' through '9'.

If 'explicit' then the rounding increment is specified by the
dfdl:textNumberRoundingIncrement property, and any digits '1'
through '9' in the dfdl:textNumberPattern are treated as digit
'0'. The rounding mode is specified by the
dfdl:textRoundingMode property. To switch off rounding, use
0.0 for the dfdl:textNumberRoundingIncrement.

Annotation: dfdl:element, dfdl:simpleType

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 88 of 168

textNumberRoundingMode Enum

Specifies how rounding occurs during unparsing, when
dfdl:textNumberRounding is 'explicit'.

When dfdl:textNumberRep is 'standard' this property only
applies when dfdl:textStandardBase is 10.

Valid values ‘roundCeiling’, ‘roundFloor’, ‘roundDown’,
‘roundUp’, ‘roundHalfEven’, ‘roundHalfDown’, ‘roundHalfUp'

Annotation: dfdl:element, dfdl:simpleType

textNumberRoundingIncrement Double

Specifies the rounding increment to use during unparsing,
when dfdl:textNumberRounding is 'explicit'.

When dfdl:textNumberRep is 'standard' this property only
applies when dfdl:textStandardBase is 10.

To switch off rounding, use 0.0.

A negative value is a schema definition error.

Annotation: dfdl:element, dfdl:simpleType

textNumberCheckPolicy Enum

Values are 'strict' and 'lax'.

Indicates how lenient to be when parsing against the pattern.

When dfdl:textNumberRep is 'standard' this property only
applies when dfdl:textStandardBase is 10.

If ‘lax' and dfdl:textNumberRep is 'standard' then grouping
separators can be omitted, decimal separator can be either ‘.’
or ‘,’ (as long as this is unambiguous), leading positive sign
can be omitted, all whitespace is treated as zero, and leading
and trailing whitespace is ignored. Also the exponent is also
optional and assumed to be '1' if not supplied

If 'lax' and dfdl:textNumberRep is 'zoned' then positive
punched data is accepted when parsing an unsigned type, and
unpunched data is accepted when parsing a signed type

On unparsing the pattern is always followed and follow the
rules in 13.6.2 Converting logical numbers to/from text
representation.

Annotation: dfdl:element, dfdl:simpleType

textStandardDecimalSeparator DFDL String Literal or DFDL Expression

Defines the single character that will appear in the data as the
decimal separator.

This property is applicable when dfdl:textNumberRep is
'standard' and dfdl:textStandardBase is 10.

This property can be computed by way of an expression which
returns a character. The expression must not contain forward
references to elements which have not yet been processed.

Annotation: dfdl:element, dfdl:simpleType

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 89 of 168

textStandardGroupingSeparator DFDL String Literal or DFDL Expression

Defines the single character that will appear in the data as the
grouping separator.

This property is applicable when dfdl:textNumberRep is
'standard' and dfdl:textStandardBase is 10.

This property can be computed by way of an expression which
returns a character. The expression must not contain forward
references to elements which have not yet been processed.

Annotation: dfdl:element, dfdl:simpleType

textStandardExponentCharacter DFDL String Literal or DFDL Expression

Defines the actual character that will appear in the data as the
exponent indicator. If the empty string is specified then no
exponent character will be used.

This property is applicable when dfdl:textNumberRep is
'standard' and dfdl:textStandardBase is 10.

This property can be computed by way of an expression which
returns a character. The expression must not contain forward
references to elements which have not yet been processed.

If dfdl:ignoreCase is 'yes' then the case of the string is ignored
by the parser.

Annotation: dfdl:element, dfdl:simpleType

textStandardInfinityRep DFDL String Literal

The value used to represent infinity.

Infinity is represented as a string with the positive or negative
prefixes and suffixes from the dfdl:textNumberPattern applied

This property is applicable when dfdl:textNumberRep is
'standard', dfdl:textStandardBase is 10 and the simple type is
float or double

If dfdl:ignoreCase is 'yes' then the case of the string is ignored
by the parser.

Annotation: dfdl:element, dfdl:simpleType

textStandardNanRep DFDL String Literal

The value used to represent NaN.

NaN is represented as string and the positive or negative
prefixes and suffixes from the dfdl:textNumberPattern are not
used

This property is applicable when dfdl:textNumberRep is
'standard', dfdl:textStandardBase is 10 and the simple type is
float or double

If dfdl:ignoreCase is 'yes' then the case of the string is ignored
by the parser.

Annotation: dfdl:element, dfdl:simpleType

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 90 of 168

textStandardZeroRep List of DFDL String Literals

Valid values: empty string, any character string

The whitespace separated list of alternative literal strings that
are equivalent to zero, for example the characters ‘zero’.

On unparsing the first value is used.

If dfdl:ignoreCase is 'yes' then the case of the string is ignored
by the parser.

The empty string means that there is no special literal string
for zero

This property is applicable when dfdl:textNumberRep is
'standard' and dfdl:textStandardBase is 10.

Annotation: dfdl:element, dfdl:simpleType

textStandardBase Non-negative Integer

Valid Values 2, 8, 10, 16

Indicates the number base.

Only used when dfdl:textNumberRep is 'standard'.

When base is not 10, xs:decimal, xs:float and xs:double are
not supported.

When dfdl:textNumberRep is 'zoned' dfdl:textNumberBase 10
is assumed

Annotation: dfdl:element, dfdl:simpleType

textZonedSignStyle Enum

Specifies the characters that are used to overpunch the sign
nibble when the encoding is an ASCII character set. The
location of this sign nibble is indicated in the
dfdl:textNumberPattern.

This property is applicable when dfdl:textNumberRep is
'zoned'

Used only when encoding specifies an ASCII-derived
character set. That is printable character codepoints 0x20 -
0x7E are the same as US-ASCII. This includes all the Unicode
character sets, and all variations of ASCII and ISO-8859.

Valid values 'asciiStandard', ‘asciiTranslatedEBCDIC',
‘asciiCARealiaModified'

Which characters are used to represent ‘overpunched’
(included) positive and negative signs, varies by encoding,
Cobol compiler and system. It is fixed for EBCDIC systems but
not for ASCII.

In EBCDIC-based encodings, characters ‘{ABCDEFGHI’ or
'0123456789' represent a positive sign and digits 0 to 9.
(Character codes 0xC0 to 0xC9 or 0xF0 to 0xF9). The
characters ‘}JKLMNOPQR’ or '^£¥·©§¶¼½¾ 'represent a
negative sign and digits 0 to 9. (character codes 0xD0 to
0xD9 or 0xB0 to 0xB9) On parsing both ranges of characters
will be accepted. On unparsing the range 0xC0 to 0xC9 will be
produced for positive signs and 0xD0 to 0xD9 will be produced
for negative signs.

asciiStandard: ASCII characters ‘0123456789’ represent a

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 91 of 168

positive sign and the corresponding digit. (Sign nibble for ‘+’ is
0x3, which is the high nibble of these character codes
unmodified.) ASCII characters ‘pqrstuvwxy’ represent negative
sign and digits 0 to 9. (Character codes 0x70 to 0x79)

asciiTranslatedEBCDIC: The overpunched character is the
ASCII equivalent of the EBCDIC above. So the characters
‘{ABCDEFGHI’ still represent a positive sign and digits 0 to 9.
(These are character codes 0x7B, 0x41 through 0x49). The
characters ‘}JKLMNOPQR’ still represent negative sign and
digits 0 to 9. (These are character codes 0x7D, 0x4A through
0x52). This case comes up if ebcdic zoned decimal data is
translated to ASCII as if it were textual data.

asciiCARealiaModified
9
: In this style, the ASCII characters

‘0123456789’ represent positive sign and digits 0 to 9 as in
standard. However, ASCII characters from code 0x20 to 0x29
are used for negative sign and the corresponding decimal
digit. This doesn't translate well into printing characters. These
characters include the space (‘ ‘) for zero, characters ‘!”#$%&’
for 1 through 6, the single quote character “’” for 7, and the
parenthesis ‘()’ for 8 and 9.

Annotation: dfdl:element, dfdl:simpleType

13.6.1 The textNumberPattern Property

The dfdl:textNumberPattern describes how to parse and unparse text representations of number
logical types with base 10.
The length of the representation of the number is determined first, and the number pattern is used
only for conversion of the text to and from a numeric logical infoset value.
The pattern described below is derived from the ICU DecimalFormat class described here:
[ICUDecForm]

The pattern is an ICU-like syntax that defines where grouping separators, decimal separators,
implied decimal points, exponents, positive signs and negative signs appear. It permits definition
by either digits/fractions or significant digits.
If the pattern uses digits/fractions then these must match any XML schema facets. If not it is a
schema definition error.

13.6.1.1 dfdl:textNumberPattern for dfdl:textNumberRep 'standard'

When dfdl:textNumberRep is 'standard' this property only applies when dfdl:textStandardBase is
10
The pattern comes in two parts separated by a semi-colon. The first is mandatory and applies to
positive numbers, the second is optional and applies to negative numbers.

9
 Reference for this CA Realia 0x20 overpunch for negative sign is the article: "EBCDIC to ASCII

Conversion of Signed Fields" at http://www.discinterchange.com/TechTalk_signed_fields_.html, where it
says:

COBOL compilers that run on ASCII platforms have a "signed" data type that operates in a similar
manner to the EBCDIC Signed field -- that is, they over punch the sign on the LSD. However,
this is not standardized in ASCII, and different compilers use different overpunch codes. For
example, Computer Associates' Realia compiler uses a 30 hex for positive values and a 20 hex
for negative values, but Micro Focus® and Microsoft® use 30 hex for positive values and 70 hex
for negative values.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 92 of 168

Examples: The first shows digits/fractions and positive/negative signs, the second shows
exponent, the third shows significant digits.
+###,##0.00;(###,##0.00)
##0.0#E0
+###V#0

Note that 'V' is used to indicate the location of an implied decimal point for fixed point number
representations. (This is an extension to the ICU pattern language.)
The actual grouping separator, decimal separator and exponent characters are defined
independently of the pattern.
The actual positive sign and negative sign are defined within the pattern itself.

Many characters in a pattern are taken literally; they are matched during parsing and output
unchanged during formatting. Special characters, on the other hand, stand for other characters,
strings, or classes of characters. For example, the '#' character is replaced by a digit.

To insert a special character in a pattern as a literal, that is, without any special meaning, the
character must be quoted. There are some exceptions to this which are noted below.

Symbol Location Meaning

0 Number Digit

1-9 Number '1' through '9' indicates rounding.

Number Digit, zero shows as absent

. Number Decimal separator or monetary decimal separator

- Number Minus sign

, Number Grouping separator

E Number Separates mantissa and exponent in scientific notation. Need not be
quoted in prefix or suffix.

+ Exponent Prefix positive exponents with plus sign. Need not be quoted in prefix or
suffix.

; Subpattern
boundary

Separates positive and negative subpatterns

' Prefix or suffix Used to quote special characters in a prefix or suffix, for example, "'#'#"
formats 123 to "#123". To create a single quote itself, use two in a row:
"# o''clock".

* Prefix or suffix
boundary

Pad escape, precedes pad character

V Number Virtual decimal point marker. Only used with decimal, float and double
simple types.

P Number Decimal scaling position. Only used with decimal, float and double
simple types.

Table 20 dfdl:textNumberPattern special characters

A pattern contains a positive and negative subpattern, for example, "#,##0.00;(#,##0.00)". Each
subpattern has a prefix, a numeric part, and a suffix. If there is no explicit negative subpattern, the
negative subpattern is the minus sign prefixed to the positive subpattern. That is, "0.00" alone is
equivalent to "0.00;-0.00". If there is an explicit negative subpattern, it serves only to specify the
negative prefix and suffix; the number of digits, minimal digits, and other characteristics are

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 93 of 168

ignored in the negative subpattern. That means that "#,##0.0#;(#)" has precisely the same result
as "#,##0.0#;(#,##0.0#)".

The prefixes, suffixes, and various symbols used for infinity, digits, grouping separators, decimal
separators, etc. may be set to arbitrary values, and they will appear properly during formatting.
However, care must be taken that the symbols and strings do not conflict, or parsing will be
unreliable. For example, either the positive and negative prefixes or the suffixes must be distinct
for parse to be able to distinguish positive from negative values. Another example is that the
decimal separator and grouping separator should be distinct characters, or parsing will be
impossible.

The grouping separator is a character that separates clusters of integer digits to make large
numbers more legible. It commonly used for thousands, but in some locales it separates ten-
thousands. The grouping size is the number of digits between the grouping separators, such as 3
for "100,000,000" or 4 for "1 0000 0000". There are actually two different grouping sizes: One
used for the least significant integer digits, the primary grouping size, and one used for all others,
the secondary grouping size. In most locales these are the same, but sometimes they are
different. For example, if the primary grouping interval is 3, and the secondary is 2, then this
corresponds to the pattern "#,##,##0", and the number 123456789 is formatted as
"12,34,56,789". If a pattern contains multiple grouping separators, the interval between the last
one and the end of the integer defines the primary grouping size, and the interval between the
last two defines the secondary grouping size. All others are ignored, so "#,##,###,####" ==
"###,###,####" == "##,#,###,####".

The P symbol is used to specify the location of an assumed decimal point when the point

is not within the number that appears in the data.

The symbol P can be specified only as a continuous string of Ps in the leftmost or

rightmost digit positions in the number region of the pattern. The decimal point symbol V

is assumed as either the leftmost or rightmost character of the number region.

It is a schema definition error if any symbols other than "0", "1"-"9" or # are used in the same
number region of the pattern as V or P.

Examples

Data representation Pattern Value

123 PP000 0.00123

123 000PP 12300

Pattern BNF

 pattern := subpattern (';' subpattern)?

 subpattern := prefix? ((number exponent?)|(vpinteger) suffix?

 number := (integer ('.' fraction)?)

 vpinteger := (pinteger | vinteger)

 pinteger := ('P'* integer) | (integer 'P'*)

 vinteger := ('V'? integer) |

 ('#'* 'V'? integer)|

 ('#'* '0'* 'V'? '0'* '0')|

 (integer 'V'?)

 prefix := '\u0000'..'\uFFFD' - specialCharacters

 suffix := '\u0000'..'\uFFFD' - specialCharacters

 integer := '#'* '0'* '0'

 fraction := '0'* '#'*

http://www.icu-project.org/apiref/icu4c/classDecimalFormat.html#fe6f4084b4a6ccff6977501d90011fa4

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 94 of 168

 exponent := 'E' '+'? '0'* '0'

 padSpec := '*' padChar

 padChar := '\u0000'..'\uFFFD' - quote

 Notation:

 X* 0 or more instances of X

 X? 0 or 1 instances of X

 X|Y either X or Y

 C..D any character from C up to D, inclusive

 S-T characters in S, except those in T

 Figure 5 dfdl:numberPattern syntax

The first subpattern is for positive numbers. The second (optional) subpattern is for negative
numbers.
Not indicated in the BNF syntax above:

 The grouping separator ',' can occur inside the integer elements, between any two
pattern characters of that element, as long as the integer or sigDigits element is not
followed by the exponent element.

 Two grouping intervals are recognized: That between the decimal point and the first
grouping symbol, and that between the first and second grouping symbols. These
intervals are identical in most locales, but in some locales they differ. For example, the
pattern "#,##,###" formats the number 123456789 as "12,34,56,789".

 The pad specifier padSpec may appear before the prefix, after the prefix, before the

suffix, after the suffix, or not at all.

 In place of '0', the digits '1' through '9' may be used to indicate a rounding increment.

Parsing
During parsing, grouping separators are removed from the data.

Formatting

Formatting is guided by several parameters all of which can be specified using a pattern. The
following description applies to formats that do not use scientific notation.

 If the number of actual integer digits exceeds the maximum integer digits, then only the
least significant digits are shown. For example, 1997 is formatted as "97" if the maximum
integer digits is set to 2.

 If the number of actual integer digits is less than the minimum integer digits, then leading
zeros are added. For example, 1997 is formatted as "01997" if the minimum integer digits
is set to 5.

 If the number of actual fraction digits exceeds the maximum fraction digits, then half-even
rounding it performed to the maximum fraction digits. For example, 0.125 is formatted as
"0.12" if the maximum fraction digits is 2. This behavior can be changed by specifying a
rounding increment and a rounding mode.

 If the number of actual fraction digits is less than the minimum fraction digits, then trailing
zeros are added. For example, 0.125 is formatted as "0.1250" if the minimum fraction
digits is set to 4.

 Trailing fractional zeros are not displayed if they occur j positions after the decimal, where
j is less than the maximum fraction digits. For example, 0.10004 is formatted as "0.1" if
the maximum fraction digits is four or less.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 95 of 168

Special Values

NaN is represented as a string determined by the dfdl:textStandardNanRep property. This is the

only value for which the prefixes and suffixes are not used.
Infinity is represented as a string with the positive or negative prefixes and suffixes applied. The
infinity string is determined by the dfdl:textStandardInfinityRep property.

Scientific Notation
Numbers in scientific notation are expressed as the product of a mantissa and a power of ten, for
example, 1234 can be expressed as 1.234 x 10

3
. The mantissa is typically in the half-open

interval [1.0, 10.0) or sometimes [0.0, 1.0), but it need not be. In a pattern, the exponent character
immediately followed by one or more digit characters indicates scientific notation. Example:
"0.###E0" formats the number 1234 as "1.234E3".

 The number of digit characters after the exponent character gives the minimum exponent
digit count. There is no maximum. Negative exponents are formatted using the minus
sign, not the prefix and suffix from the pattern. This allows patterns such as "0.###E0
m/s". To prefix positive exponents with a plus sign, specify '+' between the exponent and
the digits: "0.###E+0" will produce formats "1E+1", "1E+0", "1E-1", etc.

 The minimum number of integer digits is achieved by adjusting the exponent. Example:
0.00123 formatted with "00.###E0" yields "12.3E-4". This only happens if there is no
maximum number of integer digits. If there is a maximum, then the minimum number of
integer digits is fixed at one.

 The maximum number of integer digits, if present, specifies the exponent grouping. The
most common use of this is to generate engineering notation, in which the exponent is a
multiple of three, e.g., "##0.###E0". The number 12345 is formatted using "##0.####E0"
as "12.345E3".

 When using scientific notation, the formatter controls the digit counts using significant
digits logic. The maximum number of significant digits limits the total number of integer
and fraction digits that will be shown in the mantissa; it does not affect parsing. For
example, 12345 formatted with "##0.##E0" is "12.3E3". .

 Exponential patterns may not contain grouping separators.

Padding
 Padding may be specified through the pattern syntax. In a pattern the pad escape character,
followed by a single pad character, causes padding to be parsed and formatted. The pad escape

character is '*'. For example, "*x#,##0.00" formats 123 to "xx123.00", and 1234 to

"1,234.00".

 When padding is in effect, the width of the positive subpattern, including prefix and suffix,

determines the format width. For example, in the pattern "* #0 o''clock", the format

width is 10.

 The width is counted in 16-bit code units.

 Some parameters which usually do not matter have meaning when padding is used,
because the pattern width is significant with padding. In the pattern "* ##,##,#,##0.##",
the format width is 14. The initial characters "##,##," do not affect the grouping size or
maximum integer digits, but they do affect the format width.

 Padding may be inserted at one of four locations: before the prefix, after the prefix, before
the suffix, or after the suffix. If there is no prefix, before the prefix and after the prefix are
equivalent, likewise for the suffix.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 96 of 168

 When specified in a pattern, the 32-bit code point immediately following the pad escape
is the pad character. This may be any character, including a special pattern character.
That is, the pad escape escapes the following character. If there is no character after the
pad escape, then the pattern is illegal.

Note: This padding is in addition to the normal DFDL text padding.

Rounding

How rounding is controlled is given by dfdl:textNumberRounding. The rounding increment may
be specified in the dfdl:textNumberPattern itself using digits '1' through '9' or using an explicit
increment in dfdl:textNumberRoundingIncrement. For example, 1230 rounded to the nearest 50 is
1250. 1.234 rounded to the nearest 0.65 is 1.3.

 Rounding only affects the string produced by formatting. It does not affect parsing or
change any numerical values.

 In a pattern, digits '1' through '9' specify rounding, but otherwise behave identically to digit
'0'. For example, "#,#50" specifies a rounding increment of 50.

 Using digits in a pattern, rounding is always 'half even', meaning rounds towards the
nearest integer, or towards the nearest even integer if equidistant.

Using an explicit rounding increment, dfdl:textNumberRoundingMode determines how values are
rounded.

13.6.1.2 dfdl:textNumberPattern for dfdl:textNumberRep 'zoned'

When dfdl:textNumberRep is ‘zoned’ only the pattern for positive numbers is used. It is a schema
definition error if the negative pattern is specified.

Only the following pattern characters may be used:

 '+' MUST BE present at the beginning or end of the pattern to indicate whether the
leading or trailing digit carries the overpunched sign, if the logical type is signed

 '+' MAY BE present at the beginning or end of the pattern to indicate whether the leading
or trailing digit carries the overpunched sign, if the logical type is unsigned. If logical type
is unsigned and dfdl:textNumberPolicy = 'lax' specified it is a schema definition error if no
'+' is present.

 'V' MAY BE used to indicate the location of an implied decimal point

 'P' MAY BE used to indicate the decimal scaling

 '0-9' indicates the number of required digits (including overpunched).

 '#' indicates the number optional digits.

Rounding occurs as described under Rounding in 13.6.1.1 dfdl:textNumberPattern for
dfdl:textNumberRep 'standard'

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 97 of 168

13.6.2 Converting logical numbers to/from text representation

 Signed numbers with dfdl:textNumberRep 'standard' and dfdl:textStandardBase 10 are
mapped using the dfdl:textNumberPattern.

 Signed numbers with dfdl:textNumberRep 'standard' and dfdl:textStandardBase not 10
are mapped to an unsigned representation. On unparsing the minimum number of
characters to represent the digits is output and it is a processing error if the value is
negative.

 Signed numbers with dfdl:textNumberRep 'zoned' are mapped using the
dfdl:textNumberPattern to indicate the position of the sign and virtual decimal point. On
parsing if the sign is not overpunched, that is it does not have a sign, it is treated as
positive. On unparsing the sign is always overpunched.

 Unsigned numbers with dfdl:textNumberRep 'standard' and dfdl:textStandardBase 10
are mapped using the dfdl:textNumberPattern. On parsing it is a processing error if the
data are negative.

 Unsigned numbers with dfdl:textNumberRep 'standard' and dfdl:textStandardBase not 10
are mapped to an unsigned representation. On unparsing the minimum number of
characters to represent the digits is output. .

 Unsigned numbers with dfdl:textNumberRep 'zoned' are mapped using the
dfdl:textNumberPattern to indicate the position of the sign and virtual decimal point. On
parsing it is a processing error if the data are negative. On unparsing the data are not
overpunched with a sign.

13.7 Properties Specific to Numbers with Binary representation

These properties are applicable to decimals types and its derived types. These properties are not
applicable to types float and double. See section 13.8 Properties Specific to Float/Double with
Binary representation

 Property Name Description

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 98 of 168

binaryNumberRep Enum

Valid values are ‘packed’, ‘bcd’, 'binary'

Allowable values for each number type are

type Permitted value

Decimal, Integer,
nonNegativeInteger

packed, bcd, binary

Long, Int, Short,
Byte,

packed, binary

UnsignedLong,
Unsignedint,
UnsignedShort,
UnsignedByte

packed, bcd, binary

‘packed’ means represented as a packed decimal. In the packed
decimal format, each byte contains two decimal digits, except for the
least significant byte, which contains a sign in the least significant
nibble.

‘bcd’ means represented as a binary coded decimal with two digits
per byte.

‘binary’ means represented as twos complement for signed types
and unsigned binary for unsigned types.

Annotation: dfdl:element, dfdl:simpleType

binaryDecimalVirtualPoint Integer.

Used when base simpleType is xs:decimal.

An integer that represents the position of an implied decimal point
within a number, or specify 0.

If you specify 0 then there is no virtual decimal point

If you specify a positive integer, the position of the decimal point is
moved left from the right side of the number. For example, if you
specify 3, the decimal value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is
moved right from the right side of the number. For example, if you
specify -3, the decimal value 1234 represents 1 234 000

Annotation: dfdl:element, dfdl:simpleType

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 99 of 168

binaryPackedSignCodes List of Character

Used only when dfdl:binaryNumberRep or dfdl:binaryCalendarRep is
‘packed’

A space separated string giving the hex sign nibbles to use for a
positive value, a negative value, an unsigned value, and zero.

Valid values for positive nibble: A, C, E, F

Valid values for negative nibble: B, D

Valid values for unsigned nibble: F

Valid values for zero sign: A C E F 0

Example: ‘C D F C’ – typical S/390 usage

Example: ‘C D F 0’ – handle special case for zero

On parsing, whether to accept all valid values for a positive, negative
or unsigned number, and for zero, is governed by the
dfdl:binaryNumberCheckPolicy property. On unparsing, the specified
values are always used.

Annotation: dfdl:element, dfdl:simpleType

binaryNumberCheckPolicy Enum

Values are 'strict' and 'lax'.

Indicates how lenient to be when parsing binary numbers.

If ‘lax' then the parser tolerates all valid alternatives where such
alternatives exist. Specifically, for dfdl:binaryNumberRep = 'packed'
the sign nibble for positive, negative, unsigned and zero is allowed
to be any of the valid respective values.

On unparsing, the specified value is always used

Annotation: dfdl:element, dfdl:simpleType

13.7.1 Converting logical numbers to/from binary representation

 Signed numbers with dfdl:binaryNumberRep 'packed' are mapped using sign nibble to
indicate the sign. The unsigned nibble is treated as positive. On unparsing the sign nibble
is written according to dfdl:binaryPackedSignCodes. The unsigned nibble is never used.

 Signed numbers with dfdl:binaryNumberRep 'bcd' are always positive. On unparsing it is
a processing error if the data is negative.

 Unsigned numbers with dfdl:binaryNumberRep 'packed' are mapped if the nibble is
positive or unsigned. It is a processing error if the data are negative. On unparsing the
unsigned nibble is used

 Unsigned numbers with dfdl:binaryNumberRep 'bcd' are mapped as BCD data is always
positive

13.8 Properties Specific to Float/Double with Binary representation

.

Property
Name

Description

binaryFloatRep Enum or DFDL Expression

This specifies the encoding method for the float and double.

Valid values are ‘ieee’, ‘ibm390Hex’,

This property can be computed by way of an expression which returns the
string of 'ieee' or ' ibm390Hex’ . The expression must not contain forward

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 100 of 168

references to elements which have not yet been processed.

Annotation: dfdl:element, dfdl:simpleType

13.9 Properties Specific to Boolean with Text representation

Property Name Description

textBooleanTrueRep List of DFDL String Literals or DFDL Expression

A whitespace separated list of representation values to be used for
‘true’

This property can be computed by way of an expression which
returns a string of whitespace separated list of values. The
expression must not contain forward references to elements which
have not yet been processed.

On unparsing the first value is used

If dfdl:ignoreCase is 'yes' then the case of the string is ignored by
the parser.

Annotation: dfdl:element, dfdl:simpleType

textBooleanFalseRep List of DFDL String Literals or DFDL Expression

A whitespace separated list of representation value to be used for
‘false’

This property can be computed by way of an expression which
returns a string of whitespace separated list of values. The
expression must not contain forward references to elements which
have not yet been processed.

On unparsing the first value is used

If dfdl:ignoreCase is 'yes' then the case of the string is ignored by
the parser.

Annotation: dfdl:element, dfdl:simpleType

textBooleanJustification Enum

Valid values ‘left’, ‘right', ‘center’

Controls how the data is padded or trimmed on parsing and
unparsing.

Behavior as for dfdl:textStringJustification.

Annotation: dfdl:element, dfdl:simpleType

textBooleanPadCharacter DFDL String Literal

The value that is used when padding or trimming boolean elements.
The value can be a single character or a single byte.

If a character, then it can be specified using a literal character or
using DFDL entities.

If a byte, then it must be specified using a single byte value entity

If a pad character is specified when lengthUnits='bytes' then the pad
character must be a single-byte character.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 101 of 168

If a pad byte is specified when lengthUnits='characters' then
- the encoding must be a fixed-width encoding
- padding and trimming must be applied using a sequence of N
pad bytes, where N is the width of a character in the fixed-width
encoding.

Annotation: dfdl:element, dfdl:simpleType

13.10 Properties Specific to Boolean with Binary representation

.

Property Name Description

binaryBooleanTrueRep Non-negative Integer

Representation value to be used for ‘true’

The empty string means dfdl:binaryBooleanTrueRep is any value
other than dfdl:binaryBooleanFalseRep.

The value must be consistent with the representation as an
xs:unsignedInt, including that it must be within the range allowed by
the number of bits, when dfdl:lengthUnits='bits' is specified, and the
dfdl:length is less than 32.

Annotation: dfdl:element, dfdl:simpleType

binaryBooleanFalseRep Non-negative Integer

Representation value to be used for ‘false’

The value must be consistent with the representation as an
xs:unsignedInt, including that it must be within the range allowed by
the number of bits, when dfdl:lengthUnits='bits' is specified, and the
dfdl:length is less than 32.

Annotation: dfdl:element, dfdl:simpleType

13.11 Properties specific to calendar with Text or Binary representation

The properties describe how a calendar is to be interpreted including a formatting pattern
property plus properties that qualify the pattern.
These properties can be used when a calendar has a representation of ‘text’ or a representation
of ‘binary' and a dfdl:binaryCalendarRep of ‘packed’ or ‘bcd’.

Property Name Description

calendarPattern String

Defines the ICU pattern that describes the format of the calendar. The
pattern defines where the year, month, day, hour, minute, second,
fractional second and time zone components appear. See
calendarPattern property section below.

When the dfdl:representation is 'binary' and dfdl:binaryCalendarRep is
'packed' or 'bcd' then the pattern can contain only characters that result
in a presentation of number.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 102 of 168

Annotation: dfdl:element, dfdl:simpleType

calendarPatternKind Enum

Valid values ‘explicit’, ‘implicit’

‘explicit’ means the pattern is given by dfdl:calendarPattern,

‘implicit’ means the pattern is derived from the XML schema date/time
type.

Logical Type Default Pattern

xs:date yyyy-MM-dd

xs:dateTime yyyy-MM-dd'T'HH:mm:ss

xs:time HH:mm:ssZZZ

Annotation: dfdl:element, dfdl:simpleType

calendarCheckPolicy Enum

Valid values are 'strict', 'lax'

Indicates how lenient to be when parsing against the pattern.

If 'lax' then the parser will convert invalid date/time values to the
appropriate in-band value. For example, a date of 2005-05-32 will be
converted to 2005-06-01.

Annotation: dfdl:element, dfdl:simpleType

calendarTimeZone Enum

Valid values are the list of time zone designations in the form UTC±n
where n is the offset in hours. The offset can be expressed as the hours
or hours and minutes. Examples UTC-1, UTC+4:30,

The time zone that will be assumed if no time zone explicitly occurs in
the data.

Annotation: dfdl:element, dfdl:simpleType

calendarObserveDST Enum

Valid values are 'yes', 'no'

Whether the time zone given in dfdl:calendarTimeZone observes
daylight savings time.

Annotation: dfdl:element, dfdl:simpleType

calendarFirstDayOfWeek Enum

Valid values ‘Monday’ … ‘Sunday’

The day of the week upon which a new week is considered to start.

Annotation: dfdl:element, dfdl:simpleType

calendarDaysInFirstWeek Non-negative Integer

Valid values 1 to 7

Specify the number of days of the new year that must fall within the first
week.

The start of a year usually falls in the middle of a week. If the number of
days in that week is less than the value specified here, the week is
considered to be the last week of the previous year; hence week 1 starts
some days into the new year. Otherwise it is considered to be the first
week of the new year; hence week 1 starts some days before the new

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 103 of 168

year.

Annotation: dfdl:element, dfdl:simpleType

calendarCenturyStart Non-negative Integer

Valid values 0 to 99.

This property determines on parsing how two-digit years are interpreted.
Specify the two digits that start a 100-year window that contains the

current year. For example, if you specify 89, and the current year is

2006, all two-digit dates are interpreted as being in the range 1989 to
2088. A two-digit year less than 89 will be interpreted as 20nn and a
two-digit year more than or equal to 89 will be treated as 19nn.

Annotation: dfdl:element, dfdl:simpleType

calendarLanguage Enum

The language that is used when the pattern produces a presentation in
text. For example 'Monday'

The valid values are as defined by [IETF RFC 3066], Tags for the
Identification of Languages, or its successors. For example 'en-GB'

Annotation: dfdl:element, dfdl:simpleType

13.11.1 The dfdl:calendarPattern property

The dfdl:calendarPattern describes how to parse and unparse text and binary representations of
dateTime, date and time logical types. The pattern is primarily used on unparsing to define the
format but is also used to aid parsing.
When parsing and unparsing the Pattern is derived from the ICU SimpleDatetimeFormat class
described here: http://icu.sourceforge.net/apiref/icu4c/classSimpleDateFormat.html
Extensions are two formatting symbols I and T, which mean accept a subset of ISO 8601
compliant xs:dateTime and xs:time, respectively, and the acceptance of the ‘Z’ character to mean
UTC.

Symbol Meaning Presentation Example
G era designator (Text) AD
 y year (Number) 1996
 Y year (week of year) (Number) 1997
 M month in year (Text & Number) July & 07
 d day in month (Number) 10
 h hour in am/pm (1~12) (Number) 12
 H hour in day (0~23) (Number) 0
 m minute in hour (Number) 30
 s second in minute (Number) 55
 S fractional second (see note 1) (Number) 978
 E day of week (Text) Tuesday
 e day of week (local 1~7) (Text & Number) Tues & 2
 D day in year (Number) 189
 F day of week in month (Number) 2 (2nd Wed in July)
 w week in year (Number) 27
 W week in month (Number) 2
 a am/pm marker (Text) PM
 k hour in day (0~24

10
) (Number) 24

 K hour in am/pm (0~11) (Number) 0
z time zone (Text) Pacific Standard Time

10

 For pattern character k, 24 is equivalent to 0 and allowed only if minutes is 00.

http://icu.sourceforge.net/apiref/icu4c/classSimpleDateFormat.html

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 104 of 168

Z time zone (RFC 822) (Number) -0800
ZU time zone (RFC 822) (Text) Z
 with output "Z" if the
 time zone is +00:00)
v time zone (generic) (Text) Pacific Time
V time zone (location) (Text) United States (Los Angeles)

I ISO8601 Date/Time (Text) 2006-10-07T12:06:56.568+01:00

IU ISO8601 Date/Time (Text) 2006-10-07T12:06:56.568Z
 with output "Z" if the
 time zone is +00:00)

T ISO8601 Time (Text) 12:06:56.568+01:00

 (up to HH:mm:ss.SSSZZZ)

TU ISO8601 Time (Text) 12:06:56.568Z

 (similar to T, but a time zone
 of +00:00 is replaced with 'Z')

' escape for text (Delimiter) 'Date='
 '' single quote (Literal) 'o''clock'

Note 1: Any number of fractional seconds "S" may by specified in the pattern and accepted by
implementations, but an implementation is free to represent a limited number of fractional
seconds internally. Round up rounding must occur when converting between external and internal
representations. At least millisecond accuracy must be implemented..

The count of pattern letters determine the format.

(Text): 4 or more, use full form, < 4, use short or abbreviated form if it exists. (e.g., "EEEE"
produces "Monday", "EEE" produces "Mon")

(Number): the minimum number of digits. Shorter numbers are zero-padded to this amount (e.g. if
"m" produces "6", "mm" produces "06"). Year is handled specially; that is, if the count of 'y' is 2,
the Year will be truncated to 2 digits. (e.g., if "yyyy" produces "1997", "yy" produces "97".) Unlike
other fields, fractional seconds are padded on the right with zero.

(Text & Number): 3 or over, use text, otherwise use number. (e.g., "M" produces "1", "MM"
produces "01", "MMM" produces "Jan", and "MMMM" produces "January".)

Any characters in the pattern that are not in the ranges of ['a'..'z'] and ['A'..'Z'] will be treated as
quoted text. For instance, characters like ':', '.', ' ', '#' and '@' will appear in the resulting time text
even if they are not embraced within single quotes.

The 'I' and 'T' pattern characters should be used on their own to format dates and times which
match the following subset of the ISO8601 standard.

 The restricted profile as proposed by the W3C at http://www.w3.org/TR/NOTE-datetime

 Truncated representations of calendar dates, as specified in section 5.2.1.3 of
ISO8601:2000

o Basic format (subsections c, e, and f)

o Extended format (subsections a, b, and d)

http://www.w3.org/TR/NOTE-datetime

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 105 of 168

13.12 Properties specific to calendar with Text representation

Property Name Description

textCalendarJustification Enum

Valid values ‘left’, ‘right’, ‘center’

Controls how the data is padded or trimmed on parsing and
unparsing.

Behavior as for dfdl:textStringJustification.

Annotation: dfdl:element, dfdl:simpleType

textCalendarPadCharacter DFDL String Literal

The value that is used when padding or trimming calendar
elements. The value can be a single character or a single byte.

If a character, then it can be specified using a literal character or
using DFDL entities.

If a byte, then it must be specified using a single byte value entity

If a pad character is specified when dfdl:lengthUnits='bytes' then the
pad character must be a single-byte character.

If a pad byte is specified when dfdl:lengthUnits='characters' then
- the encoding must be a fixed-width encoding
- padding and trimming must be applied using a sequence of N
pad bytes, where N is the width of a character in the fixed-width
encoding.

 Annotation: dfdl:element, dfdl:simpleType

13.13 Properties specific to calendar with Binary representation

Binary integers are considered to be a binary representation.

Property Name Description

binaryCalendarRep Enum

Valid values are ‘packed’, ‘bcd’, 'binarySeconds',
‘binaryMilliseconds’

‘packed’ means represented as a packed decimal. In the packed
decimal format, each byte contains two decimal digits, except for
the rightmost byte, which contains a sign to the right of a decimal
digit.

‘bcd’ means represented as a binary coded decimal with two digits
per byte..

For ‘packed’ and ‘bcd’ the following properties are also applicable

 dfdl:binaryPackedSignCodes (packed only)

 dfdl:binaryNumberCheckPolicy

 dfdl:binaryDecimalVirtualPoint is assumed to be 0,

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 106 of 168

See Properties specific to numbers with binary representation
section : 13.7 Properties Specific to Numbers with Binary
representation

‘binarySeconds' means represented as a 4 byte integer that is the
number of seconds since the epoch.

‘binaryMilliseconds’ means represented as an 8 byte integer that is
the number of seconds since the epoch.

Annotation: dfdl:element, dfdl:simpleType

binaryCalendarEpoch DateTime

Used when dfdl:binaryCalendarRep is 'binarySeconds' or
‘binaryMilliseconds’

The epoch from which to calculate dates and times.

Annotation: dfdl:element, dfdl:simpleType

13.14 Properties Specific to Opaque Types (hexBinary)

There are no properties specific to opaque types

13.15 Nils and Default processing

This section describes the processing for nil and default.

Sometimes it is desirable to represent an unshipped element, unknown information, or
inapplicable information explicitly with an element, rather than by an absent element. For
example, it may be desirable to represent a "null" value being sent to or from a relational
database with an element that is present. Such cases can be represented using the DFDL nil
mechanism which is based on the XML Schema's nil mechanism and allows "out of band" nil
values. Nil processing is used when the XSDL ‘nillable’ attribute of an element is true.

Default processing provides a value for an element that is missing from the data stream on
parsing or the infoset on unparsing. Default processing applies to both simple and complex
elements.

Definition ‘has default’

A simple element has a default if any of these are true:

1. The xs:default attribute exists. The default value is the attribute’s value.
2. The xs:fixed attribute exists. The default value is the attribute’s value.
3. The element has xs:nillable='true' and dfdl:useNilForDefault is specified. The default

value is nil.

A complex element has a default if either:

1. The content is a sequence and all the required children of a complex element have a
default.

2. The content is a choice and one of the choice branches has a default. The default is the
first choice branch in schema definition order to have a default.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 107 of 168

Otherwise the element has no default.

Definition: 'required parent context'

A required element (defined below) is only required when its enclosing parent element is one of
the following

 The document root

 A required element within a sequence.

 An optional element that is not missing within a sequence

 The selected branch of a xs:choice

Definition: 'required element'

When an element is in a 'required parent context', we define the term 'required element' to be :

 A scalar element

 An element of a fixed-occurrence array

 An element of a variable-occurrence array if its index is less than or equal to the value of
minOccurs.

On parsing, a required element in a required parent context must produce a value in the infoset
otherwise it is a processing error.
On unparsing a required element in a required parent context must produce a value in the
augmented infoset otherwise it is a processing error.

Definition 'missing element'

On parsing, an element is missing

 IF an intiator is defined AND dfdl:emptyValueDelimiterPolicy is 'initiator' or 'both' but the
initiator is not found in the data stream.

 OR the content region in the data stream is empty.
.

On unparsing, an element is missing if it is not in the infoset.

Definition 'is nil'

On parsing an element is nil if xs:nillable is 'true' AND one of the following:

1. dfdl:nilKind is 'logicalValue' and the SimpleRepresentation region of the data stream,
converted to its logical type, matches any of the dfdl:nilValue values.

2. dfdl:nilKind is 'literalValue' and the SimpleRepresentation region of the data stream
matches any of the dfdl:nilValue values

3. dfdl:nilKind is ‘literalCharacter’ and all characters in the SimpleRepresentation region of
the data stream match the dfdl:nilValue character.

On unparsing an element is nil if xs:nillable is 'true' AND the element value is nil in the infoset.

Definition 'nil output representation'

The 'nil output representation' is one of the following:

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 108 of 168

1. When dfdl:nilKind is 'logicalValue' then the representation value is the first value of

dfdl:nilValue converted to the physical representation.
2. When dfdl:nilKind is 'literalValue' then the representation value is the first value of

dfdl:nilValue
3. When dfdl:nilKind is ‘literalCharacter’ then the representation value is the character from

dfdl:nilValue repeated to the required length

13.15.1 Nils and Defaults on Parsing

For simple elements the following applies:

o If 'missing element':

1. If both dfdl:initiator and dfdl:terminator are not specified

a. If 'is nil' then the infoset value is nil

b. Else if 'required element', and 'has a default' then the infoset value is the value
provided by the default

c. Else If 'required element', it is a processing error

d. Otherwise nothing is added to the infoset

2. Otherwise

a. If 'is nil' and the initiator and/or terminator comply with
dfdl:nilValueDelimiterPolicy then the infoset value is nil

b. Else if 'required element', and 'has a default' and the initiator and/or terminator
comply with dfdl:emptyValueDelimiterPolicy then the infoset value is the value
provided by the default

c. Else If 'required element', it is a processing error

d. Otherwise nothing is added to the infoset

o Otherwise

1. If both dfdl:initiator and dfdl:terminator are not specified

a. If 'is nil' then the infoset value is nil

b. Otherwise the infoset value is the parsed value from the data stream

2. Otherwise

a. If 'is nil' and the initiator and/or terminator comply with
dfdl:nilValueDelimiterPolicy then the infoset value is nil

b. Otherwise the infoset value is the parsed value from the data stream

For complex elements the following applies:

o If 'missing element':

1. If both dfdl:initiator and dfdl:terminator are not specified

a. If 'required element', and 'has a default' then the element is added to the Infoset
and 'missing element' processing is applied to all child elements.

b. Else if 'required element' it is a processing error

c. Otherwise nothing is added to the infoset

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 109 of 168

2. Otherwise

a. If 'required element', and 'has a default' and the initiator and/or terminator comply
with dfdl:emptyValueDelimiterPolicy then the element is added to the infoset and
'missing element' processing is applied to all child elements.

b. Else if 'required element' it is a processing error

c. Otherwise nothing is added to the infoset

o Otherwise the element is added to the infoset.

13.15.2 Nils and Defaults on Unparsing

For simple elements the following applies:

o If 'missing element'

1. If both dfdl:initiator and dfdl:terminator are not specified

a. If 'required element' and 'has a default' then the output value is the unparsed
value provided by the default.

b. Else if 'required element' it is a processing error

c. Otherwise nothing is output

2. Otherwise

a. If 'required element' and 'has a default' then the output value is the unparsed
value provided by the default, with initiator and/or terminator as controlled by
dfdl:emptyValueDelimiterPolicy if the value is the empty string or
dfdl:nilValueDelimiterPolicy if dfdl:useNilForDefault' is 'true' .

b. Else if 'required element' it is a processing error

c. Otherwise nothing is output

o Otherwise

1. If xs:nillable is not 'true' and the infoset value is nil it is a processing error.

2. Else if both dfdl:initiator and dfdl:terminator are not specified

a. If 'is nil' then the 'nil output representation' is output .

b. Otherwise the output value is the unparsed value from the infoset..

3. Otherwise

a. If 'is nil' then the 'nil output representation' is output with initiator and/or
terminator as controlled by dfdl:nilValueDelimiterPolicy.

b. Otherwise the output value is the unparsed value from the infoset with initiator
and/or terminator as controlled by dfdl:emptyValueDelimiterPolicy if the value is
the empty string.

For complex elements the following applies:

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 110 of 168

o If 'missing element'

1. If both dfdl:initiator and dfdl:terminator are not specified

a. If 'required element' and 'has a default' then 'missing element' processing is
applied to all child elements.

b. Else if 'required element' it is a processing error

c. Otherwise nothing is output

2. Otherwise

a. If 'required element' and 'has a default' then 'missing element' processing is
applied to all child elements, and initiator and/or terminator are output (as
controlled by dfdl:emptyValueDelimiterPolicy if the children’s total
representation is the empty string).

b. Else if 'required element' it is a processing error

c. Otherwise nothing is output

o Otherwise

1. If dfdl:initiator and dfdl:terminator are not specified then nothing is output for this element

.

2. Else if dfdl:initiator and/or dfdl:terminator are specified then the initiator and/or terminator
are output as controlled by dfdl:emptyValueDelimiterPolicy if the children’s total
representation is the empty string

13.16 Properties for Nillable Elements

These properties are used when the XSDL ‘nillable’ attribute of an element is true, and they
control when and how the representation data are interpreted as having the logical meaning ‘nil’.
They apply only to elements of simple type.

Property Name Description

nilKind Enum

Valid values ‘literalValue’, ‘logicalValue’, ‘literalCharacter’,

Used when xs:nillable is 'true'
Specifies how dfdl:nilValue is interpreted to represent the nil value
in the data stream..

If ‘literalCharacter’ then dfdl:nilValue specifies a single character or
a single byte that, when repeated to the length of the element, is
the nil value. ‘literalCharacter’ may only be specified for fixed length
elements, that is dfdl:lengthKind 'implicit' and 'explicit' when
dfdl:length is not a DFDL expression, otherwise it is a schema
definition error.

If ‘literalValue’ then dfdl:nilValue specifies a list of DFDL literal
strings that are the possible representation values for nil.

If ‘logicalValue’ then dfdl:nilValue specifies a list of logical values
that are the possible logical values for nil.

Annotation: dfdl:element(simpleType)

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 111 of 168

nilValue List of DFDL String Literals, List of Logical Values, DFDL String
Literal

Specifies the text strings that are the possible literal or logical nil
values of the element.

If dfdl:nilKind is ‘literalValue’ then nilValue specifies a white space
separated list of DFDL literal strings that are the possible
representation values for nil. On parsing the element value is nil if
the data matches one of the literal strings in the list. On unparsing if
the element value is nil the first nilValue from the list is output. Only
applicable when representation is 'text'

If dfdl:nilKind is ‘logicalValue’ then nilValue specifies white space
separated list of logical values that are the possible logical values
for nil. On parsing the element value is nil if the data, converted to
its logical type, matches any of the logical values in the list. On
unparsing if the element value is nil, the first nilValue from the list is
converted to its physical representation and output.

If dfdl:nilKind is 'literalCharacter' then nilValue specifies a single
character or byte that, when repeated to the length of the element,
is the nil representation value. If a character, then it can be
specified using a literal character or using DFDL entities. If a
character is specified when dfdl:lengthUnits='bytes' then the
nilValue must be a single-byte character.
If a byte, then it must be specified using a single %#r entity If a byte
is specified when dfdl:lengthUnits='characters' then the encoding
must be a fixed-width encoding
On parsing the element value is nil if all characters in the data
match the nilValue character . On unparsing if the element value is
nil the nilValue character is output to the required length.

Annotation: dfdl:element(simpleType)

nilValueDelimiterPolicy Enum

Valid values are 'none', 'initiator', 'terminator' or 'both'.

Indicates that when a value is nil, an initiator (if one is defined), a
terminator (if one is defined), both an initiator and a terminator (if
defined) or neither must be present.

Ignored if both dfdl:initiator and dfdl:terminator are "" (empty string).

'initiator' indicates that, on parsing, the dfdl:initiator followed by one
of the dfdl:nilValue is the required syntax to indicate that a nil value
is present. It also indicates that on unparsing when the logical value
is nil that the dfdl:initiator will be output followed by the first of the
dfdl:nilValue.

'terminator' indicates that, on parsing, by one of the dfdl:nilValue
followed by the dfdl:terminator is the required syntax to indicate that
a nil value is present. It also indicates that on unparsing when the
logical value is nil the first of the dfdl:nilValue followed by the
dfdl:terminator will be output.

'both' indicates that, on parsing, both the dfdl:initiator and
dfdl:terminator must be present with one of the dfdl:nilValue to
indicate that a nil value is present. On unparsing the dfdl:initiator
followed by the first dfdl:nilValue, followed by the dfdl:terminator will
be output.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 112 of 168

'none' indicates that one of the dfdl:nilValue without any
dfdl:initiator or dfdl:terminator triggers creation of a nilvalue. On
unparsing the first of the dfdl:nilValue is output without the
dfdl:initiator or dfdl:terminator.

It is a schema definition error if dfdl:nilValueDelimiterPolicy is set to
'none' or 'terminator' when the parent xs:sequence has
dfdl:initiatedContent 'yes'.

Annotation: dfdl:element(simpleType)

13.17 Properties for Default Value Control

The DFDL default processing uses xs:default, xs:fixed or dfdl:useNilForDefault to provide a
default value. See section 13.15 Nils and Default processing for a full description.

Property Name Description

useNilForDefault Enum

Valid values are 'yes', 'no'

Use nil as the default value

This property has precedence over the xs:default and xs:fixed
attributes.

Defaulting occurs as described above with nil as the default value.
The dfdl:nilValue property must specify at least one nil value
otherwise a schema definition error occurs.

Annotation: dfdl:element (simpleType)

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 113 of 168

14. Sequence Groups

The following properties are specific to sequences.

Property Name Description

sequenceKind Enum

Valid values are 'ordered', 'unordered'

When 'ordered', this property means that the contained
items of the sequence will be encountered in the same
order that they appear in the schema, which is called
schema-definition-order.

When 'unordered', this property means that the items of
the sequence will be encountered in any order.
Repeating instances of the same element do not need to
be contiguous. The children of an unordered sequence
MUST be xs:element otherwise it is a schema definition
error.

Annotation: dfdl:sequence, dfdl:group (sequence)

initiatedContent Enum

Valid values are 'yes', 'no'

When 'yes' indicates that all the children of the sequence
are initiated. It is a schema definition error if any children
have their dfdl:initiator property set to the empty string.

If the child is optional then it is deemed to have been
found when its initiator has been found. Any subsequent
error parsing the child will not cause the parser to
backtrack to try other alternatives.

When 'no', the children of the sequence may have their
dfdl:initiator property set to the empty string.

Annotation: dfdl:sequence, dfdl:choice, dfdl:group

A sequence can have an initiator and/or a terminator as described earlier.

14.1 Empty Sequences

A sequence having no children is syntactically legal in DFDL. In the data stream, such a
sequence can have non-zero length LeftFraming and RightFraming regions, but the
SequenceContent region in between must be empty. It is a processing error if the
SequenceContent region of an empty sequence has non-zero length when parsing.

XML schema does not define an empty sequence that is the content of a complex type as
effective content so any DFDL annotations on such a construct would be ignored. It is a schema
definition error if the empty sequence is the content of a complex type.

14.2 Sequence Groups with Delimiters

The following additional properties apply to sequence groups that use text delimiters to separate
child content.

Property Name Description

separator List of DFDL String Literals or DFDL Expression

Specifies a whitespace separated list of alternative literal

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 114 of 168

strings that are the possible separators between a sequence
of elements or multiple occurrences of an element.

The Separator, PrefixSeparator and PostfixSeparator
regions contain one of the strings specified by the
dfdl:separator property. When this property has "'"' (empty
string) as its value then the separator region is of length
zero.

On unparsing the first separator in the list is used as the
separator.

This property can be computed by way of an expression
which returns a string of whitespace separated values. The

expression must not contain forward references to elements which
have not yet been processed.

If a child element uses an escape scheme, then the escape
scheme also applies to any separator.

If dfdl:ignoreCase is 'yes' then the case of the string is
ignored by the parser.

Annotation: dfdl:sequence, dfdl:group (sequence)

separatorPosition Enum

Valid values ‘infix’, ‘prefix’, ‘postfix’

‘infix’ means the separator occurs between the elements in
the Separator grammar region.

‘prefix’ means the separator occurs before each element n
both the Separator grammar region and the
PrefixSeparator grammar region.

‘postfix’ means the separator occurs after each element in
the Separator grammar region and the PostfixSeparator
grammar region.

Annotation: dfdl:sequence, dfdl:group (sequence).

separatorPolicy Enum

Valid values ‘required', ‘suppressed',
‘suppressedAtEndStrict’, ‘suppressedAtEndLax’

Specifies whether to expect a separator when an element is
missing. Ignored unless dfdl:separator is specified and is not
"" (empty string).

This property applies when dfdl:sequenceKind is 'ordered'

See section 14.214.2.1 Sequence Groups and Separators.

'suppressed' implies it must be possible for speculative
parsing to identify which elements are present.

'suppressedAtEndStrict' and 'suppressedAtEndLax' can only
be used when there is no clash with delimiters from the
containing structure.

Annotation: dfdl:sequence, dfdl:group (sequence)

documentFinalSeparatorCanBeMis
sing

Enum

Valid values are 'yes', 'no'

When the documentFinalSeparatorCanBeMissing property
is true, then when an element is the last element in a
sequence or array is also the last element in the data

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 115 of 168

stream, then on parsing, it is not an error if the postfix
separator is not found.

For example, if the data are in a file, and the format
specifies lines terminated by the newline character (typically
LF or CRLF), then if the last line is missing its newline, then
this would normally be an error, but if
documentFinalSeparatorCanBeMissing is true, then this is
not a processing error.

On unparsing the separator is always written out regardless
of the state of this property.

Annotation: dfdl:format (on xs:schema only)

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 116 of 168

14.2.1 Sequence Groups and Separators

A number of issues arise in explaining sequence groups having separators.
There are 5 distinct kinds of sequence groups

sequenceKind separatorPolicy Implications

ordered required

All separators MUST be found
in the data. When the last
element in the sequence is an
array then separators will be
output, after the last
occurrence, up to
xs:maxOccurs if there aren't
sufficient occurrences. It is a
schema definition error if
xs:maxOccurs is 'unbounded'

ordered suppressedAtEndStrict

Separators MUST be omitted
for any 'missing elements' at
the end of the sequence.
When the last element in the
sequence is an array then
separators will be output up to
the last occurrence.

ordered suppressedAtEndLax

Separators MAY be omitted
for any 'missing elements' at
the end of the sequence.
When the last element in the
sequence is an array then
separators will be output up to
the last occurrence.

ordered suppressed

Separators MAY be omitted
for 'missing elements'. It must
be possible for speculative
parsing to identify which
elements are present.

unordered
ignored (suppressed behavior
implied)

Table 21 Sequence groups and separators

.

14.3 Unordered Sequence Groups

In DFDL, ordered and unordered are characteristics of the representation only. Logically,
sequence groups are always in schema order.
The semantics of unordered groups (sequence with dfdl:sequenceKind='unordered' property) are
expressed by way of a source-to-source transformation of the declaration, and by a data
transformation on the resulting value. An implementation may use any technique consistent with
this semantic.
The source to source transformation turns the declaration of an unordered group into an ordered
sequence that contains an array element that contains a choice. Each element declaration of the
unordered group becomes an alternative element within the choice. The unordered group's
separator and terminator become the Separator and Terminator of the surrounding sequence.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 117 of 168

The dfdl:sequenceKind property is dropped, but other DFDL annotation properties are preserved.
The xs:maxOccurs and xs:minOccurs on any element of the unordered sequence are dropped
when the element is placed into the choice.
For example:

<xs:sequence dfdl:sequenceKind="unordered">

 <xs:element name=”a” type="xs:string" dfdl:initiator="A:" />

 <xs:element name=”b” type="xs:int" minOccurs="0"

dfdl:initiator="B:" />

 <xs:element name=”c” type="xs:string" minOccurs=”0”

maxOccurs="10"

 dfdl:initiator="C:" />

</xs:sequence>

The above is conceptually rewritten into an element declaration and reference like so:

<xs:element name="dummy">

 <xs:complexType>

 <xs:choice>

 <xs:element name=”a” type="xs:string" dfdl:initiator="A:" />

 <xs:element name=”b” type="xs:int" dfdl:initiator="B:" />

 <xs:element name=”c” type="xs:string" dfdl:initiator="C:" />

 </xs:choice>

 </xs:complexType>

</xs:element>

<xs:sequence dfdl:sequenceKind="ordered">

 <xs:element ref="dummy" minOccurs="1" maxOccurs="12"/>

</xs:sequence>

Schema definition errors are then detected as for choice group types. Notice how the
xs:minOccurs and xs:maxOccurs for the rewritten element reference are computed based on the
possible occurrences from the original source.
Processing then constructs this array element by parsing the data.
The post processing then transforms this array back into the original sequence of non-choice
elements. That is, the array is then used to populate the infoset corresponding to:

<xs:sequence>

 <xs:element name=”a” type="xs:string" />

 <xs:element name=”b” type="xs:int" minOccurs="0" />

 <xs:element name=”c” type="xs:string" minOccurs=”0”

maxOccurs="10" />

</xs:sequence>

This is a logical-value to logical value transformation. Ordered and unordered are characteristics
of the representation only. The transformation here is the obvious one where all array elements
having the first choice alternative as their value are accumulated into the first child element of the
logical sequence. If there is either no such value or more than one such value, then the first child
element must be an array or optional declaration (appropriate xs:minOccurs and xs:maxOccurs)
so that it can accommodate the number of values found. The dimensionality of the first element
must accommodate the number of values actually found. It is a processing error if it cannot. This
algorithm repeats for the array elements having the 2

nd
 choice alternative as their value, and so

on until all the choice alternative values have been moved into their corresponding
elements/arrays in the logical sequence group, and all logical sequence elements have been
populated in a manner conforming to their xs:minOccurs constraints.
An unordered sequence is of fixed length if the same sequence is fixed length when the
unordered property is removed.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 118 of 168

On Unparsing, the behavior is exactly as if dfdl:sequenceKind='ordered'. That is, the elements
are output in schema declaration order.

14.4 Floating Elements

Elements within an ordered sequence can be designated as floating which means that they can
appear in any position within the sequence.

11

Property Name Description

floating Enum

Valid values are 'yes', 'no'

Whether the occurrences of an element in an ordered
sequence can appear out-of-order in the representation.

When parsing, and dfdl:floating is 'yes', instances of the
element may be encountered in the representation in any
position within its containing sequence. If present they
are placed into the infoset in schema declaration order. If
the element repeats, instances do not need to be
contiguous in the representation.

When parsing, and dfdl:floating is 'no', instances of the
element must be in schema declaration order, and, if
present, they are placed into the infoset in schema
declaration order. It is a processing error if instances of
the element are not encountered in schema declaration
order.

When unparsing, instances of the element are expected
in the infoset in schema declaration order, and are output
in the representation in schema declaration order. It is a
processing error if instances of the element are not
encountered in schema declaration order,

It is a schema definition error if an unordered sequence
or a choice contains any element with dfdl:floating='yes'.

It is a schema definition error if an ordered sequence
contains any element with dfdl:floating='yes' and also
contains non-element component (such as a choice or
sequence model group).

Annotation: dfdl:element

An ordered sequence with floating components is similar to an unordered sequence except only
the floating elements may be out of order.

An ordered sequence of n element children with either n or n-1 of those children with
dfdl:floating='yes' is equivalent to an unordered sequence with the same n element children with
dfdl:floating='no'.

A complex element with dfdl:floating='yes' can have as its content model a sequence with
elements that also have dfdl:floating='yes'.

11

 . The NTE segment in the X12 EDI standard is an example of a floating element.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 119 of 168

This makes every element in a sequence containing one or more floating elements a point of
uncertainty, similar to the way every element in an unordered sequence is a point of uncertainty.
A parser MUST look for the element defined at that position in the schema first and then look for
the floating elements in the order they are defined in the schema.

14.5 Hidden Groups

Some fields in the physical stream provide information about other fields in the stream and are
not really part of the data. For example, a field could give the number of repeats in a following
array. These fields may not be of interest to an application so may be removed from the Infoset
on parsing by marking them as hidden. A hidden sequence group allows fields to be defined that
will not be added to the infoset on parsing and will not be expected in the Infoset on unparsing.

<xs:element name="root">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="firstElement" type="xs:int"

 <xs:sequence>

 <dfdl:sequence hiddenGroupRef="tns:hiddenRepeatCount">

 </xs:sequence>

 <xs:element name="arrayElement" type="xs:int"

 minOccurs="0" maxOccurs="unbounded"

 dfdl:occursCountKind=”expression”

 dfdl:occurCount= “{../repeatCount}” />

 </xs:sequence>

 </xs:complexType>

</xs:element>

<xs:group name="hiddenRepeatCount" >

 <xs:sequence>

 <xs:element name="repeatCount" type=int

 dfdl:outputValueCalc=”{count(../arrayElement)}”

 dfdl:representation=”binary” dfdl:lengthKind=”implicit” />

 </xs:sequence>

</xs:group>

Hidden elements within a hidden sequence can be referenced via path expressions using the
same DFDL expression that we would have if it were not hidden.
Hidden elements can (typically will) contain the regular DFDL annotations to define their physical
properties and on unparsing to set their value. They are processed using the same behavior as
non-hidden elements.

When the dfdl:hiddenGroupRef property is specified, all other DFDL properties are ignored. It is a
schema definition error if the sequence is not empty.

A hidden sequence may appear within another hidden sequence.

Property Name Description

hiddenGroupRef Qname or empty String

Reference to a global model group definition that defines the hidden element
or elements.

The model group within the model group definition may be a xs:sequence or
xs:choice

If the value is the empty string then there is no hidden group.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 120 of 168

Annotation: dfdl:sequence

Table 22 Hidden properties

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 121 of 168

15. Choice Groups

The following properties are specific to xs:choice.

Property Name Description

choiceLengthKind Enum

Valid values are 'implicit', 'explicit'

'implicit' means the branches of the choice are not filled,
so the ChoiceContent region is variable length
depending on which branch appears.

'explicit' means that the branches of the choice are
always filled to the fixed length specified by
dfdl:choiceLength, so the ChoiceContent region is fixed
length regardless of which branch appears.

Annotation: dfdl:choice, dfdl:group (choice)

choiceLength Integer

Only used when dfdl:choiceLengthKind is ’explicit’.

Specifies the length of the choice in bytes, so the
ChoiceContent region is fixed length regardless of which
branch appears.

Annotation: dfdl:choice, dfdl:group (choice)

initiatedContent Enum

Valid values are 'yes', 'no'

When 'yes' indicates that all the branches of the choice
are initiated. It is a schema definition error if any children
have their dfdl:initiator property set to the empty string.
The branch is deemed to have been found when its
initiator has been found. Any subsequent error parsing
the branch will not cause the parser to backtrack.

When 'no', the branches of the choice may have their
dfdl:initiator property set to the empty string.

Annotation: dfdl:sequence, dfdl:choice, dfdl:group

A choice can have an initiator and/or a terminator as described earlier.
We will use this terminology:

Branch A branch is one of the available alternatives within a
choice. A branch can be an element of simple type or
complex type, or it can be an embedded sequence,
choice or group reference.

Root of the Branch Each branch conceptually has a single element,
sequence, choice or group reference component at
its root. This element is known as the Root of the
Branch.

Table 23 Choice group terminology

The Root of the Branch MUST NOT be optional. That is xs:minOccurs MUST BE greater than 0.
When processing a choice group the parser validates any contained path expressions. If a path
expression contained inside a choice branch refers to any other branch of the choice, then it is a
schema definition error. Note that this rule handles nested choices also. A path that navigates

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 122 of 168

outward from an inner choice to another alternative of an outer choice is violating this rule with
respect to the outer choice.

15.1 Resolving Choices

A choice corresponds to concepts called variant records, multi-format records, discriminated
unions, or tagged unions in various programming languages. In some contexts choices are
referred to generally as 'unions'. However, this should not be confused with XML schema unions.

When processing a choice, speculative parsing is used. Processing works as follows:

1. Attempt to parse the first branch of the choice.

2. If this fails with a processing error

a. If we have evaluated a dfdl:discriminator to true earlier on this branch
then the parser is 'bound' to this choice and parsing of the entire choice construct
fails with a processing error.

b. If we have not evaluated a dfdl:discriminator to true then we repeat from step 1
for the next branch of the choice.

3. It is a processing error if we exhaust the branches of the choice

4. If we succeed to parse a branch without error, then that branch’s value becomes the
logical value for the parse of the choice construct.

It is not possible for variable settings to be communicated from the speculative attempt to parse a
branch to any other parsing situation. The speculative effort is completely isolated. Whether it
succeeds or fails, neither the parse position in the source data, nor anything in the variable
memory, nor the infoset is affected.

Nested choices can require unbounded look ahead into the data.

On unparsing the choice branch supplied in the infoset is output. It is a processing error is more
than one choice branch is supplied. If no choice branch is supplied in the infoset then each choice
branch is tried in schema definition order until one does not result in a processing error. It is a
processing error if none of the choice branches unparse successfully.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 123 of 168

16. Arrays and Optional Elements: Properties for Repeating and Variable-Occurrence Data
Items

These properties are for arrays (xs:maxOccurs >1 or unbounded) or optional elements
(xs:minOccurs = 0 and xs:maxOccurs = 1) and apply to local elements and element references.

Property Name Description

occursCountKind Enum

Specifies how the actual number of occurrences is to be
established.

Valid values 'fixed', ‘expression’, 'parsed’ ,‘stopValue’

 ‘fixed’ means use the value of the xs:maxOccurs on the
declaration. It is a schema definition error if the value for
xs:minOccurs is not equal to xs:maxOccurs.

‘expression’ means use the value of the dfdl:occursCount
property. Applies during parsing only. On unparsing the number
of occurrences in the infoset is used, defaulted up to
xs:minOccurs if necessary.

'parsed' means that the number of occurrences is determined by
normal speculative parsing such as discriminating by the initiator

‘stopValue’ means look for a logical stop value which signifies the
end of the occurrences.

Annotation: dfdl:element

occursCount Non-negative Integer or DFDL Expression

Specifies the number of occurrences of the element.

This property can be computed by way of an expression which
returns an integer. The expression must not contain forward
references to elements which have not yet been processed.

Annotation: dfdl:element,

occursStopValue List of DFDL Logical Values

A space separated list of logical values that specify the
alternative logical stop values for the element.

Only used when dfdl:occursCountKind='stopValue'.

When parsing then if an occurrence of the element has a logical
value that matches one of the values in this list then the parser
must not expect any more occurrences of the element.

On unparsing the first value will be inserted as the last value in
the array after all of the occurrences in the infoset have been
output.

Annotation: dfdl:element

The above properties handle a logical one-dimensional array of any type.
In some situations arrays of elements and sequence groups of elements seem to be similar;
however, there is no notion of the array itself independent of its contained elements. Arrays are
distinctly different from sequence groups in this way.
A sequence can have its own initiator, and an element having that sequence as its type can also
have its own element initiator, so you could express two different initiators.
Unlike a sequence group, an array does not have its own initiator, terminator, or alignment. Those
properties apply to each of the child elements of the array. To give an alignment, initiator,

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 124 of 168

separator or terminator for an entire array you must enclose the element declaration for the array
in a sequence group and specify the alignment, separator, initiator and terminator on the
sequence group.

16.1 Repeating and Variable-Occurrence Items and Default Values

Variable-occurrence items include both variable-occurrence arrays and optional elements.
The number of occurrences of a variable-occurrence item may be specified in the data. This can
be combined with delimiters for determining the number of occurrences, in which case the
number of occurrences obtained by parsing using delimiters and any stored information must be
consistent. It is a processing error if they are not.
To determine the logical contents and number of occurrences for an array, we examine the input
stream trying to parse elements one by one with separators between them. Parsing for an
optional element is similar, except there is only the possibility of one occurrence, so separators
don't matter.
If the element is not found then defaulting occurs as described in 13.17 Properties for Default
Value Control
It is a processing error if a separator is parsed successfully, but parsing does not find the
subsequent element successfully, unless dfdl:separatorPolicy is 'postfix'.
On parsing and unparsing if the number of occurrences of an element is less than xs:minOccurs
and the element has a default specified then the element is defaulted up to xs:minOccurs,
otherwise it is a processing error.

16.2 Stop Value Delimited Array Number of occurrences

When an array has a stopValue specified, this means that a distinguished logical value must be
found to determine the end of the array. As each element is parsed, its value is compared to the
stop value, and if it matches, then that ends the array. The stop value itself is not considered to
be an element of the array and is not added to the infoset.
This technique can only be used on arrays of simple type elements. It is a schema definition error
if stop values are used on arrays with complex type elements.

16.3 Arrays with DFDL Expressions

If the value of a DFDL property of an array element is given by a DFDL Expression, then the
expression must be re-evaluated for each instance of the element.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 125 of 168

17. Calculated Value Properties.

This section describes properties which allow the creation of calculated elements. When parsing,
the value of a calculated element is derived using a DFDL Expression, and not by processing
bytes from the data stream. When unparsing, the value of a calculated element is derived using a
DFDL Expression, and is not obtained from the infoset in the usual way.

Calculated elements allow a technique that is commonly called layering. In this technique, some
elements are said to be in the physical layer, and some in the logical layer. When parsing, the
logical layer values are computed from physical layer values. When unparsing the opposite
occurs, that is the physical layer values are computed from the logical layer values.

Calculated elements are commonly used with hidden elements so as to hide the physical layer
elements so that they do not become part of the infoset.

When a DFDL Schema is used to both parse and unparse data, then a calculated element on
parsing will normally have one or more calculated elements on unparsing.

These properties apply to elements of simple type, and to simple types.

Property Name Description

inputValueCalc DFDL Expression

An expression that calculates the value of the element when parsing.

The element having the inputValueCalc property is called a derived
element, and the elements referenced from the inputValueCalc
expression are called representation elements.

An empty string is a valid return value for expression for a string-typed
element if minLength allows length 0.

An element that specifies an inputValueCalc expression has no
representation of its own in the data stream. All other DFDL
representation properties are ignored

The element must not be optional nor an array

The DFDL Expression must not refer to this element nor cause a
circular reference to this element. The expression must not contain forward

references to elements which have not yet been processed.

It is a schema definition error if dfdl:inputValueCalc is specified on an
element which has an xs:fixed or xs:default value.

It is a schema definition error if dfdl:inputValueCalc and
dfdl:outputValueCalc are specified on the same element.

Annotation: dfdl:element

outputValueCalc DFDL Expression

An expression that calculates the value of the current element when
unparsing.

An empty string is a valid return value for expression for a string-typed
element if minLength allows length 0.

The element must not be optional nor an array

The value for the element, is any, in the infoset is ignored.

The DFDL expression must not refer to this element nor cause a
circular reference to this element. The expression may contain forward

references to elements which have not yet been processed.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 126 of 168

It is a schema definition error if dfdl:outputValueCalc is specified on an
element which has an xs:fixed or xs:default value.

It is a schema definition error if dfdl:inputValueCalc and
dfdl:outputValueCalc are specified on the same element.

Annotation: dfdl:element

Example: 2d Nested Array

Consider this simple example. The data stream contains two elements giving the number of rows
and number of columns of an array of numbers. The contents of the array are stored after these
two elements.

<xs:complexType name="array">

 <xs:sequence dfdl:initiator="" >

 <xs:sequence dfdl:hiddenGroupRef="tns:hiddenArrayCounts"/>

 <xs:element name="rows" maxOccurs=”unbounded”

 dfdl:occursCountKind="expression"

 dfdl:occursCount="{ ../nrows }">

 <xs:complexType>

 <xs:sequence>

 <xs:element name=”cols” type=”xs:float”

maxOccurs=”unbounded”

 dfdl:occursCountKind=”expression”

 dfdl:occursCount=” { ../../ncols } “ />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:complexType>

<xs:group name="hiddenArrayCounts" >

 <xs:sequence>

 <xs:element name="nrows" type="xs:unsignedInt"

 dfdl:representation="binary"

 dfdl:lengthKind="implicit"

 dfdl:outputValueCalc="{ count(../rows) }"/>

 <xs:element name="ncols" type="xs:unsignedInt"

 dfdl:representation="binary"

 dfdl:lengthKind="implicit"

 dfdl:outputValueCalc=

 "{ if (count(../rows) ge 1)

 then

 count(../rows[1]/cols)

 else

 0

 }"/>

 </xs:sequence>

</xs:group>

In the example above we see that there are two hidden elements named ‘nrows’ and ‘ncols’.
These hidden elements’ values are computed when unparsing from the number of occurrences in

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 127 of 168

the ‘rows’ and ‘cols’ repeating elements. The ‘rows’ and ‘cols’ repeating elements number of
occurrences are computed when parsing from the hidden elements ‘nrows’ and ‘ncols’.

Example: Three-Byte Date

Logically, the data is a date.

<xs:element name=“d” type=“date”/>

Physically, it is stored as 3 single byte integers.

The format of this data is expressed as this schema:

<xs:sequence dfdl:representation="binary”>

 <xs:element name="mm" type="byte" />

 <xs:element name="dd" type="byte” />

 <xs:element name="yy" type="byte"/>

</xs:sequence>

This physical representation can be hidden so that it does not become part of the infoset:

<xs:sequence>

 <xs:sequence dfdl:hiddenGroupRef="tns:hiddenpDate"/>

 <xs:element name="d" type="date">

 …

 </xs:element>

 …

</xs:sequence>

<xs:group name="hiddenpDate" >

 <xs:sequence>

 <xs:element name="pdate">

 <xs:complexType>

 <xs:sequence dfdl:representation="binary”>

 <xs:element name="mm" type="byte" />

 <xs:element name="dd" type="byte” />

 <xs:element name="yy" type="byte"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:group>

A calculation can be used to compute the logical date element ‘d’ from the physical ‘pdate’ when
parsing:

<xs:sequence>

 … hidden pdate here …

 <xs:element name="d" type="date">

 <xs:annotation><xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:element>

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 128 of 168

 <dfdl:property name="inputValueCalc">

 {

 fn:date(fn:concat(if(../pdate/yy gt 50)then "19" else "20",

 if (../pdate/yy gt 9)

 then fn:string(../pdate/yy)

 else fn:concat("0",

 fn:string(../pdate/yy)),

 "-",

 fn:string(../pdate/mm),

 "-",

 fn:string(../pdate/dd)))

 }

 </dfdl:property>

 </dfdl:element>

 </xs:appinfo></xs:annotation>

</xs:element>

 …

</xs:sequence>

The expression above assembles a string resembling, for example, “2005-12-17” or “1957-3-9”
which is the string representation of a date that is acceptable to the fn:date constructor function.
The hidden element ‘pdate’ is referenced by relative paths. The expression ‘../pdate/yy’ accesses
an element of type ‘int’, and the fn:string constructor function turns it into an integer.

Finally, we must handle the unparse case where the physical layer is computed from the logical
layer:

<xs:sequence dfdl:representation="binary"

 <xs:element name="mm" type="byte"

 dfdl:outputValueCalc="{ fn:month-from-date(../d) }" />

 <xs:element name="dd" type="byte"

 dfdl:outputValueCalc="{ fn:day-from-date(../d) }" />

 <xs:element name="yy" type="byte"

 dfdl:outputValueCalc="{ fn:year-from-date(../d)

idivmod 100 }"

 />

</xs:sequence>

The entire example in one place:

<xs:sequence>

 <xs:sequence dfdl:hiddenGroupRef="tns:hiddenpDate"/>

 <xs:element name="d" type="date">

 <xs:annotation><xs:appinfo source=”http://www.ogf.org/dfdl/”>

 <dfdl:element>

 <dfdl:property name="inputValueCalc">

 {

 fn:date(fn:concat(if(../pdate/yy gt 50) then "19" else "20",

 if (../pdate/yy gt 9)

 then fn:string(../pdate/yy)

 else fn:concat("0",

 fn:string(../pdate/yy)),

 "-",

 fn:string(../pdate/mm),

 "-",

 fn:string(../pdate/dd)))

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 129 of 168

 }

 </dfdl:property>

 </dfdl:element>

 </xs:appinfo></xs:annotation>

 </xs:element>

 …

</xs:sequence>

<xs:group name="hiddenpDate" >

 <xs:sequence>

 <xs:element name="pdate">

 <xs:complexType>

 <xs:sequence dfdl:representation="binary”>

 <xs:element name="mm" type="byte"

 dfdl:outputValueCalc="{ fn:month-from-date(../d) }" />

 <xs:element name="dd" type="byte"

 dfdl:outputValueCalc="{ fn:day-from-date(../d) }" />

 <xs:element name="yy" type="byte"

 dfdl:outputValueCalc="{ fn:year-from-date(../d)

idivmod 100 }"

 />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:group>

The above sequence contains logically only a single date element.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 130 of 168

18. External Control of the DFDL Processor

In addition to providing the DFDL schema and data to be parsed or serialized, DFDL Schemas
can also be parameterized by external variables,.

DFDL processors can provide means to specify:
1. The data to be processed: a data stream when parsing or an infoset when unparsing.
2. The DFDL schema to be used
3. The distinguished root node element declaration to be used (specifying both name of element

and namespace of that name)
4. Values for external variables

Notice also that like any XML schema a DFDL schema can have multiple top-level element
declarations, so the distinguished root node is necessary to indicate which of these top-level
element declarations is to be the starting point for processing data. The distinguished root node
may be omitted if the DFDL schema contains only one top-level element declaration.
The mechanism by which a DFDL processor is controlled is not specified by this standard. For
example, command line DFDL processors may use command line options, but DFDL processors
embedded in other kinds of software systems may need other mechanisms.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 131 of 168

19. Built-in Specifications

For convenience, a standard set of named DFDL format definitions may be provided with DFDL
processors. These built-in format definitions may be imported by DFDL schema authors.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 132 of 168

20. Conformance

DFDL conformance can be claimed for schema documents and for processors

A schema document conforms to this specification if it conforms to the subset of XML Schema
1.0 defined in section 5.1 DFDL Subset of XML Schema and consists of components which
individually and collectively satisfy all the relevant constraints specified in this document.

Conformance may be claimed separately for a DFDL parser, a DFDL unparser or a DFDL
processor that parses and unparses.

1. A DFDL processor claiming conformance MUST identify the level of conformance and
version specification claimed.

2. A minimal conforming DFDL processor conforms to this specification when it implements
all the non-optional features defined in this document.

3. A extended conforming DFDL processor conforms to the specification when it
implements all the non-optional features and some of the optional features defined in this
document.

4. A fully conforming DFDL processor conforms to the specification when it implements all
the features defined in this document.

See 21 Optional DFDL Features for the list of optional feature

It is the intention of the DFDL Work Group to provide a conformance test suit to help verify
conformance with this specification..

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 133 of 168

21. Optional DFDL Features

The following table lists the features of the DFDL language that are considered optional for DFDL
processor implementations.

Feature Detection

Validation External switch

Simple type restrictions xs:simpleType in xsd

Nils xs:nillable='true' in xsd

Defaults xs:default or xs:fixed in xsd

Bi-Directional text. dfdl:textBiDi='yes'

Lengths in Bits dfdl:alignmentUnits='bits' or dfdl:lengthUnits='bits'

Delimited lengths and
representation binary element

dfdl:representation='binary' (or implied binary) and
dfdl:lengthKind='delimited'

Regular expressions dfdl:lengthKind='pattern',
dfdl:assert dfdl:testkind 'pattern' ,
dfdl:discriminator dfdl:testkind 'pattern'

Zoned numbers dfdl:textNumberRep='zoned'

Packed numbers dfdl:binaryNumberRep='packed'

Packed calendars dfdl:binaryCalendarRep='packed'

S/390 floats dfdl:binaryFloatRep='ibm390Hex'

Unordered sequences dfdl:sequenceKind='unordered'

Floating elements dfdl:floating='yes'

dfdl functions in expression
language

dfdl:functions in expression

Hidden groups dfdl:hiddenRef <> ''

Calculated values dfdl:inputValueCalc <> '' or dfdl:outputValueCalc <> ''

Escape schemes dfd:defineEscapeScheme in xsd

Extended encodings Any dfdl:encoding value beyond the core list

Asserts annotations dfdl:assert in xsd

Discriminators annotations dfdl:discriminator in xsd

Prefixed lengths dfdl:lengthKind='prefixed'

Variables

dfdl:defineVariable,
dfdl:newVariableInstances,
dfdl:setVariable
Variables in DFDL expression language

Table 24 Optional DFDL features

In order to provide portability of a DFDL schema, a minimal or extended conforming processor
must ensure that all the required properties, as defined in the property precedence sections, are
present in a schema, even when those properties are not implemented. For example if the bi-
directional text feature is not implemented, it is still a schema definition error if dfdl:textBiDi is not
set to 'no' an xs:string element.
It is a schema definition error if a DFDL schema uses an optional feature that is not supported by
a minimal or extended conforming processor.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 134 of 168

22. Property Precedence

22.1 Parsing

The following list gives the order in which DFDL properties are examined when the DFDL parser
is positioned at a particular component in the DFDL schema, and about to parse the bitstream
modeled by that component.

22.1.1 dfdl:element (simple) and dfdl:simpleType

 Parsing: calculated value

o dfdl:inputValueCalc

 Parsing: common

o dfdl:byteOrder

o dfdl:encoding

 'UTF-16' 'UTF-16BE' 'UTF-16LE'

 dfdl:utf16Width

o dfdl:ignoreCase

 Parsing: occurrences (does not apply to simple types or to global elements)

o dfdl:floating

o (xs:maxOccurs > 1 or unbounded) or (xs:minOccurs = 0 and xs:maxOccurs = 1)

 dfdl:occursCountKind

 "expression"

 dfdl:occursCount

 "fixed"

 xs:maxOccurs

 "parsed"

 "stopValue"

 dfdl:occursStopValue

 Parsing: identification, framing & extraction

o dfdl:leadingSkip

 dfdl:alignmentUnits

o dfdl:alignment

 dfdl:alignmentUnits

o dfdl:initiator

 dfdl:nilValueDelimiterPolicy (does not apply to simple types)

 dfdl:emptyValueDelimiterPolicy

o dfdl:representation “text” or xs:simpleType is 'string'

 dfdl:lengthKind

 “implicit”

 xs:maxLength or dfdl:textBooleanyyyRep

 dfdl:lengthUnits

 “explicit”

 dfdl:length

 dfdl:lengthUnits

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 135 of 168

 "prefixed"

 dfdl:prefixLengthType

 dfdl:prefixIncludesPrefixLength

 dfdl:lengthUnits

 “pattern”

 dfdl:lengthPattern

 "delimited", "endOfParent"

 None

 dfdl:textTrimKind

 dfdl:textStringPadCharacter, dfdl:textNumberPadCharacter,
dfdl:textBooleanPadCharacter or dfdl:textCalendarPadCharacter

 dfdl:textStringJustification, dfdl:textNumberJustification,
dfdl:textBooleanJustification or dfdl:textCalendarJustification

 dfdl:escapeSchemeRef

 dfdl:textBidi

 dfdl:textBidiTextOrdering

 dfdl:textBidiOrientation

o dfdl:representation “binary” or xs:simpleType is 'hexBinary'

 dfdl:lengthKind

 "implicit"

 xs:maxLength or xs:simpleType

 dfdl:lengthUnits

 “explicit”

 dfdl:length

 dfdl:lengthUnits

 "prefixed"

 dfdl:prefixLengthType

 dfdl:prefixIncludesPrefixLength

 dfdl:lengthUnits

 “pattern”

 dfdl:lengthPattern

 "endOfParent"

 None

o dfdl:terminator

 dfdl:nilValueDelimiterPolicy (does not apply to simple types)

 dfdl:emptyValueDelimiterPolicy

 dfdl:documentFinalTerminatorCanBeMissing

o dfdl:trailingSkip

 dfdl:alignmentUnits

 Parsing: conversion

o xs:nillable (does not apply to simple types)

 dfdl:nilKind

 "literalValue", "logicalValue", "literalCharacter"

 dfdl:nilValue

o xs:type

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 136 of 168

 "Number"

 dfdl: decimalSigned

 dfdl:representation

 "text"

 dfdl:textNumberRep

 "standard"

 dfdl:textNumberPattern

 dfdl:textStandardDecimalSepara
tor

 dfdl:textStandardGroupingSepar
ator

 dfdl:textStandardExponentChar
acter

 dfdl:textNumberCheckPolicy

 dfdl:textStandardInfinityRep

 dfdl:textStandardNanRep

 dfdl:textNumberRounding
 ▪ "explicit"

 dfdl:textNumberRoundin
gMode

 dfdl:textNumberRoundin
gIncrement

 dfdl:textStandardZeroRep

 dfdl:textStandardBase

 "zoned"

 dfdl:textNumberPattern

 dfdl:textNumberCheckPolicy

 dfdl:textNumberRounding
 ▪ "explicit"

 dfdl:textNumberRoundin
gMode

 dfdl:textNumberRoundin
gIncrement

 dfdl:textZonedSignStyle

 "binary"

 xs:decimal and restrictions

 dfdl:binaryNumberRep

 “packed”

 dfdl:binaryPackedSignC
odes

 dfdl:binaryDecimalVirtu
alPoint

 dfdl:binaryNumberChec
kPolicy

 “bcd”

 dfdl:binaryDecimalVirtu
alPoint

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 137 of 168

 “binary”

 dfdl:binaryDecimalVirtu
alPoint

 xs:float, xs:double

 dfdl:binaryFloatRep

 "String"

 "Calendar"

 dfdl:representation

 "text"

 dfdl:calendarPatternKind "explicit"

 dfdl:calendarPattern

 dfdl:calendarCheckPolicy

 dfdl:calendarTimeZone

 dfdl:calendarObserveDST

 dfdl:calendarFirstDayOfWeek

 dfdl:calendarDaysInFirstWeek

 dfdl:calendarCenturyStart

 dfdl:calendarLanguage

 "binary"

 dfdl:binaryCalendarRep

 “packed”

 dfdl:packedDecimalSignCodes

 dfdl:decimalVirtualPoint

 dfdl:binaryNumberCheckPolicy

 dfdl:calendarPatternKind
▪ "explicit"

 dfdl:calendarPattern

 dfdl:calendarCheckPolicy

 dfdl:calendarTimeZone

 dfdl:calendarObserveDST

 dfdl:calendarFirstDayOfWeek

 dfdl:calendarDaysInFirstWeek

 dfdl:calendarCenturyStart

 “bcd”

 dfdl:decimalVirtualPoint

 dfdl:calendarPatternKind
▪ "explicit"

 dfdl:calendarPattern

 dfdl:calendarCheckPolicy

 dfdl:calendarTimeZone

 dfdl:calendarObserveDST

 dfdl:calendarFirstDayOfWeek

 dfdl:calendarDaysInFirstWeek

 dfdl:calendarCenturyStart

 “binarySeconds”, “binaryMilliseconds”

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 138 of 168

 dfdl:binaryCalendarEpoch

 "Opaque"

 "Boolean"

 dfdl:representation

 "text"

 dfdl:textBooleanTrueRep

 dfdl:textBooleanFalseRep

 "binary"

 dfdl:binaryBooleanTrueRep

 dfdl:binaryBooleanFalseRep

o dfdl:useNilForDefault (does not apply to simple types)

 “true”

 None

 “false”

 xs:default or xs:fixed

22.1.2 dfdl:element (complex)

 Parsing: common

o dfdl:byteOrder

o dfdl:encoding

 'UTF-16' 'UTF-16BE' 'UTF-16LE'

 dfdl:utf16Width

o dfdl:ignoreCase

 Parsing: occurrences (does not apply to global elements)

o dfdl:floating

o (xs:maxOccurs > 1 or unbounded) or (xs:minOccurs = 0 and xs:maxOccurs = 1)

 dfdl:occursCountKind

 "expression"

 dfdl:occursCount

 "fixed"

 xs:maxOccurs

 "parsed"

 "stopValue"

 dfdl:occursStopValue

 Parsing: identification, framing & extraction

o dfdl:leadingSkip

 dfdl:alignmentUnits

o dfdl:alignment

 not “implicit”

 dfdl:alignmentUnits

o dfdl:initiator

 dfdl:emptyValueDelimiterPolicy

o dfdl:lengthKind

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 139 of 168

 “explicit”

 dfdl:length

 dfdl:lengthUnits

 "prefixed"

 dfdl:prefixLengthType

 dfdl:prefixIncludesPrefixLength

 dfdl:lengthUnits

 “pattern”

 dfdl:lengthPattern

 “implicit”, "delimited"

 None

o dfdl:terminator

 dfdl:emptyValueDelimiterPolicy

 dfdl:documentFinalTerminatorCanBeMissing

o dfdl:trailingSkip

 dfdl:alignmentUnits

22.1.3 dfdl:sequence and dfdl:group (when reference is to a sequence)

 Parsing: hidden (xs:sequence only)

o dfdl:hiddenGroupRef

 Parsing: common

o dfdl:byteOrder

o dfdl:encoding

 'UTF-16' 'UTF-16BE' 'UTF-16LE'

 dfdl:utf16Width

o dfdl:ignoreCase

 Parsing: identification, framing & extraction

o dfdl:leadingSkip

 dfdl:alignmentUnits

o dfdl:alignment

 not “implicit”

 dfdl:alignmentUnits

o dfdl:initiator

o dfdl:sequenceKind

o dfdl:initiatedContent

o dfdl:separator

 dfdl:separatorPosition

 dfdl:separatorPolicy

 dfdl:documentFinalSeparatorCanBeMissing

o dfdl:terminator

 dfdl:documentFinalTerminatorCanBeMissing

o dfdl:trailingSkip

 dfdl:alignmentUnits

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 140 of 168

22.1.4 dfdl:choice and dfdl:group (when reference is to a choice)

 Parsing: common

o dfdl:byteOrder

o dfdl:encoding

 'UTF-16' 'UTF-16BE' 'UTF-16LE'

 dfdl:utf16Width

o dfdl:ignoreCase

 Parsing: identification, framing & extraction

o dfdl:leadingSkip

 dfdl:alignmentUnits

o dfdl:alignment

 not “implicit”

 dfdl:alignmentUnits

o dfdl:initiator

o dfdl:choiceLengthKind

 “explicit”

 dfdl:choiceLength

o dfdl:initiatedContent

o dfdl:terminator

 dfdl:documentFinalTerminatorCanBeMissing

o dfdl:trailingSkip

 dfdl:alignmentUnits

22.2 Unparsing

The following list gives the order in which DFDL properties are examined when the DFDL
unparser is positioned at a particular component in the DFDL Infoset, and about to unparsed and
thereby create the bitstream which is the representation of that component.

22.2.1 dfdl:element (simple) and dfdl:simpleType

 Unparsing: calculated value

o dfdl:inputValueCalc (if set them element is ignored)

o dfdl:outputValueCalc

 Unparsing: common
o dfdl:byteOrder

o dfdl:outputNewLine

o dfdl:encoding

 'UTF-16' 'UTF-16BE' 'UTF-16LE'

 dfdl:utf16Width

o dfdl:fillByte

 Unparsing: repeats (does not apply to simple types or to global elements)

o (xs:maxOccurs > 1 or unbounded) or (xs:minOccurs = 0 and xs:maxOccurs = 1)

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 141 of 168

 dfdl:occursCountKind

 "expression"

 dfdl:occursCount

 "fixed"

 xs:maxOccurs

 "parsed"

 "stopValue"

 dfdl:occursStopValue

 Unparsing: conversion

o dfdl:useNilForDefault (does not apply to simple types)

 “true”

 None

 “false”

 xs:default or xs:fixed

o xs:nillable (does not apply to simple types)

 dfdl:nilKind

 "literalValue", "logicalValue", "literalCharacter"

 dfdl:nilValue

o xs:type

 "Number"

 dfdl:decimalSigned

 dfdl:representation

 "text"

 dfdl:textNumberRep

 "standard"

 dfdl:textNumberPattern

 dfdl:textStandardBase

 dfdl:textStandardDecimalSepara
tor

 dfdl:textStandardGroupingSepar
ator

 dfdl:textStandardExponentChar
acter

 dfdl:textNumberCheckPolicy

 dfdl:textStandardInfinityRep

 dfdl:textStandardNanRep

 dfdl:textNumberRounding
 ▪ "explicit"

 dfdl:textNumberRoundin
gMode

 dfdl:textNumberRoundin
gIncrement

 dfdl:textStandardZeroRep

 "zoned"

 dfdl:textNumberPattern

 dfdl:textNumberCheckPolicy

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 142 of 168

 dfdl:textNumberRounding
 ▪ "explicit"

 dfdl:textNumberRoundin
gMode

 dfdl:textNumberRoundin
gIncrement

 dfdl:textZonedSignStyle

 dfdl:textBidi

 dfdl:textBidiTextOrdering

 dfdl:textBiDiOrientation

 dfdl:textBidiNumeralShapes

 "binary"

 xs:decimal and restrictions

 dfdl:binaryNumberRep

 “packed”

 dfdl:binaryPackedSignC
odes

 dfdl:binaryDecimalVirtu
alPoint

 “bcd”

 dfdl:binaryDecimalVirtu
alPoint

 “binary”

 dfdl:binaryDecimalVirtu
alPoint

 xs:float, xs:double

 dfdl:binaryFloatRep

 "String"

 dfdl:textBidi

 dfdl:textBidiTextOrdering

 dfdl:textBiDiOrientation

 dfdl:textBidiSymmetric

 dfdl:textBidiTextShaped

 "Calendar"

 dfdl:representation

 "text"

 dfdl:calendarPatternKind "explicit"

 dfdl:calendarPattern

 dfdl:calendarCheckPolicy

 dfdl:calendarTimeZone

 dfdl:calendarObserveDST

 dfdl:calendarFirstDayOfWeek

 dfdl:calendarDaysInFirstWeek

 dfdl:calendarLanguage

 dfdl:textBidi

 dfdl:textBidiTextOrdering

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 143 of 168

 dfdl:textBiDiOrientation

 dfdl:textBidiSymmetric

 dfdl:textBidiTextShaped

 "binary"

 dfdl:binaryCalendarRep

 “packed”

 dfdl:packedDecimalSignCodes

 dfdl:decimalVirtualPoint

 dfdl:binaryNumberCheckPolicy

 dfdl:calendarPatternKind
▪ "explicit"

 dfdl:calendarPattern

 dfdl:calendarCheckPolicy

 dfdl:calendarTimeZone

 dfdl:calendarObserveDST

 dfdl:calendarFirstDayOfWeek

 dfdl:calendarDaysInFirstWeek

 dfdl:calendarCenturyStart

 “bcd”

 dfdl:decimalVirtualPoint

 dfdl:calendarPatternKind
▪ "explicit"

 dfdl:calendarPattern

 dfdl:calendarCheckPolicy

 dfdl:calendarTimeZone

 dfdl:calendarObserveDST

 dfdl:calendarFirstDayOfWeek

 dfdl:calendarDaysInFirstWeek

 dfdl:calendarCenturyStart

 “binarySeconds”, “binaryMilliseconds”

 dfdl:binaryCalendarEpoch

 "Opaque"

 "Boolean"

 dfdl:representation

 "text"

 dfdl:textBooleanTrueRep

 dfdl:textBooleanFalseRep

 dfdl:textBidi

 dfdl:textBidiTextOrdering

 dfdl:textBiDiOrientation

 dfdl:textBidiSymmetric

 dfdl:textBidiTextShaped

 "binary"

 dfdl:binaryBooleanTrueRep

 dfdl:binaryBooleanFalseRep

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 144 of 168

 Unparsing: insertion & framing

o dfdl:leadingSkip

 dfdl:alignmentUnits

o dfdl:alignment

 not “implicit”

 dfdl:alignmentUnits

o dfdl:initiator

 dfdl:nilValueDelimiterPolicy (does not apply to simple types)

 dfdl:emptyValueDelimiterPolicy
o dfdl:representation “text” or xs:simpleType 'string'

 dfdl:escapeSchemeRef

 dfdl:lengthKind

 “implicit”

 xs:maxLength or dfdl:textBooleanyyyRep

 dfdl:lengthUnits

 dfdl:textPadKind

 dfdl:textStringPadCharacter,
dfdl:textNumberPadCharacter,
dfdl:textBooleanPadCharacter or
dfdl:textCalendarPadCharacter

 dfdl:textStringJustification,
dfdl:textNumberJustification,
dfdl:textBooleanJustification or
dfdl:textCalendarJustification

 dfdl:truncateSpecifiedLengthString

 “explicit”

 dfdl:length

 dfdl:lengthUnits

 dfdl:textPadKind

 dfdl:textStringPadCharacter,
dfdl:textNumberPadCharacter,
dfdl:textBooleanPadCharacter or
dfdl:textCalendarPadCharacter

 dfdl:textStringJustification,
dfdl:textNumberJustification,
dfdl:textBooleanJustification or
dfdl:textCalendarJustification

 dfdl:truncateSpecifiedLengthString

 "prefixed"

 dfdl:prefixLengthType

 dfdl:prefixIncludesPrefixLength

 dfdl:lengthUnits

 dfdl:textPadKind

 dfdl:textStringPadCharacter,
dfdl:textNumberPadCharacter,
dfdl:textBooleanPadCharacter or
dfdl:textCalendarPadCharacter

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 145 of 168

 dfdl:textStringJustification,
dfdl:textNumberJustification,
dfdl:textBooleanJustification or
dfdl:textCalendarJustification

 xs:minLength or dfdl:textOutputMinLength

 “pattern”, "delimited", "endOfParent"

 dfdl:textPadKind

 dfdl:textStringPadCharacter,
dfdl:textNumberPadCharacter,
dfdl:textBooleanPadCharacter or
dfdl:textCalendarPadCharacter

 dfdl:textStringJustification,
dfdl:textNumberJustification,
dfdl:textBooleanJustification or
dfdl:textCalendarJustification

 xs:minLength or dfdl:textOutputMinLength

o dfdl:representation “binary” or xs:simpleType 'hexBinary'

 dfdl:lengthKind

 "implicit"

 xs:maxLength or xs:simpleType

 dfdl:lengthUnits

 “explicit”

 dfdl:length

 dfdl:lengthUnits

 "prefixed"

 dfdl:prefixLengthType

 dfdl:prefixIncludesPrefixLength

 dfdl:lengthUnits

 “pattern”, "endOfParent"

 None

o dfdl:terminator

 dfdl:nilValueDelimiterPolicy (does not apply to simple types)

 dfdl:emptyValueDelimiterPolicy

o dfdl:trailingSkip

 dfdl:alignmentUnits

22.2.2 dfdl:element (complex)

 Unparsing: common

o dfdl:byteOrder

o dfdl:outputNewLine

o dfdl:encoding

 'UTF-16' 'UTF-16BE' 'UTF-16LE'

 dfdl:utf16Width

o dfdl:fillByte

 Unparsing: repeats (does not apply to simple types or to global elements)

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 146 of 168

o (xs:maxOccurs > 1 or unbounded) or (xs:minOccurs = 0 and xs:maxOccurs = 1)

 dfdl:occursCountKind

 "expression"

 dfdl:occursCount

 "fixed"

 xs:maxOccurs

 "parsed"

 Unparsing: insertion & framing

o dfdl:leadingSkip

 dfdl:alignmentUnits

o dfdl:alignment

 not “implicit”

 dfdl:alignmentUnits

o dfdl:initiator

 dfdl:emptyValueDelimiterPolicy

o dfdl:lengthKind

 “explicit”

 dfdl:length

 dfdl:lengthUnits

 "prefixed"

 dfdl:prefixLengthType

 dfdl:prefixIncludesPrefixLength

 dfdl:lengthUnits

 “implicit”, “pattern”, "delimited"

 None

o dfdl:terminator

 dfdl:emptyValueDelimiterPolicy

o dfdl:trailingSkip

 dfdl:alignmentUnits

22.2.3 dfdl:sequence and dfdl:group (when reference is a sequence)

 Parsing: hidden (xs:sequence only)

o dfdl:hiddenGroupRef

 Unparsing: common

o dfdl:byteOrder

o dfdl:outputNewLine

o dfdl:encoding

 'UTF-16' 'UTF-16BE' 'UTF-16LE'

 dfdl:utf16Width

o dfdl:fillByte

 Unparsing: insertion & framing

o dfdl:leadingSkip

 dfdl:alignmentUnits

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 147 of 168

o dfdl:alignment

 not “implicit”

 dfdl:alignmentUnits

o dfdl:initiator

o dfdl:separator

 dfdl:separatorPosition

 dfdl:separatorPolicy

o dfdl:terminator

o dfdl:trailingSkip

 dfdl:alignmentUnits

22.2.4 dfdl:choice and dfdl:group (when reference is a choice)

 Unparsing: common

o dfdl:byteOrder

o dfdl:outputNewLine

o dfdl:encoding

 'UTF-16' 'UTF-16BE' 'UTF-16LE'

 dfdl:utf16Width

o dfdl:fillByte

 Unparsing: insertion & framing

o dfdl:leadingSkip

 dfdl:alignmentUnits

o dfdl:alignment

 not “implicit”

 dfdl:alignmentUnits

o dfdl:initiator

o dfdl:choiceLengthKind

 explicit”

 dfdl:choiceLength

o dfdl:terminator

o dfdl:trailingSkip

 dfdl:alignmentUnits

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 148 of 168

23. Expression language

The DFDL expression language allows the processing of values conforming to the data model
defined in the DFDL Infoset. It allows properties in the DFDL schema to be dependent of the
contents of an instance of a DFDL document, a DFDL variable or another property in the schema.
For example the length of an element can be made dependent on the contents of another
element in the document.
The main uses of the expression language are as follows:

1. When a DFDL property needs to be set dynamically at parse time from the contents of
one or more elements of the data. Properties such as initiator, terminator, length,
separator, and nilValues accept an expression.

2. In a dfdl:assert annotation
3. In a dfdl:discriminator annotation to resolve uncertainty when parsing
4. In a dfdl:inputValueCalc property to derive the value of an element in the logical model

that doesn’t exist in the physical data.
5. In a dfdl:outputValueCalc property to compute the value of an element on unparsing.
6. As the value in a dfdl:setVariable annotation or the dfdl:defaultValue in a

dfdl:defineVariable.

The DFDL expression language is a subset of XPath 2.0 [XPath2]. DFDL uses a subset of XML
schema and has a simpler information model, so only a subset of XPath 2.0 expressions is
meaningful in DFDL Schemas. For example there are no attributes in DFDL so the attribute axis
is not needed.

23.1 Expression Language Data Model

The DFDL expression language operates on the DFDL infoset with the addition of the hidden
elements. That is, it operates on the augmented infoset.
During parsing, expressions can reference any element preceding the current position. During
parsing only a limited degree of reference to elements following the current position is allowed.
Forward reference can occur only in the context of adfdl:discriminator annotation and
implementations may have varying ability to support forward reference.
During unparsing, expressions can reference any element either preceding or following the
current element in the data stream.

23.2 Variables

A variable is a binding between a (qualified) name and a (typed) value. Variables are defined
using the dfdl:defineVariable annotation (see 7.7); defining a variable causes an initial instance
also to be created. Further instances of variables are created using the dfdl:newVariableInstance
annotation. Instances of variables are assigned a value using the dfdl:setVariable annotation.
Variables are referenced in expressions by preceding the QName with '$'.
This section describes the semantics of variables. Any implementation consistent with the
behavior described here is acceptable.
The memory where the information about a variable is stored during DFDL processing is called
the variable memory. A variable is a name that is associated with a storage tuple in the variable
memory.
Specifically, the variable memory contains:

 a counter used to generate locations for new tuples. Initial value is 1.

 an ordered list of locations. Each location contains a tuple of values:
o has-been-set flag. This Boolean is originally false. dfdl:setVariable changes this

flag to true.
o has-been-referenced flag. This Boolean is originally false. Evaluation of an

expression that uses the variable value changes the value to true.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 149 of 168

o has-value flag. This Boolean is originally true if the dfdl:defineVariable or
dfdl:newVariableInstance annotation has a default value specified, or if a default
value has been supplied externally. Otherwise it is false, but is set to true if a
dfdl:setVariable annotation is processed.

o typeID. This string is a type identifier taken from the type specified in the
dfdl:defineVariable annotation.

o value. This is a typed value, or the distinguished value "unknown". The type of
the value must correspond to the typeID. The value is optionally specified in
dfdl:defineVariable or dfdl:newVariableInstance annotations in which case we
refer to it as the default value for the variable. A default value may also be
provided by the DFDL processor when the variable is defined with
external=”true”.

The variable memory is initialized when a dfdl:defineVariable annotation is encountered.
Each time a dfdl:newVariableInstance annotation is encountered, the parser captures the current
value of the counter from the variable memory. It then creates a new variable memory where the
location counter's value is one greater, and where the list of locations has been augmented with a
new tuple at the location given by the prior value of the location counter. The tuple is initialized
based on the specifics of the dfdl:defineVariable annotation.

23.2.1 Rewinding of Variable Memory State

Upon exit of the scope where the new variable instance was created, the newly created variable
memory is discarded and the prior variable memory is restored.
Note that the above algorithm insures that each time a dfdl:newVariableInstance is encountered,
a fresh location is initialized for it, and once the scope containing that variable goes out of scope,
the instance tuple for the variable can no longer be reached. A different variable instance tuple
may now be visible if there is one still in an enclosing scope.

23.2.2 Variable Memory State Transitions

The flags in the variable memory tuples are interpreted and modified as follows:

DFDL annotation before annotation processed after annotation processed

has-
been-set

has-been-
referenced

has-
value

has-
been-set

has-been-
referenced

has-value

defineVariable
(without default or
external value)

tuple doesn’t exist false false false

defineVariable (with
default value)

tuple doesn’t exist false false true

defineVariable (with
external value)

tuple doesn’t exist false false true

newVariableInstance
(without default
value)

tuple doesn't exist false false false

newVariableInstance
(with default value)

tuple doesn't exist false false true

setVariable tuple doesn't exist schema definition error

false false false true false true

false false true true false true (also
value
changed
to new
value)

false true false impossible state. The flags cannot
get into this configuration.

false true true schema definition error – set after

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 150 of 168

reference not allowed.

true false false impossible state. The flags cannot
get into this configuration.

true false true schema definition error – double set
not allowed

true true false impossible state. The flags cannot
get into this configuration.

true true true validator should issue warning –
double set not allowed unless on
separate branches of a choice and
this can only be determined reliably
at runtime

reference variable
(from DFDL
expression)

tuple doesn't exist schema definition error

false false false schema definition error – undefined
variable

false false true false true (value
is returned)

true

false true false impossible state. The flags cannot
get into this configuration.

false true true false true (value
is returned)

true

true false false impossible state. The flags cannot
get into this configuration.

true false true true true (value
is returned)

true

true true false impossible state. The flags cannot
get into this configuration.

true true true true true (value
is returned)

true

Table 25 Variable memory states.

The above table describes a set of rules which might be abbreviated as:

 write once, read many

 no write after the value has been read
An exception to this behavior occurs whenever the DFDL processor backtracks because it is
processing multiple arms of a choice or as a result of speculative parsing. In this case the
variable state is also rewound.
It is a schema definition error if a dfdl:setVariable or a variable reference occurs and there is no
corresponding variable name defined by a dfdl:defineVariable annotation.
It is a schema definition error if a dfdl:setVariable provides a value of incorrect type which does
not correspond to the type specified by the dfdl:defineVariable.
It is a schema definition error if a variable reference in an expression is able to return a value of
incorrect type for the evaluation of that expression. That is, DFDL - including the expressions
contained in it - is a statically type-checkable language. DFDL implementations may issue these
schema definition errors prior to processing time.

23.3 General Syntax

DFDL expressions follow the XPath 2.0 syntax rules but are always enclosed in curly braces “{“
and “}”.
When expressions are used for a property which accepts a string literal then “{{“should be used to
escape when a “{“is required as a character.
Examples

{ /book/title }

{ $x+2 }

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 151 of 168

{ if (fn:exists(../field1)) then 1 else 0 }

The result of evaluating the expression must be a single atomic value of the type expected by the
context. Expressions must not return a sequence containing more than one item or a processing
error will occur. If the expression returns an empty sequence it will be treated as returning nil.

23.4 DFDL Expression Syntax

Refer to XML Path Language (XPath) 2.0 [XPath2 for a description of XPath expressions

DFDL Expression ::= "{" Expr "}"

Expr ::= ExprSingle

ExprSingle ::= IfExpr
| OrExpr

IfExpr ::= "if" "(" Expr ")" "then" ExprSingle
"else" ExprSingle

OrExpr ::= AndExpr ("or" AndExpr)*

AndExpr ::= ComparisonExpr ("and"
ComparisonExpr)*

ComparisonExpr ::= AdditiveExpr ((ValueComp
) AdditiveExpr)?

AdditiveExpr ::= MultiplicativeExpr (("+" | "-")
MultiplicativeExpr)*

MultiplicativeExpr ::= UnaryExpr (("*" | "div" | "idiv"
| "mod") UnaryExpr)*

UnaryExpr ::= ("-" | "+")* ValueExpr

ValueExpr ::= PathExpr

ValueComp ::= "eq" | "ne" | "lt" | "le" | "gt" |
"ge"

PathExpr ::= ("/" RelativePathExpr?)
| RelativePathExpr

RelativePathExpr ::= StepExpr (("/") StepExpr)*

StepExpr ::= FilterExpr | AxisStep

AxisStep ::= (ReverseStep | ForwardStep)
Predicate

ForwardStep ::= (ForwardAxis NodeTest) |
AbbrevForwardStep

ForwardAxis ::= ("child" "::")
| ("self" "::")

AbbrevForwardStep ::= NodeTest

ReverseStep ::= (ReverseAxis NodeTest) |
AbbrevReverseStep

ReverseAxis ::= ("parent" "::")
")

AbbrevReverseStep ::= ".."

NodeTest ::= NameTest

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 152 of 168

NameTest ::= QName

FilterExpr ::= PrimaryExpr Predicate

Predicate ::= "[" Expr "]"

PrimaryExpr ::= Literal | VarRef |
ParenthesizedExpr | ContextItemExpr

| FunctionCall

Literal ::= NumericLiteral | StringLiteral

NumericLiteral ::= IntegerLiteral | DecimalLiteral |
DoubleLiteral

VarRef ::= "$" VarName

VarName ::= QName

ParenthesizedExpr ::= "(" Expr? ")"

ContextItemExpr ::= "."

FunctionCall ::= QName "(" (ExprSingle (","
ExprSingle)*)? ")"

Table 26 DFDL Expression Language

Notes:
1. Only If and path expression types are supported
2. Only the child, parent, and self axes are supported
3. Predicates are only used to index arrays and so must be integer expressions otherwise a

schema definition error occurs
4. A subset of the XPath 2.0 operators are supported

23.5 Constructors, Functions and Operators

23.5.1 Constructor Functions for XML Schema Built-in Types

The following constructor functions for the built-in types are supported:

 xs:string($arg as xs:anyAtomicType?) as xs:string?

 xs:boolean($arg as xs:anyAtomicType?) as xs:boolean?

 xs:decimal($arg as xs:anyAtomicType?) as xs:decimal?

 xs:float($arg as xs:anyAtomicType?) as xs:float?

 xs:double($arg as xs:anyAtomicType?) as xs:double?

 xs:dateTime($arg as xs:anyAtomicType?) as xs:dateTime?

 xs:time($arg as xs:anyAtomicType?) as xs:time?

 xs:date($arg as xs:anyAtomicType?) as xs:date?

 xs:hexBinary($arg as xs:anyAtomicType?) as xs:hexBinary?

 xs:integer($arg as xs:anyAtomicType?) as xs:integer?

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 153 of 168

 xs:long($arg as xs:anyAtomicType?) as xs:long?

 xs:int($arg as xs:anyAtomicType?) as xs:int?

 xs:short($arg as xs:anyAtomicType?) as xs:short?

 xs:byte($arg as xs:anyAtomicType?) as xs:byte?

 xs:nonNegativeInteger($arg as xs:anyAtomicType?) as xs:nonNegative
Integer?

 xs:unsignedLong($arg as xs:anyAtomicType?) as xs:unsignedLong?

 xs:unsignedInt($arg as xs:anyAtomicType?) as xs:unsignedInt?

 xs:unsignedShort($arg as xs:anyAtomicType?) as xs:unsignedShort?

 xs:unsignedByte($arg as xs:anyAtomicType?) as xs:unsignedByte?

A Special Constructor Function for xs:dateTime

A special constructor function is provided for constructing a xs:dateTime value from an

xs:date value and an xs:time value.

fn:dateTime($arg1 as xs:date?, $arg2 as xs:time?) as xs:dateTime?

23.5.2 Standard XPath Functions

23.5.2.1 Boolean functions

The following additional constructor functions are defined on the boolean type.

Function Meaning

fn:true Constructs the xs:boolean value 'true'.

fn:false Constructs the xs:boolean value 'false'.

Table 27 Boolean functions

The following functions are defined on boolean values:

Function Meaning

fn:not Inverts the xs:boolean value of the argument.

Table 28 Boolean functions

23.5.2.2 Numeric Functions

The following functions are defined on numeric types. Each function returns a value of

the same type as the type of its argument.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 154 of 168

Function Meaning

fn:abs Returns the absolute value of the argument.

fn:ceiling
Returns the smallest number with no fractional part that is greater than or equal to
the argument.

fn:floor
Returns the largest number with no fractional part that is less than or equal to the
argument.

fn:round Rounds to the nearest number with no fractional part.

fn:round-half-
to-even

Takes a number and a precision and returns a number rounded to the given
precision. If the fractional part is exactly half, the result is the number whose least
significant digit is even.

Table 29 Numeric Functions

23.5.2.3 String Functions

The following functions are defined on values of type xs:string and types derived from

it.

Function Meaning

fn:concat
Concatenates two or more xs:anyAtomicType arguments

cast to xs:string.

fn:substring
Returns the xs:string located at a specified place

within an argument xs:string.

fn:string-length Returns the length of the argument.

fn:upper-case Returns the upper-cased value of the argument.

fn:lower-case Returns the lower-cased value of the argument.

Function Meaning

fn:contains
Indicates whether one xs:string contains another

xs:string. A collation may be specified.

fn:starts-with
Indicates whether the value of one xs:string begins with

the collation units of another xs:string. A collation

may be specified.

fn:ends-with
Indicates whether the value of one xs:string ends with

the collation units of another xs:string. A collation

may be specified.

fn:substring-

before

Returns the collation units of one xs:string that

precede in that xs:string the collation units of another

xs:string. A collation may be specified.

fn:substring-

after

Returns the collation units of xs:string that follow in

that xs:string the collation units of another xs:string.

A collation may be specified.

Table 30 String Functions

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 155 of 168

23.5.2.4 Date, Time functions:

Function Meaning

fn:year-from-dateTime Returns the year from an xs:dateTime value.

fn:month-from-dateTime Returns the month from an xs:dateTime value.

fn:day-from-dateTime Returns the day from an xs:dateTime value.

fn:hours-from-dateTime Returns the hours from an xs:dateTime value.

fn:minutes-from-dateTime Returns the minutes from an xs:dateTime value.

fn:seconds-from-dateTime Returns the seconds from an xs:dateTime value.

fn:year-from-date Returns the year from an xs:date value.

fn:month-from-date Returns the month from an xs:date value.

fn:day-from-date Returns the day from an xs:date value.

fn:hours-from-time Returns the hours from an xs:time value.

fn:minutes-from-time Returns the minutes from an xs:time value.

fn:seconds-from-time Returns the seconds from an xs:time value.

Table 31 Date, Time functions:

23.5.2.5 Sequences functions

The following functions are defined on sequences. (Note that DFDL v1.0 does not

support sequences of length > 1.)

Function Meaning

fn:empty Indicates whether or not the provided sequence is empty.

fn:exists Indicates whether or not the provided sequence is not empty.

Table 32 Sequences functions

23.5.2.6 Node functions

This section discusses functions and operators on nodes.

Function Meaning

fn:name
Returns the name of the context node or the specified

node as an xs:string.

fn:local-name
Returns the local name of the context node or the

specified node as an xs:NCName.

fn:namespace-

uri

Returns the namespace URI as an xs:anyURI for the

xs:QName of the argument node or the context node if the

argument is omitted. This may be the URI corresponding to

the zero-length string if the xs:QName is in no

namespace.

../../../../../../../../Local%20Settings/Xpath/XPath%20Functions/XQuery%201.0%20and%20XPath%202.0%20Functions%20and%20Operators.htm#func-hours-from-time
../../../../../../../../Local%20Settings/Xpath/XPath%20Functions/XQuery%201.0%20and%20XPath%202.0%20Functions%20and%20Operators.htm#func-minutes-from-time
../../../../../../../../Local%20Settings/Xpath/XPath%20Functions/XQuery%201.0%20and%20XPath%202.0%20Functions%20and%20Operators.htm#func-seconds-from-time

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 156 of 168

Table 33 Node functions

23.5.3 DFDL Functions

Function Meaning

dfdl:representationLength

Returns the unparsed length the specified node

as an xs:unsignedlong. The length is the

number of 'bytes', 'characters' or 'bits'

depending on second argument

dfdl:unpaddedLength

Returns the unpadded length the specified node

as an xs:unsignedlong. The unpadded length

excludes any padding or filling. The length is

the number of 'bytes', 'characters' or 'bits'

depending on second argument

dfdl:property

Returns the value of requested DFDL property

of the specified node as an xs:string.

Ex dfdl:property(‘byteorder’, ‘./address ‘)

dfdl:testbit

Returns Boolean true if the bit number given

by arg #2 is set on in the byte given by arg

#1, otherwise returns Boolean false.

dfdl:setBits

Returns an unsigned byte being the value of

the bit positions provided by the Boolean

arguments, where true=1, false=0. The number

of arguments must be 8.

dfdl:countWithDefault

Returns the count the number of occurrences

including the effect of defaulting as an

xs:int

dfdl:count
Returns the number of occurrences in an array

as an xs:int.

dfdl:position Returns the position of the current item

within an array as an xs:int.

dfdl:checkConstraints Returns boolean true if the specified node

value satisfies the XML schema constraints

specified. Returns false if the specified node

does not meet the constraints or does not

exist.

Table 34 DFDL Functions

Notes:
dfdl:unpaddedLength(path) - returns the unpadded length which excludes any padding or filling
which might be added for a specified length

If the element declaration in the DFDL schema corresponding to the infoset item is not potentially
represented, then the unpadded length is defined to be 0.

The unpadded length includes the length contributions from introduced escape characters
required to escape contained delimiters (if such are defined, and will appear in the output
representation).

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 157 of 168

The unpadded length is also a function of the dfdl:encoding property. Multi-byte and variable-
width character set encodings will commonly contribute more bytes to the unpadded length than a
single-byte character set would.

The unpadded length is computed from the DFDL infoset value, ignoring the dfdl:length or
dfdl:textOutputMinLength property. Other DFDL properties which affect the length of a text or
binary representation are respected, it is only an explicit length which is ignored.

For a complex type, this means a bottom up totaling of the dfdl:representationLength() of all the
contents and framing of the complex type.

dfdl:representationLength(path) – returns the length of the representation of the infoset data item
as identified by the path argument. This includes padding or filling or truncation which might be
carried out for a specified length item.

If the element declaration in the DFDL schema corresponding to the infoset item is not potentially
represented, then the length is defined to be 0.
When unparsing with dfdl:lengthKind="explicit", the calculation of dfdl:representationLength()
returns the value of the dfdl:length property.

For both dfdl:representationLength and dfdl:unpaddedLength, the representation length excludes
any alignment filling as well as excluding any leading or trailing skip bytes. That is, the returned
length is about the length of the content, and not about the position of that content in the output
data stream.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 158 of 168

24. DFDL Regular Expressions

A DFDL regular expression may be specified for the dfdl:lengthPattern format property and the
dfdl:testPattern attribute of the dfdl:assert and dfdl:disciminator annotations.

A DFDL regular expression may be either a PERL regular expression [PERLRE] or a Java®
regular expression [JAVARE]. For portability it is recommended that use is restricted to a
common subset of the PERL and Java syntax.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 159 of 168

25. Security Considerations

All locations must be properly initialized before writing so as to prevent accidental (or purposeful)
transmission of data in the unused parts of data formats. Even when a DFDL description does not
specify that data should be written to a particular part of the output representation, a defined
pattern should always be written.
When unparsing data it is a schema definition error if the representation properties that control
filling and padding are not defined by the DFDL schema. The DFDL processor must fail if they are
not defined so that it is certain no region of the output data has unspecified contents.
If regions within a DFDL-described data object are encrypted, then when decrypting them proper
means must be used to assure secure passage of passwords to the decrypting software. Such
means are beyond the scope of the DFDL language specification.
In addition, if encryption passwords/keys are stored in DFDL schema-described data, then proper
means must be used to assure that the decrypted form of these passwords is not revealed. Such
means are beyond the scope of the DFDL language specification.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 160 of 168

26. Authors and Contributors

Alan W. Powell,
IBM Software Group,
Hursley,
Winchester, UK
alan_powell@uk.ibm.com

Michael J. Beckerle,
Oco, Inc.,
Waltham,
MA, USA
mbeckerle@OCO-INC.COM

Stephen M. Hanson,
IBM Software Group,
Hursley,
Winchester,UK
smh@uk.ibm.com

We greatly acknowledge the contributions made to this document by the following and all the
other people who provided constructive and valuable input in the group discussions.

Martin Westhead, Avaya, Milpitas, CA, USA
James Myers, NCSA, Urbana-Champaign, IL, USA
Suman Kalia, IBM Software Group, Markham, Ontario, Canada
Tom Sugden, EPCC
Tara Talbot, PNNL, Richland, WA, USA
Robert McGrath, NCSA, Urbana-Champaign, IL, USA
Geoff Judd, IBM Software Group, Hursley, UK
Dewey M. Sasser, MA, USA
David A. Loose, IBM Software Group, Westborough, MA, USA
Eric S. Smith, IBM Software Group, Westborough, MA, USA
Kristoffer H. Rose, IBM Research, Hawthorne, NY, USA
Simon Parker, Polar Lake, UK
Peter A. Lambros, IBM Software Group, Hursley, UK
Dave Glick, USA
Tim Kimber, IBM Software Group, Hursley, UK
Stephanie Fetzer, IBM Software Group, Charlotte, USA
Steve Marting, Progeny, USA
Alejandro Rodriguez, NCSA, Urbana-Champaign, IL, USA

mailto:mbeckerle@OCO-INC.COM
mailto:smh@uk.ibm.com

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 161 of 168

27. Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies
of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification can be obtained from the
OGF Secretariat.
The OGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the OGF Executive Director.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 162 of 168

28. Disclaimer

This document and the information contained herein is provided on an “As Is” basis and the OGF
disclaims all warranties, express or implied, including but not limited to any warranty that the use
of the information herein will not infringe any rights or any implied warranties of merchantability or
fitness for a particular purpose.

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 163 of 168

29. Full Copyright Notice

Copyright (C) Open Grid Forum (2005-2010). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the copyright
notice or references to the OGF or other organizations, except as needed for the purpose of
developing Grid Recommendations in which case the procedures for copyrights defined in the
OGF Document process must be followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its
successors or assignees.

ICU - Copyright (c) 1995-2010 International Business Machines Corporation and others

XPATH - Copyright © 2007 W3C

®
 (MIT, ERCIM, Keio), All Rights Reserved. W3C liability,

trademark and document use rules apply.

http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 164 of 168

30. References

[CCSID] Coded Character Set Identifiers (CCSID) http://www-
01.ibm.com/software/globalization/ccsid/ccsid_registered.jsp

[XML10] XML 1.0 http://www.w3.org/TR/REC-xml

[XML11] XML 1.1 http://www.w3.org/TR/xml11/

[XMLNS10] Namespaces in XML http://www.w3.org/TR/REC-xml-names/

[XSDLV1] XML Schema Part 1: Structures http://www.w3.org/TR/xmlschema-1/ ,
XML Schema Part 2: Datatypes http://www.w3.org/TR/xmlschema-2/

[XPath2] XML Path Language (XPath) 2.0 http://www.w3.org/TR/xpath20/

[XMLInfo] XML Information Set (Second Edition) http://www.w3.org/TR/xml-infoset

[Unicode] Unicode (now at version 4.0) http://www.unicode.org/

[ICUDecForm] http://icu.sourceforge.net/apiref/icu4c/classDecimalFormat.html#_details
[IANA] IANA character set encoding names: (http://www.iana.org/assignments/character-sets)

[XMLSch] XML Schema: http://www.w3.org/XML/Schema

[RFC 2119] IETF (Internet Engineering Task Force). RFC 2119: Key words for use in RFCs to
Indicate Requirement Levels. S. Bradner. 1997.

[OMG] OMG "CAM" TD Model: Object Management Group (OMG) "UML Profile and Interchange
Models for Enterprise Application Integration (EAI) Specification" formal/04-03-26, March 2004.
Sectioin 7.3.2. Available at http://www.omg.org/cgi-bin/doc?formal/2004-03-26

[XSIL] XSIL homepage, http://www.cacr.caltech.edu/SDA/xsil/

[BFD] Binary Format Description (BFD) Language, http://collaboratory.emsl.pnl.gov/sam/bfd/

[PERLRE] PERL regular expressions. http://perldoc.perl.org/perlre.html#Extended-Patterns

[JAVARE] Java regular expressions.

http://download.oracle.com/javase/1.4.2/docs/api/java/util/regex/Pattern.html

[RDP] recursive descent parser. A "top-down" parser built from a set of mutually-recursive

procedures or a non-recursive equivalent where each such procedure usually implements
one of the productions of the grammar. Thus the structure of the resulting program closely
mirrors that of the grammar it recognises.
["Recursive Programming Techniques", W.H. Burge, 1975, ISBN 0-201-14450-6].
(1995-04-28)

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xml11/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xml-infoset
http://www.unicode.org/
http://icu.sourceforge.net/apiref/icu4c/classDecimalFormat.html#_details
http://www.iana.org/assignments/character-sets
http://www.w3.org/XML/Schema
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.omg.org/cgi-bin/doc?formal/2004-03-26
http://www.cacr.caltech.edu/SDA/xsil/
http://collaboratory.emsl.pnl.gov/sam/bfd/
http://perldoc.perl.org/perlre.html#Extended-Patterns
http://dictionary.reference.com/browse/parser
http://dictionary.reference.com/browse/mutually-recursive
http://dictionary.reference.com/browse/productions
http://dictionary.reference.com/browse/grammar

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 165 of 168

31. Appendix A:Escape Scheme Use Cases

31.1 Escape Character same as dfdl:escapeEscapeCharacater

EscapeKind=‘escapeCharacter’, escapeCharacter=’/’, ecsapeEscapeCharacater=’/’, separator=’;’,
extraEscapeCharacter=’?’

Data Result

…………….……………….. …………….………………..

……………/.……………….. ……………//.………………..

……………/.…/…………….. ……………//.…//……………..

……………//.……………….. ……………////.………………..

/…………….……………….. //…………….………………..

…………….………………../ …………….………………..//

/……………/.……………….. //……………//.………………..

……………./………………../ …………….//………………..//

…………….;……………….. ……………./;………………..

……………./;……………….. …………….///;………………..

;…………….……………….. /;…………….………………..

…………….?……………….. ……………./?………………..

31.2 Escape Character different from dfdl:escapeEscapeCharacater

EscapeKind=‘escapeCharacter’, escapeCharacter=’/’, ecsapeEscapeCharacater=’%’,
separator=’;’, extraEscapeCharacter=’?’

Data Result

…………….……………….. …………….………………..

……………/.……………….. ……………%/.………………..

……………/.…/…………….. ……………%/.…%/……………..

……………//.……………….. ……………%/%/.………………..

/…………….……………….. %/…………….………………..

…………….………………../ …………….………………..%/

/……………/.……………….. %/……………%/.………………..

……………./………………../ …………….%/………………..%/

…………….;……………….. ……………./;………………..

……………./;……………….. …………….%//;………………..

;…………….……………….. /;…………….………………..

…………….?……………….. ……………./?………………..

…………….%……………….. …………….%………………..

…………….%/……………….. …………….%%/………………..

……………./%……………….. …………….%/%………………..

EscapeKind=‘escapeCharacter’, escapeCharacter=’/’, ecsapeEscapeCharacater=’%’,
separator=’sep’, extraEscapeCharacter=’?’

Data Result

…………….sep……………….. ……………./sep………………..

……………./sep……………….. …………….%//sep………………..

sep…………….……………….. /sep…………….………………..

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 166 of 168

31.3 Escape block with different start and end characters

EscapeKind=‘escapeBlock’, escapeBlockStart=’[’, escapeBlockEnd=’]’,
ecsapeEscapeCharacater=’%’, separator=’;’, extraEscapeCharacter=’?’

Data Result

…………….……………….. …………….………………..

[…………….……………….. [[…………….………………..]

]…………….………………..]…………….………………..

……………[.……………….. ……………[.………………..

……………].……………….. ……………].………………..

…………….………………..] …………….………………..]

[[…………….……………….. [[[…………….………………..]

…………….………………..]] …………….………………..]]

…………….[[……………….. …………….[[………………..

…………….]]……………….. …………….]]………………..

[…………….………………..] [[…………….………………..%]]

[…………….]……………….. [[…………….%]………………..]

…………….[………………..] …………….[………………..]

[……………[.………………..] [[……………[.………………..%]]

[…………….]………………..] [[…………….%]………………..%]]

[[…………….………………..] [[[…………….………………..%]]

[…………….………………..]] [[…………….………………..%]%]]

[[…………….………………..]] [[[…………….………………..%]%]]

…………….%……………….. …………….%………………..

…………….%%……………….. …………….%%………………..

…………….%[……………….. …………….%[………………..

…………….%]……………….. …………….%]………………..

%[…………….……………….. %[…………….………………..

…………….………………..%] …………….………………..%]

%[…………….………………..%] %[…………….………………..%]

[…………%….………………..] [[…………%….………………..%]]

[…………%]….………………..] [[…………%%]….………………..%]]

…………….;……………….. […………….;………………..]

…………….%;……………….. […………….%;………………..]

[…………….;………………..] [[…………….;………………..%]]

…………….?……………….. […………….?………………..]

31.4 Escape block with same start and end characters

EscapeKind=‘escapeBlock’, escapeBlockStart=’ '’, escapeBlockEnd=’ '’,
ecsapeEscapeCharacater=’%’, separator=’;’, extraEscapeCharacter=’?’

Data Result

…………….……………….. …………….………………..

'…………….……………….. '%'…………….………………..'

……………'.……………….. ……………'.………………..

…………….………………..' …………….………………..'

''…………….……………….. '%'%'…………….………………..'

…………….………………..'' …………….………………..''

…………….''……………….. …………….''………………..

'…………….………………..' '%'…………….………………..%''

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 167 of 168

'…………….'……………….. '%'…………….%'………………..'

…………….'………………..' …………….'………………..'

'……………'.………………..' '%'……………%'.………………..%''

''…………….………………..' '%'%'…………….………………..%''

'…………….………………..'' '%'…………….………………..%'%''

''…………….………………..'' '%'%'…………….………………..%'%''

…………….%……………….. …………….%………………..

…………….%%……………….. …………….%%………………..

…………….%'……………….. …………….%'………………..

%'…………….……………….. %'…………….………………..

…………….………………..%' …………….………………..%'

'…………….………………..%' '%'…………….………………..%%''

%'…………….………………..%' %'…………….………………..%'

'…………%….………………..' '%'…………%….………………..%''

'…………%'….………………..' '%'…………%%'….………………..%''

…………….;……………….. '…………….;………………..'

…………….%;……………….. '…………….%;………………..'

'…………….;………………..' '%'…………….;………………..%''

…………….?……………….. '…………….?………………..'

GFD-P-R.174 (OBSOLETED by GFD-P-R.207) January 31, 2011

dfdl-wg@ogf.org Page 168 of 168

32. Appendix B: Encoding of delimiters different to encoding of data (eg, initiator and
terminator different to data)

- Use <xs:sequence> to wrap the element and carry the delimiters, for example:
 <sequence dfdl:encoding="ascii" dfdl:separator=":">

 <sequence dfdl:encoding=" ebcdic-cp-us" dfdl:initiator="VAL"
dfdl:terminator="END">

 <element name="val" type="..." dfdl:encoding="ascii" />

 </sequence>

 </sequence>

The same technique can be used with dfdl:ignoreCase when the case-sensitivity of data is
different to that of surrounding delimiters.

	Data Format Description Language (DFDL) v1.0
	1. Introduction
	1.1 Why is DFDL Needed?
	1.2 What is DFDL?
	1.2.1 Simple Example

	1.3 What DFDL is not
	1.4 Scope of version 1.0
	1.5 Related standards

	2. Notational and Definitional Conventions
	2.1 Failure Types
	2.2 Schema Definition Error
	2.3 Processing Errors:
	2.3.1 Ambiguity of Data Formats
	2.3.1.1 Unparsing Must be Unambiguous

	2.3.2 Schema Component Constraint: Unique Particle Attribution

	2.4 Validation Errors

	3. Glossary
	4. The DFDL Information Set (Infoset)
	4.1 Information Items
	4.1.1 Document Information Item
	4.1.2 Element Information Items

	4.2 "No Value''
	4.3 DFDL Information Item Order
	4.4 DFDL Infoset Object model
	4.5 DFDL Augmented Infoset

	5. DFDL Schema Component Model
	5.1 DFDL Subset of XML Schema
	5.2 XSD Facets, min/maxOccurs, default, and fixed
	5.2.1 MinOccurs and MaxOccurs
	5.2.2 MinLength, MaxLength
	5.2.3 MaxInclusive, MaxExclusive, MinExclusive, MinInclusive, TotalDigits, FractionDigits
	5.2.4 Pattern
	5.2.5 Enumeration
	5.2.6 Default
	5.2.7 Fixed

	6. DFDL Syntax Basics
	6.1 Namespaces
	6.2 The DFDL Annotation Elements
	6.3 DFDL Properties
	6.3.1 DFDL String Literals
	6.3.1.1 Character strings in DFDL String Literals
	6.3.1.2 DFDL Character Entities in String Literals
	6.3.1.3 DFDL Character Classes Entities in DFDL String Literals
	6.3.1.4 DFDL Byte Value Entities in DFDL String Literals

	6.3.2 DFDL Expressions
	6.3.3 DFDL Regular Expressions
	6.3.4 Enumerations in DFDL

	7. Syntax of DFDL Annotation Elements
	7.1 Component Format Annotations
	7.1.1 Syntax of Component Format Annotations
	7.1.2 Ref Property
	7.1.3 Property Binding Syntax
	7.1.3.1 Property Binding Syntax: Attribute Form
	7.1.3.2 Property Binding Syntax: Element Form
	7.1.3.3 Property Binding Syntax:Short Form

	7.1.4 Empty String as a Property Value

	7.2 dfdl:defineFormat - Reusable Data Format Definitions
	7.2.1 Inheritance for dfdl:defineFormat
	7.2.2 Using/Referencing a Named Format Definition

	7.3 The dfdl:assert Annotation Element
	7.3.1 Properties for dfdl:assert

	7.4 The dfdl:discriminator Annotation Element
	7.4.1 Properties for dfdl:discriminator

	7.5 The dfdl:defineEscapeScheme Annotation Element
	7.5.1 Using/Referencing a Named escapeScheme Definition

	7.6 The dfdl:escapeScheme Annotation Element
	7.7 The dfdl:defineVariable Annotation Element
	7.7.1 Examples
	7.7.2 Predefined Variables

	7.8 The dfdl:newVariableInstance Annotation Element
	7.8.1 Examples

	7.9 The dfdl:setVariable Annotation Element
	7.9.1 Examples

	8. Property Scoping Rules
	8.1 Providing Defaults for DFDL properties
	8.2 Combining DFDL Representation Properties from a dfdl:defineFormat
	8.3 Combining DFDL Properties from References

	9. DFDL Processing Introduction
	9.1 Parser Overview
	9.1.1 Resolving Points of Uncertainty.

	9.2 DFDL Data Syntax Grammar

	10. Core Representation Properties and their Format Semantics
	11. Properties Common to both Content and Framing
	12. Framing
	12.1 Aligned Data
	12.1.1 Implicit Alignment

	12.2 Properties for Specifying Delimiters
	12.3 Properties for Specifying Lengths
	12.3.1 dfdl:lengthKind 'explicit'
	12.3.2 dfdl:lengthKind 'delimited'
	12.3.2.1 Simple Elements of Specified Length within Delimited Constructs

	12.3.3 dfdl:lengthKind 'implicit'
	12.3.4 dfdl:lengthKind 'prefixed'
	12.3.5 dfdl:lengthKind 'pattern'
	12.3.5.1 Pattern-Based Lengths - Scanability

	12.3.6 dfdl:lengthKind 'endOfParent'
	12.3.7 Elements of Specified Length
	12.3.7.1 Length of Simple Elements with dfdl:representation 'text'
	12.3.7.1.1 Character Width
	12.3.7.1.2 Text Length in Characters when Specified in Bytes
	12.3.7.1.3 Byte Order Mark

	12.3.7.2 Length of Bit Fields
	12.3.7.3 Length of Complex Element of Specified Length

	12.3.8 Length of Simple Types with Binary Representations

	13. Simple Types
	13.1 Properties Common to All Simple Types
	13.2 Properties Common to All Simple Types with Text representation
	13.2.1 The dfdl:escapeScheme Properties

	13.3 Properties for Bidirectional support for All Simple Types with Text representation
	13.4 Properties Specific to Strings with Text representation
	13.5 Properties Specific to Number with Text or Binary representation
	13.6 Properties Specific to Number with Text representation
	13.6.1 The textNumberPattern Property
	13.6.1.1 dfdl:textNumberPattern for dfdl:textNumberRep 'standard'
	13.6.1.2 dfdl:textNumberPattern for dfdl:textNumberRep 'zoned'

	13.6.2 Converting logical numbers to/from text representation

	13.7 Properties Specific to Numbers with Binary representation
	13.7.1 Converting logical numbers to/from binary representation

	13.8 Properties Specific to Float/Double with Binary representation
	13.9 Properties Specific to Boolean with Text representation
	13.10 Properties Specific to Boolean with Binary representation
	13.11 Properties specific to calendar with Text or Binary representation
	13.11.1 The dfdl:calendarPattern property

	13.12 Properties specific to calendar with Text representation
	13.13 Properties specific to calendar with Binary representation
	13.14 Properties Specific to Opaque Types (hexBinary)
	13.15 Nils and Default processing
	13.15.1 Nils and Defaults on Parsing
	13.15.2 Nils and Defaults on Unparsing

	13.16 Properties for Nillable Elements
	13.17 Properties for Default Value Control

	14. Sequence Groups
	14.1 Empty Sequences
	14.2 Sequence Groups with Delimiters
	14.2.1 Sequence Groups and Separators

	14.3 Unordered Sequence Groups
	14.4 Floating Elements
	14.5 Hidden Groups

	15. Choice Groups
	15.1 Resolving Choices

	16. Arrays and Optional Elements: Properties for Repeating and Variable-Occurrence Data Items
	16.1 Repeating and Variable-Occurrence Items and Default Values
	16.2 Stop Value Delimited Array Number of occurrences
	16.3 Arrays with DFDL Expressions

	17. Calculated Value Properties.
	Example: 2d Nested Array
	Example: Three-Byte Date

	18. External Control of the DFDL Processor
	19. Built-in Specifications
	20. Conformance
	21. Optional DFDL Features
	22. Property Precedence
	22.1 Parsing
	22.1.1 dfdl:element (simple) and dfdl:simpleType
	22.1.2 dfdl:element (complex)
	22.1.3 dfdl:sequence and dfdl:group (when reference is to a sequence)
	22.1.4 dfdl:choice and dfdl:group (when reference is to a choice)

	22.2 Unparsing
	22.2.1 dfdl:element (simple) and dfdl:simpleType
	22.2.2 dfdl:element (complex)
	22.2.3 dfdl:sequence and dfdl:group (when reference is a sequence)
	22.2.4 dfdl:choice and dfdl:group (when reference is a choice)

	23. Expression language
	23.1 Expression Language Data Model
	23.2 Variables
	23.2.1 Rewinding of Variable Memory State
	23.2.2 Variable Memory State Transitions

	23.3 General Syntax
	23.4 DFDL Expression Syntax
	23.5 Constructors, Functions and Operators
	23.5.1 Constructor Functions for XML Schema Built-in Types
	23.5.2 Standard XPath Functions
	23.5.2.1 Boolean functions
	23.5.2.2 Numeric Functions
	23.5.2.3 String Functions
	23.5.2.4 Date, Time functions:
	23.5.2.5 Sequences functions
	23.5.2.6 Node functions

	23.5.3 DFDL Functions

	24. DFDL Regular Expressions
	25. Security Considerations
	26. Authors and Contributors
	27. Intellectual Property Statement
	28. Disclaimer
	29. Full Copyright Notice
	30. References
	31. Appendix A:Escape Scheme Use Cases
	31.1 Escape Character same as dfdl:escapeEscapeCharacater
	31.2 Escape Character different from dfdl:escapeEscapeCharacater
	31.3 Escape block with different start and end characters
	31.4 Escape block with same start and end characters

	32. Appendix B: Encoding of delimiters different to encoding of data (eg, initiator and terminator different to data)

