
GFD-R-P.193 Authors:
GRAAP-WG Oliver Waeldrich (Editor), Fraunhofer SCAI
 Dominic Battré, TU-Berlin
 Frances Brazier, Delft University of Technology
 Kassidy Clark, Delft University of Technology
 Michel Oey, Delft University of Technology
 Alexander Papaspyrou, TU Dortmund University
 Philipp Wieder, TU Dortmund University
 Wolfgang Ziegler, Fraunhofer SCAI

October 10, 2011

WS-Agreement Negotiation Version 1.0

Status of This Document
This document provides information to the Grid, Distributed Systems and
Cloud Computing community about WS-Agreement Negotiation Version 1.0. It
describes WS-Agreement Negotiation, an extension to the WS-Agreement
Specification Version 1 (GFD.192 [GFD192]). Distribution is unlimited.

Copyright Notice
Copyright © Open Grid Forum (2011). All Rights Reserved.

Trademark
OGSA is a registered trademark and service mark of the Open Grid Forum.

Abstract
This document describes the Web Services Agreement Negotiation
Specification (WS-Agreement Negotiation), a Web Services protocol for
negotiating agreement offers between two parties, such as between a service
provider and a service consumer. An agreement offer negotiation may then
result in the creation of an agreement using the WS-Agreement specification
(published as GFD.192 [GFD192]). WS-Agreement Negotiation can also be
used to renegotiate an existing agreement.

WS-Agreement Negotiation provides an additional layer to create agreements
with WS-Agreement. To achieve this, it defines an extensible XML language
for specifying agreement offers and agreement templates. These templates
are WS-Agreement-compliant and include a negotiation context and a set of
negotiation constraints that are used for the negotiation. The specification
includes all schemas required for the negotiation and the necessary port
types.

All information for creating, managing, and monitoring an agreement is not
described in this document but in the WS-Agreement specification.

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ggf.org 2

Contents
1	 Introduction... 4	

1.1	 Goals and Requirements ... 6	
1.2	 Notational Conventions and Terminology.. 7	
1.3	 Namespaces.. 9	

2	 Use Cases.. 9	
2.1	 Advance Reservation of Compute Resources..................................... 9	

3	 WS-Agreement Negotiation Model ... 11	
3.1	 Negotiation Offer/Counter Offer model .. 11	
3.2	 Layered architectural Model .. 14	

4	 Negotiation ... 15	
4.1	 Negotiation Context ... 15	

4.1.1	 Negotiation Type ... 17	
5	 Negotiation Offer .. 19	

5.1	 Negotiation Offer Structure .. 19	
5.2	 Negotiation Offer Context .. 22	
5.3	 Negotiation Offer States .. 23	
5.4	 Negotiation Offer State Transitions.. 25	

6	 Creation of Negotiated and Renegotiated Agreements............................ 27	
6.1	 Negotiation Extension Document .. 28	
6.2	 Renegotiation Extension Document .. 29	

7	 Negotiation Port Types and Operation ... 30	
7.1	 Simple Client-Server Negotiation... 31	
7.2	 Bilateral Negotiation with Asymmetric Agreement Layer................... 32	
7.3	 Renegotiation of Existing Agreements... 33	
7.4	 Negotiation Factory Port Type ... 35	

7.4.1	 Operation wsag-neg:InitiateNegotiation 35	
7.4.1.1	 Input.. 35	
7.4.1.2	 Result ... 36	
7.4.1.3	 Faults .. 36	

7.5	 Negotiation Port Type .. 37	
7.5.1	 Operation wsag-neg:Negotiate ... 37	

7.5.1.1	 Input.. 37	
7.5.1.2	 Result ... 37	
7.5.1.3	 Faults .. 38	

7.5.2	 Operation wsag-neg:Terminate... 38	

GFD-R-P.193 October 10, 2011
GRAAP-WG

7.5.2.1	 Input.. 38	
7.5.2.2	 Result ... 38	
7.5.2.3	 Faults .. 38	

7.5.3	 Resource Property wsag-neg:NegotiationContext 38	
7.5.4	 Resource Property wsag-neg:NegotiableTemplate 38	
7.5.5	 Resource Property wsag-neg:NegotiationOffer 38	

7.6	 Offer Advertisement Port Type .. 39	
7.6.1	 Operation wsag-neg:Advertise.. 39	

7.6.1.1	 Input.. 39	
7.6.1.2	 Result ... 39	
7.6.1.3	 Faults .. 39	

8	 Contributors .. 40	
9	 Acknowledgements .. 41	
10	 Security Considerations ... 42	
11	 Intellectual Property Statement .. 43	
12	 Disclaimer... 44	
13	 Full Copyright Notice .. 45	
14	 References ... 46	
15	 Appendix 1: XML Schema and WSDL ... 47	

15.1	 Negotiation Types Schema.. 47	
15.2	 Negotiation Factory WSDL .. 53	
15.3	 Negotiation WSDL ... 56	
15.4	 Advertisement WSDL .. 61	
15.5	 Example for specifying negotiation metadata 64	

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 4

1 Introduction
In distributed service-oriented systems different services are offered by
service providers and used by service consumers. Service consumers use
these services as they are or compose (mash) them in order to provide new
services with added functionality. Since services are often acquired on
demand, service consumers need to predict the behavior of these services
before they actually acquire them. This problem leads to a situation in which
service consumers do not only have functional requirements for a service, but
also have demands regarding the non-functional service properties, such as
the average response time of a service, the service availability, or the average
recovery time in case of failure. They need standardized ways of defining the
required service properties, and guarantees of the service provider to deliver
a service with the defined quality, capabilities to monitor the service properties
at provisioning time, and enforcement mechanisms in case a service was not
provided with the agreed service quality. Service level agreements are one
approach to solve this problem. They are bilateral contracts between a service
provider and a service consumer that describe the service to be provided and
define guarantees regarding the quality this service is provided with.

WS-Agreement is one approach for using service level agreements in
distributed service-oriented environments. It allows service consumers to
dynamically create service level agreements with service providers in order to
acquire services with a well-defined quality of service. Moreover, it defines the
basic mechanisms to monitor the state of an agreement and to evaluate the
guarantees that are associated with an agreement. WS-Agreement supports
the agreement creation over a template mechanism. Service providers can
offer their services in the form of agreement templates. These templates
guide service consumers in the process of creating valid agreement offers. An
agreement template may, for example, contain a number of alternative service
descriptions, where each service description offers the same service with a
different service quality. In that way the same service may be offered with
99.9%, 99% and 98% availability for example. The service consumer can
choose the service offering that fulfills its requirements best and create a new
agreement with the service provider. This approach is comparable to a super-
market, where consumers choose the desired product out of a set of available
products. Even though the template approach is sufficient for a wide range of
application scenarios, there are still a number of scenarios that require more
flexible and dynamic negotiation capabilities, for instance multi-round
negotiation capabilities. A typical example being the negotiation of a service
provisioning time in co-allocation scenarios, the renegotiation of existing
agreements in order to cope with peaks in a service usage, or the negotiation
of related service parameters such as the number of resources that are
provided by a service and the price of the service. WS-Agreement Negotiation
adds the required functionality for agreement negotiation on top of the WS-
Agreement specification. It can therefore be used in conjunction with WS-
Agreement without breaking existing systems.

In the WS-Agreement Negotiation model negotiation is done in the context of
a separate negotiation process. A negotiation process represents a

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 5

relationship between a service consumer and a service provider in order to
dynamically exchange information with the goal of creating a valid agreement
offer that subsequently leads to an agreement. As such, differentiating
between negotiation and renegotiation, negotiation and the subsequent
agreement creation in general takes place prior to service execution, while
renegotiation most likely is a reaction of one of the parties on the actual
performance of the service execution. Process-wise, (re)negotiation
processes are created by a Negotiation Factory, which implements the
Negotiation Factory Port Type. A negotiation process is represented by a
Negotiation Instance, which implements the Negotiation Port Type and
optionally the Advertisement Port Type. The negotiation port type defines the
basic properties of a negotiation instance, a method for exchanging offers and
counter offers, and a method to terminate the negotiation process. The
advertisement port type additionally specifies a method to notify a negotiation
participant of a specific offer. The basic components involved in a negotiation
process are depicted in Figure 1.

Figure 1: Overview of the WS-Agreement Negotiation components.

The specification allows both parties to initiate the re-negotiation of an existing
agreement. However, it is possible to restrict this to one of the two parties in
the AgreementContext of an agreement during the initial creation.
The remainder of this document is structured as follows. In section 1.1 the
goals and non-goals of WS-Agreement Negotiation are described. Section 1.2
introduces the terms used in the specification and section 2 describes a set of
negotiation use cases in more detail. The negotiation model is described in
section 3. It consists of two parts, the description of the negotiation
offer/counter offer model and the description of the layered negotiation model.
In section 4 the properties of the negotiation instance are described. The
structure of negotiation offers and counter offers is then described in section
5. Section 6 describes how the negotiation layer is finally coupled with the
agreement layer and the creation process of negotiated and renegotiated
agreements. Section 7 finally specifies the relevant port types and operations.

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 6

1.1 Goals and Requirements
The WS-Agreement Negotiation defines a set of requirements that are
covered by the specification as well as a set of non-goals that are out of
scope. The requirements and non-goals are described below:

Requirements

-‐ Must build on top of the WS-Agreement specification

WS-Agreement Negotiation must work seamlessly with WS-Agreement.
Therefore, the WS-Agreement language must be used to define
negotiation and renegotiation offers and to express negotiation constraints.
Moreover, the protocol must be defined as an extension to the WS-
Agreement protocol. It must still be possible to use other negotiation
protocols with an agreement factory.

-‐ Must allow negotiation of new and renegotiation of existing agreements
The protocol must specify the required interfaces to negotiate new and to
renegotiate existing agreements. In the context of this specification,
(re)negotiation of agreements is considered to be a bilateral process,
which results in a (re)negotiated agreement. The specification must define
the basic capabilities to create (re)negotiated agreements based on
(re)negotiation offers.

-‐ Must provide both a symmetric and an asymmetric protocol
There are a wide number of negotiation scenarios, depending on whether
a service consumer or a provider initiates the negotiation process, which
party creates the negotiated agreement, and where the resulting
agreement state is hosted. The same applies to renegotiation scenarios.
The interfaces defined in this specification must therefore support
symmetric and asymmetric protocol layouts in order to support various
usage scenarios.

-‐ Must provide a simple negotiation state machine
The specification must provide a simple state machine that describes valid
state transitions of negotiation/renegotiation offers.

-‐ Must support binding and non-binding negotiations
The specification must be usable in binding and non-binding
(re)negotiation scenarios. By default, this specification treats
(re)negotiation as a non-binding process (in case of renegotiation the
agreement being renegotiated remains in force until superseded by the
renegotiated one). Binding negotiations are expected to be defined as an
extension to this specification.

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 7

Out of Scope

-‐ Definition of compensation methods for negotiated offers

Even though binding (re)negotiation of agreements is in principle foreseen
by this specification, there is no compensation model defined for this type
of negotiation. It is expected that such models will appear as domain
specific extension to this specification.

-‐ Definition of Auction Protocols
This specification focuses on the bilateral (re)negotiation of agreements.
Since auction protocols are one-to-many negotiations they are regarded
as alternative negotiation approach.

1.2 Notational Conventions and Terminology
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL
NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and
“OPTIONAL” are to be interpreted as described in RFC 2119 [BRADNER1].

Negotiation
Negotiation is a process between an agreement initiator and an agreement
responder to reach an acceptable agreement offer from an initial agreement
template. Agreement offer negotiation is a non-binding, bi-lateral process that
comprises exchange of information in order to find a consensus for
acceptable agreement offers.

Renegotiation
Renegotiation is a process between an agreement initiator and an agreement
responder to reach an acceptable agreement offer in order to alter an existing
agreement. Altering an existing agreement is achieved by creating a
renegotiated agreement, which supersedes the original agreement. Hence, an
existing agreement can only be renegotiated once, but the process can be
repeated with the new (superseding) agreement. The number of such
renegotiations is not limited. Renegotiation of an existing agreement may
have direct impact on the provisioning of active services.

Negotiation Offer
A negotiation offer is a non-binding proposal for an agreement offer made by
one negotiation party to another. Negotiation offers are used to dynamically
exchange information in order to reach an acceptable agreement offer. Zero
or more negotiation offers may precede a binding agreement offer as defined
in the WS-Agreement specification. Negotiation offers describe the services of
a SLA, the quality of service properties, and the associated guarantees.
Negotiation offers may also contain negotiation constraints that restrict the
negotiable terms and their value spaces.

Negotiable Template
Negotiable templates are provided by a negotiation participant in the context
of a particular (re)negotiation process. They define which types of agreement
offers can be negotiated, the basic structure of these offers, and the basic

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 8

constraints that each offer must adhere to.

Negotiation Counter Offer
Negotiation offers that are created based on a previous negotiation offer are
called Negotiation Counter Offers. Counter offers must adhere to the
negotiation constraints of the offer they are related to. In a negotiation
process, each negotiation offer is either created on the basis of a negotiable
template or on the basis of another negotiation offer. In the context of this
specification the term counter offer describes a negotiation offer that is based
on another negotiation offer. It therefore reflects the relationship of a
negotiation offer to the offer that it is based on.

Negotiated Offer
The term negotiated offer describes an offer that has reached the acceptable
state. Negotiated offers can be used as valid agreement offers in order to
create new agreements or to replace existing agreements.

Agreement Initiator
The agreement initiator is the entity in a negotiation process that creates an
agreement based on a negotiated offer. This role corresponds to the
agreement initiator role as defined in the WS-Agreement specification.

Agreement Responder
The agreement responder is the entity in a negotiation process that responds
to an agreement creation request based on a negotiated offer. This role
corresponds to the agreement responder role as defined in the WS-
Agreement specification.

Negotiation Initiator
The negotiation initiator is the party that initiates the negotiation process. It
acts on behalf of the agreement initiator or the agreement responder. The
negotiation initiator invokes the negotiation responder’s initiateNegotiation
method, which is defined in this specification.

Negotiation Responder
The negotiation responder is the party in a negotiation process that responds
to an initiateNegotiation request. It acts on behalf of the agreement initiator or
the agreement responder. The negotiation responder implements the
NegotiationFactory and Negotiation port types defined in this specification.

Negotiation Participant
The negotiation participant is an entity that takes part in the negotiation
process. The negotiation participant is either the negotiation initiator or the
negotiation responder.

Negotiation Context
The negotiation context defines the type of the negotiation, identifies the
negotiation participants, their roles and responsibilities, and optionally
specifies additional domain specific negotiation parameters, such as
maximum of negotiation rounds or expiration time.

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 9

Negotiation Offer Context
The negotiation offer context represents metadata associated with a specific
negotiation offer. It contains information such as the id of the originating
negotiation offer, its expiration time, and its state. It may also contain domain
specific extensions in order to define augmented negotiation protocols.

Negotiation Constraints
The negotiation constraints provide a method to control the negotiation
process. A negotiation participant uses negotiation constraints in order to
define structure and value spaces for compliant negotiation counter offers.
Negotiation constraints are therefore used to express the requirements of a
negotiation participant.

Negotiation Offer State
The negotiation offer state describes the specific state of a negotiation offer. It
may include domain specific data that is used by the negotiation participants
to exchange state-specific information and to advance the negotiation
process. The reason for rejecting a negotiation offer is an example for such
state-specific information.

1.3 Namespaces
The following is an example for XML or other code:
http://schemas.ogf.org/graap/2009/11/ws-agreement-negotiation (code)

The following namespaces are used in this document:
Prefix Namespace
wsag-neg http://schemas.ogf.org/graap/2009/11/ws-agreement-negotiation
wsag http://schemas.ggf.org/graap/2007/03/ws-agreement
wsa http://www.w3.org/2005/08/addressing
wsrf-rp http://docs.oasis-open.org/wsrf/rp-2
wsrf-rw http://docs.oasis-open.org/wsrf/rw-2
xs/xsd http://www.w3.org/2001/XMLSchema
xsi http://www.w3.org/2001/XMLSchema-instance
wsdl http://schemas.xmlsoap.org/wsdl

2 Use Cases
WS-Agreement Negotiation supports a large set of use cases. A typical
negotiation example is the reservation of computational resources, which is
described below.

2.1 Advance Reservation of Compute Resources
A service provider offers computational resources to its customers, which can
be reserved for specific time frames. It provides a job submission service to
access the reserved resources, and a portal application to manage the job
submission service. The job submission service is implemented as a web
service that provides the required methods for submitting and managing
computational jobs, such as submit a job, start a job, query the state of a job,
and cancel a job. These methods are exposed via the Web Service

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 10

Description Language (WSDL). The portal application provides additional
methods to manage the job submission service, such as updating the profiles
of registered users, querying the current resource availability, querying usage
data for the provided resources, deploying a new application, or managing the
storage on the resources.

Agreements that comprise the advance reservation of computational
resources define ongoing relationships between a resource provider and a
resource consumer. They constitute the general conditions for jobs that are
subsequently executed in the context of the agreement. The resource
provisioning model is thereby implementation specific; whether resources are
exclusively dedicated to a user, prediction models or preemption is used is up
to the resource provider.

The computational resource provider offers available resources via an
agreement template. The template includes the service description and a set
of possible service levels. The service description contains the specification of
the available computational resources and the timeframe in which these
resources are available. The offered resources may differ in hardware; e.g.
they may have different CPU architectures, CPU speed, memory, or hard disk
space. The service consumer may compose the offered resources in order to
satisfy his needs. Moreover, the customer can select the desired service
levels for resource availability, and availability and average response times of
the job submission service and the portal application. The availability of the
job submission service is for example 95%, 98%, 99% or 99.9%. It is defined
as the probability that a request is processed within 15 seconds. For the
average response time of the job submission service, the customer may
select a value of 0.5, 1, or 2 seconds and the number of requests per minute
for which this guarantee must hold. These QoS parameters can be specified
separately for the job submission service, the portal application, and the
reserved resources. The pricing of the overall service is dependent on the
selected computational resources and the selected QoS levels.

The template described provides many possibilities to parameterize the
computational resource service. Moreover, it contains dynamic parameters,
such as pricing, that are dependent on the resources and the QoS guarantees
selected. Once the consumer filled in all its requirements, it sends the offer to
the resource provider. The provider then checks whether it is capable to
provide the requested service. In case the requested resources are available,
the provider sends back a completed counter offer with the updated pricing
information. The customer can now choose to create an agreement based on
this counter offer (or continue the negotiation or end it). If the resource
provider is not capable to fulfill the requirements stated in the negotiation
offer, it can also send back a counter offer indicating an alternative service
that can be provided instead. For example, the service customer has
requested 128 nodes with 8GB memory in a given timeframe, but the
resource provider could not fulfill this request at this time. Instead the provider
sends back a counter offers for 96 nodes with 8GB memory and 32 nodes
with 6GB memory for a lower price. The consumer may choose to accept the
counter offer, to reserve only the 96 nodes that meet its requirements and to

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 11

purchase the remaining capacity somewhere else. The process of filling in all
required fields of a negotiation offer may take multiple rounds.

At a later point in time, the customer may recognize that it requires more or
less resources to efficiently complete its computation. In that case it may start
a renegotiation of the agreement in order to scale the resources up or down,
according to its requirements.

3 WS-Agreement Negotiation Model
In this section we describe the WS-Agreement negotiation model. The model
consists of two parts, the Negotiation Offer/Counter Offer model, and the
layered architecture model. The Negotiation Offer/Counter Offer model
describes the dynamic exchange of information in order to reach an
acceptable agreement offer that can be used subsequently to create a new
agreement, or to create a renegotiated agreement respectively. The layered
architecture model describes the relationship of the WS-Agreement
Negotiation layer to the WS-Agreement layer and the service layer.

3.1 Negotiation Offer/Counter Offer model
The WS-Agreement Negotiation Offer/Counter Offer model describes the
dynamic exchange of information between the negotiation initiator and
responder in order to agree on an acceptable agreement offer. A negotiation
participant sends a negotiation offer to the other party, which in turn creates a
counter offer for the negotiation offer received. Counter offers are always
based on a negotiation offer that was previously received from the opposite
negotiation party. The only exceptions are initial negotiation offers, which are
based on a negotiation template. These initial offers can be regarded as
counter offers to negotiation templates.

Each negotiation offer has an associated state, which reflects the view of the
party that created that particular offer with respect to its acceptability. The
possible state transitions that may occur when a counter offer is created for a
particular offer are described in section 5.3.

An offer negotiation process may comprise multiple rounds of negotiation. In
each negotiation round offers and counter offers are exchanged. The
exchanged negotiation offers can therefore be modeled as a rooted tree with
a negotiable template as root node. Each negotiation offer in this negotiation
tree is a counter offer to its parent node. Children of the root node are initial
negotiation offers, since they are based on a negotiable template. Leaf nodes
are negotiation offers where either no further negotiation is required or that
are in the terminal rejected state. If a negotiation offer does not require further
negotiation it can be one of the following cases:

1. The negotiation offer is in the acceptable state and is used to create an

agreement.

2. The negotiation participant does not pursue this negotiation branch
anymore, e.g. the participant decides that this negotiation branch does not
lead to the expected results.

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 12

	

A negotiation process may include the exchange of negotiation offers that are
based on different templates. A negotiation process can therefore comprise
multiple negotiation trees. In the following example illustrates the concept of a
negotiation tree in detail.

A negotiation initiator receives a negotiable template (T1) from the negotiation
responder. Based on the negotiable template the initiator creates an initial
negotiation offer with an offer id 1 (OID 1). This offer is then sent to the
negotiation responder using the responder’s negotiate method. After the
negotiation responder receives the initial negotiation offer (OID 1), it examines
the incoming offer (OID 1) and creates two counter offers with OID 2 and OID
3. These counter offers are returned to the negotiation initiator as result of the
negotiate call. The negotiation initiator processes the returned counter offers
and decides that both counter offers do not lead to the desired agreement.
The negotiation initiator therefore decides to start a new negotiation branch by
creating another negotiation offer (OID 4) based on the template T1. This offer
is again sent to the negotiation responder which decides that this particular
offer is unacceptable. The responder therefore creates a counter offer (OID
5), which is in the rejected state. Finally, the negotiation initiator creates a
third negotiation branch by generating another negotiation offer based on T1.
After several rounds of negotiation the negotiation responder returns a
counter offer (OID 9), which is in the acceptable state. This offer is
subsequently used by the negotiation initiator to create a new agreement.
This process is depicted in Figure 2.

Figure 2: The exchange of multiple negotiation offers and counter offers

results in the creation of a negotiation tree

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 13

The terms negotiation offer and negotiation counter offer both describe
specific negotiation offers that are exchanged in a negotiation process. The
distinction between a negotiation offer and a counter offer depends on the
particular view of a negotiation participant. A negotiable template (the root
node of a negotiation tree) is always considered as initial negotiation offer. All
negotiation offers that are created based on this template are therefore
counter offers to this template.
If a negotiation offer with OID-1 was created based on a template T1, then
OID-1 is a counter offer to T1. If subsequently a negotiation offer OID-2 is
created based on offer OID-1, then OID-2 is a counter offer to OID-1. In case
the negotiation responder provides the negotiable template T1, it provides an
initial negotiation offer to the negotiation initiator. The initiator receives the
template T1 and creates a counter offer with OID-1 based on this template.
This counter offer is sent to the negotiation responder. From the negotiation
responder’s point of view, OID-1 is a new negotiation offer from the
negotiation initiator. The responder therefore creates a counter offer with OID-
2. This process of creating counter offers based on previously received
negotiation offers with the different viewpoints is depicted in Figure 3.

Figure 3: Different views on the negotiation process. An offer sent by
one negotiation participant is a counter offer to a previously received

negotiation offer.

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 14

3.2 Layered architectural Model
The WS-Agreement Negotiation layered model consists of three layers, the
negotiation layer, the agreement layer and the service layer. These layers are
depicted in Figure 4. There is a clear separation between these layers. The
negotiation layer sits on top of the agreement layer. It is therefore decoupled
from the agreement layer and the service layer. By that, the negotiation layer
may change independently of the agreement layer and can be replaced by
another negotiation layer that might be better suited for a specific negotiation
scenario.

Figure 4: Conceptual overview of the layered negotiation model

Negotiation layer
The negotiation layer provides a protocol and a language to negotiate
negotiation offers and counter offers and to create agreements based on
negotiated offers. The negotiation process comprises the exchange of
negotiation offers and counter offers. Negotiation offers, as defined in this
specification, are non-binding by nature. They do not comprise any promise of
the agreement responder to create an agreement based on a negotiated
offer. They only indicate the willingness of the two negotiating parties to
subsequently create an agreement. However, it is possible to define
languages that can be used in conjunction with this specification in order to
realize binding negotiation processes.
Agreements based on negotiated offers are either created by calling the
createAgreement or createPendingAgreement operation on the agreement
responder’s Agreement Factory port type, which is part of the responder’s
agreement layer.

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 15

Agreement layer
The Agreement layer provides the basic functionality to create and monitor
agreements. It comprises the port types defined in the WS-Agreement
specification. For details refer to the WS-Agreement specification [GDF192].

Service layer
At the service layer the actual service defined by an agreement is provided.
This service may or may not be a web service. Moreover, it may consist of
multiple services. A resource provisioning service may for example comprise
the provisioning of the specified resources and a monitoring service for the
provided resources. The services on the service layer are governed by the
agreement layer.

4 Negotiation
The negotiation service defines a service instance that is used by the
negotiation participants to dynamically exchange information in order to reach
a common understanding of a valid agreement offer. During the negotiation
process the participants exchange negotiation offers in order to indicate their
negotiation goals and requirements. A negotiation instance may be limited in
its lifetime or the maximum negotiation rounds. These limitations are defined
in the negotiation context.

4.1 Negotiation Context
The negotiation context defines the roles of the negotiation participants, their
obligations, and the nature of the negotiation process. Since negotiation is a
bi-lateral process, the roles of each participating party must be clearly defined.

<wsag-neg:NegotiationContext>

 <wsag-neg:NegotiationType>

 wsag-neg:NegotiationType

 </wsag-neg:NegotiationType>

 <wsag-neg:ExpirationTime>

 xsd:dateTime

 </wsag-neg:ExpirationTime> ?

 <wsag-neg:NegotiationInitiator>

 xsd:anyType

 </wsag-neg:NegotiationInitiator> ?

 <wsag-neg:NegotiationResponder>

 xsd:anyType

 </wsag-neg:NegotiationResponder> ?

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 16

 <wsag-neg:AgreementResponder>

 wsag-neg:NegotiationRoleType

 </wsag-neg:AgreementResponder>

 <wsag-neg:AgreementFactoryEPR>

 wsa:EndpointReferenceType

 </wsag-neg:AgreementFactoryEPR>

 <xsd:any /> *

</wsag-neg:NegotiationContext>

Listing 1: Content of a negotiation context

A negotiation instance either refers to the negotiation of new agreements or to
the renegotiation of an existing agreement. The type of the negotiation must
therefore be defined in the negotiation context. Moreover, the negotiation
context defines the roles of the parties participating in the negotiation. The
negotiation participants must acknowledge these parameters for the entire
negotiation process.

/wsag-neg:NegotiationContext
This is the outermost document tag that defines the context of a negotiation.
The negotiation context defines the type of the negotiation and the roles of the
negotiation participants.

/wsag-neg:NegotiationContext/wsag-neg:NegotiationType
This REQUIRED element specifies the type of the negotiation process and
may contain optional, domain-specific parameters. The negotiation type can
either be Negotiation or Renegotiation.

/wsag-neg:NegotiationContext/wsag-neg:ExpirationTime
This OPTIONAL element specifies the lifetime of the negotiation instance. If
specified, the negotiation instance is accessible until the specified time. After
the negotiation lifetime has expired, this instance is no longer accessible.

/wsag-neg:NegotiationContext/wsag-neg:NegotiationInitiator
This OPTIONAL element identifies the initiator of the negotiation process. The
negotiation initiator element can be an URI or an Endpoint Reference that can
be used to contact the initiator. It can also be a distinguished name identifying
the initiator in a security context.

/wsag-neg:NegotiationContext/wsag-neg:NegotiationResponder
This OPTIONAL element identifies the party that responds to the
initiateNegotiation request. The negotiation responder implements the
NegotiationFactory port type defined in this specification. This element can be
an URI or an Endpoint Reference that can be used to contact the negotiation
responder. It can also be a distinguished name identifying the negotiation

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 17

responder in a security context.

/wsag-neg:NegotiationContext/wsag-neg:AgreementResponder
This REQUIRED element identifies the party in the negotiation process that
acts on behalf of the agreement responder. It can either take the value
NegotiationInitiator or NegotiationResponder. The default value is
NegotiationResponder. The party identified as agreement responder MUST
provide a reference to the AgreementFactory (PendingAgreementFactory) in
the negotiation context within the AgreementFactoryEPR element.

/wsag-neg:NegotiationContext/wsag-neg:AgreementFactoryEPR
This REQUIRED element identifies the endpoint reference of the agreement
factory that is used to create agreements based on the negotiated agreement
offers. After an agreement offer was successfully negotiated, the party
identified as agreement initiator MAY create a new agreement with the
referenced agreement factory.

/wsag-neg:NegotiationContext/{any}
Additional child elements MAY be specified to provide additional information
but MUST NOT contradict the semantics of the parent element; if an element
is not recognized, it SHOULD be ignored.

4.1.1 Negotiation Type
The negotiation type defines the nature of a negotiation instance. Two types
of negotiation exist; negotiation of a new agreements and renegotiation of an
existing agreement. The structure of the negotiation type is depicted in Listing
2.

<wsag-neg:NegotiationType>

 {

 <wsag-neg:Negotiation>

 <xsd:any /> *

 </wsag-neg:Negotiation> |

 <wsag-neg:Renegotiation>

 <wsag-neg:ResponderAgreementEPR>

 wsa:EndpointReferenceType

 </wsag-neg:ResponderAgreementEPR>

 <wsag-neg:InitiatorAgreementEPR>

 wsa:EndpointReferenceType

 </wsag-neg:InitiatorAgreementEPR> ?

 <xsd:any /> *

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 18

 </wsag-neg:Renegotiation>

 }

</wsag-neg:NegotiationType>

Listing 2: Structure and content of the negotiation type

/wsag-neg:NegotiationType
This is the outermost element that encapsulates the negotiation type. It MUST
either contain a Negotiation or Renegotiation element.

/wsag-neg:NegotiationType/wsag-neg:Negotiation
The existence of this element indicates that the negotiation process
comprises the negotiation of agreement offers.

/wsag-neg:NegotiationType/wsag-neg:Negotiation/{any}
Additional elements MAY be used to carry critical extensions which control
additional negotiation mechanisms. All extensions are considered mandatory,
i.e. the responder MUST return a fault if any extension is not understood or
the responder is unwilling to support the extension. The meaning of
extensions and how to obey them is domain-specific and MUST be
understood from the extension content itself.

/wsag-neg:NegotiationType/wsag-neg:Renegotiation
The existence of this element indicates that the negotiation process
comprises the renegotiation of an existing agreement. Renegotiation of
existing agreements is again a bilateral process between an agreement
initiator and an agreement responder. In both symmetric and asymmetric
layout the wsag-neg:Renegotiation element MUST include an endpoint
reference to the responder agreement that is renegotiated. In a symmetric
layout of the agreement port types the wsag-neg:Renegotiation element MAY
also contain an endpoint reference to the initiator agreement. Additionally, the
wsag-neg:Renegotiation element MAY contain domain specific data that can
be used to control the negotiation process in a domain-specific way.

/wsag-neg:NegotiationType/wsag-neg:Renegotiation/wsag-
neg:ResponderAgreementEPR
This REQUIRED element identifies the agreement responder’s copy of the
agreement that is renegotiated. The service identified by this endpoint
reference MUST implement the Agreement port type. Once a renegotiated
agreement is created, this agreement instance must change its state to
Completed.

/wsag-neg:NegotiationType/wsag-neg:Renegotiation/wsag-
neg:InitiatorAgreementEPR
This OPTIONAL element identifies the agreement initiator’s copy of the
agreement that is renegotiated. In a symmetrical deployment of the
agreement layer, the agreement initiator and responder host an instance of
the agreement. If a renegotiated agreement is created, both agreement
instances must change their state to Completed. The service identified by this

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 19

endpoint reference MUST implement the Agreement port type.

/wsag-neg:NegotiationType/wsag-neg:Renegotiation/{any}
Additional elements MAY be used to carry critical extensions, which control
augmented renegotiation mechanisms or creation mechanisms for
renegotiated agreements. All extensions are considered mandatory, i.e. the
agreement responder MUST return a fault if any extension is not understood
or the responder is unwilling to support this extension. The meaning of the
extensions and how to obey them is domain-specific and MUST be
understood from the extension content itself.

5 Negotiation Offer
As mentioned before, negotiation comprises the dynamic exchange of
information in form of negotiation offers and counter offers. An initial
negotiation offer is created on the basis of an agreement template, while
counter offers are created on the basis of negotiation offers received by a
negotiation participant. The structure of a negotiation offer is basically the
same as the structure of an agreement. Agreements are defined in the section
Agreement Structure of the WS-Agreement specification. However,
negotiation offers contain additional elements, namely the Negotiation Offer
Context and Negotiation Constraints.

5.1 Negotiation Offer Structure
When a negotiation participant receives a negotiation offer, it evaluates the
offer and creates zero or more counter offers, which are then sent back to the
party that issued the negotiation offer. The basic structure of a negotiation
offer is shown in Figure 5.

Figure 5: Structure of a negotiation offer

A negotiation offer has basically the same structure as an agreement, but it
also contains a Negotiation Offer Id, a Negotiation Context, and a Negotiation
Constraints section. It extends the wsag:AgreementType and therefore

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 20

inherits the agreement name, agreement context, and the agreement terms.
Negotiation Constraints define restrictions for structure and values of
negotiation counter offers. They must hold true for every counter offer. If this
is not the case, the counter offer is rejected. Negotiation Constraints MAY
change during the advance of a negotiation process. If, for example, the
negotiation initiator chooses one specific service term out of a predefined set
(e.g. in an ExactlyOne tag), the negotiation responder may adopt this choice
by changing the negotiation constrains in a counter offer.

Negotiation Constraints are structurally identical to Creation Constraints that
are part of an agreement template. Creation Constraints are defined in the
section Agreement Template and Creation Constraints of the WS-Agreement
specification.

The contents of a negotiation offer are of the form:

<wsag-neg:NegotiationOffer wsag-neg:OfferId="xs:string">

 <wsag-neg:NegotiationOfferContext>

 wsag-neg:NegotiationOfferContextType

 </wsag-neg:NegotiationOfferContext>

 <wsag:Name>

 xs:string

 </wsag:Name> ?

 <wsag:Context>

 wsag:AgreementContextType

 </wsag:Context>

 <wsag:Terms>

 wsag:TermCompositorType

 </wsag:Terms>

 <wsag-neg:NegotiationConstraints>

 wsag:ConstraintSectionType

 </wsag-neg:NegotiationConstraints>

</wsag-neg:NegotiationOffer>

Listing 3: Content of a negotiation offer

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 21

The following section describes the attributes and tags of a Negotiation Offer:

/wsag-neg:NegotiationOffer
This is the outermost document tag which encapsulates the entire negotiation
offer.

/wsag-neg:NegotiationOffer/@wsag-neg:OfferId
The MANDATORY OfferId is the identifier of a specific Negotiation Offer. It
MUST be unique for both parties in the context of a negotiation.

/wsag-neg:NegotiationOffer/wsag-neg:NegotiationOfferContext
The REQUIRED element Negotiation Offer Context contains the metadata
associated with a negotiation offer. The negotiation offer context contains the
id of the originating negotiation offer, its expiration time, and its state.
Moreover, the negotiation offer context MAY include domain specific
extensions.

/wsag-neg:NegotiationOffer/wsag:Name
This OPTIONAL element is the name of the agreement to negotiate. It is
described in the section “Agreement Structure” of the WS-Agreement
specification.

/wsag-neg:NegotiationOffer/wsag:Context
This REQUIRED element of a negotiation offer specifies the context of the
agreement to negotiate. The agreement context SHOULD include parties to
an agreement. Additionally, it contains various metadata about the agreement
such as the duration of the agreement, and optionally, the template name
from which the agreement is created. The structure of the agreement context
is described in the section Agreement Context of the WS-Agreement
specification.

/wsag-neg:NegotiationOffer/wsag:Terms
This REQUIRED element specifies the terms of the agreement that is
negotiated. Both the structure of and the values of the agreement terms can
be subject of the negotiation process. The agreement terms are described in
the WS-Agreement specification in the section Agreement Structure.

/wsag-neg:NegotiationOffer/wsag-neg:NegotiationConstraints
This REQUIRED element defines constraints on the structure and values that
the agreement terms may take in subsequent negotiation offers. The
Negotiation Constraints MUST hold true in any counter offer. Negotiation
constraints are of the type wsag-neg:NegotiationConstraintSectionType. A
negotiation constraint section MAY contain zero or more negotiation item
constraints and zero or more free form constraints.

/wsag-neg:NegotiationConstraints/wsag-neg:Item
This OPTIONAL element defines a negotiation item constraint. It extends the
wsag:OfferItemType which is specified in the section Creation Constraints of
the WS-Agreement specification. A negotiation item constraint additionally
defines two attributes, Type and Importance.

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 22

/wsag-neg:NegotiationConstraints/wsag-neg:Item/wsag-neg:Type
This REQUIRED attribute defines the type of the negotiation item constraint.
Valid values are Required and Optional. If a required negotiation item
constraint is violated by a counter offer, this counter offer MUST be rejected. If
an optional negotiation item constraint is violated by a counter offer, this item
constraint MAY be ignored, depending on the domain specific negotiation
strategy. The default value of this attribute is Required.

/wsag-neg:NegotiationConstraints/wsag-neg:Item/wsag-neg:Importance
This OPTIONAL attribute defines the importance of a negotiation item
constraint. It is intended to be used in conjunction with optional negotiation
item constraints. Implementation MAY use this attribute in order to specify the
importance of different optional negotiation item constraints. It is therefore
possible to implement negotiation strategies that minimize the overall utility of
violated optional constraints.

/wsag-neg:NegotiationConstraints/wsag-neg:Constraint
This OPTIONAL element defines a free-form negotiation constraint analog to
free-form constrains as specified in the WS-Agreement specification.

5.2 Negotiation Offer Context
The negotiation offer context contains the metadata of a negotiation offer. It
refers to the originating negotiation offer, defines the offer expiration time, and
the offer state. Additionally, it may contain domain specific elements in order
to provide negotiation extensions, e.g. to realize binding negotiation offers
and compensation methods.

<wsag-neg:NegotiationOfferContext>

 <wsag-neg:CounterOfferTo>

 xs:string

 </wsag-neg:CounterOfferTo>

 <wsag:ExpirationTime>

 xs:dateTime

 </wsag:ExpirationTime> ?

 <wsag:Creator>

 wsag-neg:NegotiationRoleType

 </wsag:Creator>

 <wsag-neg:State>

 wsag-neg:NegotiationOfferStateType

 </wsag-neg:State>

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 23

 <xsd:any /> *

</wsag-neg:NegotiationOfferContext>

Listing 4: Content of a negotiation offer context

/wsag-neg:NegotiationOfferContext
This is the outermost tag that encapsulates the entire
NegotiationOfferContext.

/wsag-neg:NegotiationOfferContext/wsag-neg:CounterOfferTo
The MANDATORY CounterOfferTo identifies the negotiation offer which was
used to create this counter offer. When a negotiation offer was used to create
this offer, the CounterOfferTo specifies the OfferId of the originating
negotiation offer. When an agreement template was used to create this offer,
the CounterOfferTo refers to the TemplateId of the originating template.

/wsag-neg:NegotiationOfferContext/wsag-neg:ExpirationTime
This REQUIRED element defines the lifetime of a negotiation offer. A
negotiation participant MAY reference a negotiation offer during its lifetime
and create counter offers for it.

/wsag-neg:NegotiationOfferContext/wsag-neg:Creator
This REQUIRED element identifies the party that created this negotiation
offer. Valid values for this element are NegotiationInitiator and
NegotiationResponder.

/wsag-neg:NegotiationOfferContext/wsag-neg:State
This REQUIRED element contains the state of a negotiation offer. The
negotiation offer state indicates whether further negotiation is required.
Negotiation offers must be in the ACCEPTABLE state in order to create an
agreement based on it. Each negotiation offer state MAY contain domain
specific extensions. E.g. if an offer was rejected for some reason, the
REJECTED state may contain information on why this offer was rejected. This
information can be used to optimize the negotiation process.

 /wsag-neg:NegotiationOfferContext/{any}
Additional child elements MAY be specified to provide additional information,
but the semantic of these elements MUST NOT contradict the semantics of
the parent element; if an element is not recognized, it SHOULD be ignored.

5.3 Negotiation Offer States
The negotiation of an agreement offer precedes the final agreement creation
process. The party that is defined as agreement initiator in the negotiation
context is responsible of creating the agreement. A valid negotiated
agreement offer SHOULD be in the ACCEPTABLE state when the agreement
is created. Figure 6 shows the possible states of negotiation offers along with
valid state transitions.

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 24

Figure 6: The state machine describes the states of a counter offer in

relationship to the state of the offer it refers to.

Advisory State
The ADVISORY state identifies negotiation offers which have no further
obligations associated. Offers in the ADVISORY state usually contain
elements that are currently not specified. Therefore, these offers require
further negotiation.

Solicited State
Solicited offers indicate that a negotiation participant wants to converge the
negotiation process. The SOLICITED state bears no obligations for an offer,
but it requires that counter offers be either in the ACCEPTABLE or the
REJECTED state.

Acceptable State
The ACCEPTABLE state indicates that a negotiation participant is willing to
accept a negotiation offer as is. All details of a negotiation offer are specified
and no further negotiation is required. However, since the negotiated offers
are non-binding, there is no guarantee that a subsequent agreement is
created. Augmented negotiation protocols may be created based on this
specification to address binding negotiations.

Rejected State
If a negotiation offer is rejected, a counter offer is sent back to the inquiring
party with the REJECTED state. All terms SHOULD be the same as in the
original offer the counter offer refers to. The counter offer MAY contain a
domain specific reason why it was rejected. Negotiation offers that are
marked as rejected MUST NOT be used to create an agreement. However,
they MAY be used to continue the negotiation process by taking into account
the reason for rejecting the offer.

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 25

Extension of Negotiation Offer States
Each state element MAY contain additional child elements to provide domain
specific information. This information can be used to optimize the negotiation
process. If this information is not understood, it SHOULD be ignored.

Implications of the Expiration of an Offer on its State
A Negotiation Offer MAY have an expiration time attached to it (please refer to
Section 5.2). In cases where the expiration time of an offer has been reached
(i.e. the offer has expired and is not valid anymore) it SHOULD NOT be used
to create counter offers. If a negotiation offer that is based on an expired offer
is received by a negotiation participant this offer SHOULD be rejected (i.e. a
counter offer in state REJECTED is returned).

5.4 Negotiation Offer State Transitions
The state model abstractly describes the possible state transitions that can
occur when a counter offer is created for a negotiation offer. This means that
the state of each child node in a negotiation tree must be a valid state
transition with respect to its parent node’s state. Since negotiation offers and
counter offers are exchanged between the negotiation participants over time,
this section describes how exactly the state model maps to the exchanged
negotiation offers.

The negotiation model allows negotiating multiple negotiation offers at one
time. A negotiation initiator may for example create three negotiation offers
(OID-1, OID-2, OID-3) based on a negotiable template T1. In a first
negotiation iteration (t=1) these negotiation offers are sent to the negotiation
responder in a single negotiate request. The responder creates counter offers
for each of the received offers. For the negotiation offer OID-1 the responder
creates two counter offers (OID-4, OID-5) which are in the advisory state. The
negotiation offer OID-2 is rejected. The negotiation responder therefore
creates a counter offer (OID-6), which is in the rejected state. For the
negotiation offer OID-3, the responder creates one counter offer (OID-7)
which again is in the advisory state. All states of the counter offers are valid
state transitions regarding to the states of the offers they are based on. The
counter offers are returned to the negotiation initiator as result of the negotiate
call. The negotiation initiator analyses the counter offers received and decides
to continue the negotiation process based on the offer OID-7. It therefore
creates a new negotiation offer (OID-8). This time the negotiation offers is in
the solicited state, which dictates that counter offers are either in the
acceptable state or in the rejected state. Negotiation offer OID-8 is then sent
in a second negotiation iteration to the negotiation responder, again using the
negotiate method. This time the responder decides to accept negotiation offer
OID-8. It therefore creates a counter offer (OID-9) which is in the acceptable
state. This process is depicted in Figure 7.

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 26

Figure 7: State transitions for parallel negotiation of multiple offers

In a second scenario, the negotiation initiator again creates a negotiation offer
OID-1 based on template T1. It sends the negotiation offer in the first
negotiation iteration to the responder. The negotiation responder creates two
counter offers (OID-2, OID-3) for OID-1 and returns them. The initiator then
decides to follow the negotiation process based on offer OID-3. It creates a
negotiation offer (OID-4) and sends it to the responder in the second
negotiation iteration. The responder analyses the offer and decides to reject it.
It creates a counter offer (OID-5) and returns it as result of the second
negotiation iteration. Negotiation offer OID-5 additionally contains a domain
specific rejection reason. The negotiation initiator MAY use this information to
create a new negotiation offer (OID-6), taking the rejection reason into
account. The offer OID-6 MUST NOT be based on the rejected offer OID-5,
since the negotiation responder already indicated that it is not willing to follow
this negotiation branch anymore. Instead OID-6 is a counter offer to OID-3,
which is the parent of the rejected offer OID-4. The negotiation offer OID-6 is
sent in a last iteration to the negotiation responder, which finally decides to
accept it. This process is illustrated in Figure 8.

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 27

Figure 8: Creation of counter offers taking rejection reasons into

account.

6 Creation of Negotiated and Renegotiated Agreements
Negotiation Offers extend the wsag:AgreementType. They can therefore
easily be converted into agreement offers. These agreement offers are then
used on the agreement layer to create new agreements. Since in non-binding
negotiation scenarios negotiated offers do not bear any obligations for either
negotiating party, the creation of agreements based on such a negotiated
offer is in principle independent of the negotiation process. The negotiation
layer and the agreement layer are therefore completely decoupled and there
is no need for additional extensions or control mechanisms for creating new
agreements based on negotiated offers. Nevertheless, it is still possible to
design augmented negotiation protocols that tightly couple to the negotiation
layer and the agreement layer by using the provided extension points.

While this is also true for renegotiated agreements, additional information is
required when a renegotiated agreement is created. This information is stored
in a Renegotiation Extension document and is passed to the createAgreement
(createPendingAgreement) method of an Agreement Factory
(PendingAgreementFactory) as Critical Extension. The Renegotiation
Extension document contains the endpoint reference of the original
agreement that is renegotiated and possibly domain specific extensions. The
structure of a Renegotiation Extension document is shown in Listing 6. In
case a renegotiated agreement is successfully created, the state of the

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 28

original agreement(s) MUST change to Completed.

6.1 Negotiation Extension Document
A negotiation extension document SHOULD be passed to the
createAgreement (createPendingAgreement) method of an AgreementFactory
(PendingAgreementFactory) when an agreement is created based upon a
negotiated offer. The negotiation extension document SHOULD be passed as
critical extension. The following describes the content of a negotiation
extension document:

<wsag-neg:NegotiationExtension>

 <wsag-neg:ResponderNegotiationEPR>

 wsa:EndpointReferenceType

 </wsag-neg:ResponderNegotiationEPR> ?

 <wsag-neg:InitiatorNegotiationEPR>

 wsa:EndpointReferenceType

 </wsag-neg:InitiatorNegotiationEPR> ?

 <wsag-neg:NegotiationOfferContext>

 wsag-neg:NegotiationOfferContextType

 </wsag-neg:NegotiationOfferContext>

 <xsd:any /> *

</wsag-neg:NegotiationExtension>

Listing 5: Negotiation extension document to create agreements based
on negotiated offers

/wsag-neg:NegotiationExtension
This is the outermost element of a negotiation extension document. This
document SHOULD be passed to an agreement factory (pending agreement
factory) as a critical extension in the createAgreement
(createPendingAgreement) method.

/wsag-neg:NegotiationExtension/wsag-neg:ResponderNegotiationEPR
This OPTIONAL element specifies the endpoint reference to the negotiation
responder’s negotiation instance. Implementations MAY use this reference to
identify the negotiation process in which an agreement offer was negotiated.

/wsag-neg:NegotiationExtension/wsag-neg:InitiatorNegotiationEPR
This OPTIONAL element specifies the endpoint reference to the negotiation
initiator’s negotiation instance. Implementations MAY use this reference to
identify the negotiation process in which an agreement offer was negotiated.

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 29

/wsag-neg:NegotiationExtension/wsag-neg:NegotiationOfferContext
This REQUIRED element specifies the negotiation offer context for this
agreement offer. It MUST refer to a valid negotiation offer where this
agreement offer is a counter offer to.

/wsag-neg:NegotiationExtension/{any}
This OPTIONAL element contains domain specific extensions that can be
used to realize augmented negotiation mechanisms.

6.2 Renegotiation Extension Document
The renegotiation extension document MUST be passed to the
createAgreement (createPendingAgreement) method of an AgreementFactory
(PendingAgreementFactory) as a critical extension when a renegotiated
agreement is created. The following describes the content of a renegotiation
extension document:

<wsag-neg:RenegotiationExtension>

 <wsag-neg:ResponderAgreementEPR>

 wsa:EndpointReferenceType

 </wsag-neg:ResponderAgreementEPR>

 <wsag-neg:InitiatorAgreementEPR>

 wsa:EndpointReferenceType

 </wsag-neg:InitiatorAgreementEPR> ?

 <wsag-neg:ResponderNegotiationEPR>

 wsa:EndpointReferenceType

 </wsag-neg:ResponderNegotiationEPR>

 <wsag-neg:InitiatorNegotiationEPR>

 wsa:EndpointReferenceType

 </wsag-neg:InitiatorNegotiationEPR> ?

 <wsag-neg:NegotiationOfferContext>

 wsag-neg:NegotiationOfferContextType

 </wsag-neg:NegotiationOfferContext>

 <xsd:any /> *

</wsag-neg:RenegotiationExtension>

Listing 6: Critical extensions to create a renegotiated agreement

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 30

/wsag-neg:RenegotiationExtension
This is the outermost element of a Renegotiation Extension document. This
document is passed to an agreement factory (pending agreement factory) as
a critical extension in a createAgreement call (createPendingAgreement call).
An agreement factory (pending agreement factory) MUST be able to
understand all critical extensions that are contained in a createAgreement call
(createPendingAgreement call). If this is not the case, the factory MUST
return an error.

/wsag-neg:RenegotiationExtension/wsag-neg:ResponderAgreementEPR
This REQUIRED element specifies the endpoint reference to the original
instance of the responder agreement. If an Agreement Responder decides to
accept an offer for a renegotiated agreement, the state of this agreement
MUST change to Completed.

/wsag-neg:RenegotiationExtension/wsag-neg:InitiatorAgreementEPR
This OPTIONAL element specifies the endpoint reference to the original
instance of the initiator agreement. This element is used in symmetric layouts
of the agreement port type. If an Agreement Responder decides to accept an
offer for a renegotiated agreement, the state of this agreement instance
MUST change to Completed.

/wsag-neg:RenegotiationExtension/wsag-neg:ResponderNegotiationEPR
This REQUIRED element specifies the endpoint reference to the negotiation
responder’s negotiation instance. Implementations use this reference to
identify the negotiation process in which the agreement offer was negotiated.

/wsag-neg:RenegotiationExtension/wsag-neg:InitiatorNegotiationEPR
This OPTIONAL element specifies the endpoint reference to the negotiation
initiator’s negotiation instance. Implementations use this reference to identify
the negotiation process in which an agreement offer was negotiated.

/wsag-neg:NegotiationExtension/wsag-neg:NegotiationOfferContext
This REQUIRED element specifies the negotiation offer context for this
agreement offer. It MUST refer to a valid negotiation offer which corresponds
to this agreement offer.

/wsag-neg:RenegotiationExtension/{any}
This OPTIONAL element contains domain specific extensions that can be
used to realize augmented renegotiation mechanisms.

7 Negotiation Port Types and Operation
This section describes the Negotiation Factory and the Negotiation port types
in detail. These port types can be used in different combinations to support a
wide range of signaling scenarios. The examples are not meant to cover all
possible combinations of the port types. They illustrate possible signaling
scenarios and show how these scenarios are mapped to specific deployments
of WS-Agreement Negotiation port types. Furthermore, the interaction of the
negotiation layer and the agreement layer is discussed.

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 31

7.1 Simple Client-Server Negotiation
The simple client-server negotiation represents an asymmetric signaling
scenario. The server domain implements the Negotiation Factory, Negotiation,
Agreement Factory, and Agreement port types. The negotiation process is
driven by the client. In the first step the client initiates a new negotiation
process by calling the server’s initiateNegotiation operation. The server
returns an endpoint reference to a new negotiation instance. The client uses
this EPR for the subsequent negotiation process. In the next step the client
queries the negotiable templates from the new created negotiation instance
and selects the template it wants to negotiate an SLA for. Moreover, the client
creates an initial negotiation offer based on the selected template. This offer is
then sent to the negotiation instance by calling the server’s Negotiate method.
The server creates one or more counter offers for the negotiation offer
received and sends them back to the client. The client chooses the counter
offer that fulfills its requirements best and creates a new agreement with the
server by calling its createAgreement method. The client sends a
NegotiationExtensionDocument along with the createAgreement-request in
order to identify the originating negotiation instance and the negotiation offer
that resulted in this agreement offer.

In this scenario, the server has a passive role. It is not in control of the
negotiation process, i.e. it only reacts to negotiation requests. The negotiation
process is depicted in Figure 9.

Figure 9: Asymmetric deployment of the WS-Negotiation port types

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 32

7.2 Bilateral Negotiation with Asymmetric Agreement Layer
In a bilateral negotiation both parties actively participate in the negotiation
process. For that reason both parties implement the WS-Agreement
NegotiationFactory and Negotiation port types. A bilateral negotiation process
is initiated as follows. The negotiation initiator creates a new negotiation
instance. This instance is a web service resource that implements the WS-
Agreement Negotiation port type. The negotiation initiator then invokes the
initiateNegotiation method of the negotiation responder. The
initiateNegotiation request includes an endpoint reference to the negotiation
instance created beforehand. Moreover, it contains the negotiation context
that defines the roles of each party participating in the negotiation process.
The negotiation context defines for example which party acts as agreement
initiator and which party acts as agreement responder. Once the negotiation
instance is created, the negotiation context is fixed and the roles and
responsibilities of the negotiation participants do not change anymore.

The negotiation scenario depicted in Figure 10 shows an example of a bi-
lateral negotiation. In this scenario the negotiation initiator is also the
agreement initiator. The negotiation initiator starts the negotiation by initiating
a new negotiation process with the responder. Next the initiator queries the
negotiable templates from the negotiation responder and creates an initial
negotiation offer based on the template it wants to create a SLA for. The
initiator then notifies the responder about the initial negotiation offer. This is
done by sending the offer to the responder by invoking its Advertise method.
The negotiation responder now takes an active role in the negotiation
process. It creates counter offers for the received negotiation offer and sends
them to the initiator by invoking its negotiate method. After several rounds of
negotiation the agreement initiator decides to create an agreement based on
one of the negotiated offers. It therefore calls the createAgreement method of
the responder, passing the negotiated agreement offer along with a
NegotiationExtensionDocument. The NegotiationExtensionDocument is
passed as a critical extension. It refers to the negotiation instance that was
used to negotiate the agreement offer and contains a reference to the
originating negotiation offer.

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 33

Figure 10: Symmetric deployment of WS-Agreement Negotiation, where

the Negotiation Initiator is also the Agreement Initiator and the
Negotiation Responder is the Agreement Responder. Both parties have

an active role in the negotiation process.

7.3 Renegotiation of Existing Agreements
Renegotiation of existing agreements applies the same signaling pattern as
negotiation of agreements. If the original agreement initiator matches the
initiator of the renegotiated agreement, the roles and obligations of the original
agreement also match the roles and obligations of the renegotiated
agreement. If the agreement initiator and responder roles are changed, the
roles and obligations in the renegotiated agreement must be adopted
accordingly. As mentioned before, the roles and the responsibilities of the
negotiating parties are specified in the negotiation context as soon as a new
negotiation is initiated. In a renegotiation process, the negotiation context
must also refer to the agreement to renegotiate. It MUST therefore contain an
endpoint reference to the original responder agreement instance. In a
symmetric deployment of the agreement port type, the negotiation context
SHOULD also include a reference to the original initiator agreement. After the
initialization of the renegotiation process, both parties negotiate an acceptable
agreement offer. In case they succeed in negotiating such an offer, the party
defined as agreement initiator invokes the createAgreement (create-
PendingAgreement) method of the responder. When the renegotiated
agreement is created successfully, the original agreements MUST change
their states to Completed.

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 34

The layout of the agreement layer may either be symmetric or asymmetric. A
detailed description of symmetric deployments of the agreement port type is
given in the section Port Types and Operations of the WS-Agreement
specification [GDF192]. Figure 11 shows a symmetric deployment of the
negotiation and agreement port types. In this scenario, the initiator of the
original agreement becomes the agreement responder for the renegotiated
agreement. The roles of the agreement initiator and responder therefore
change in the renegotiated agreement and must be adopted accordingly.

Figure 11: Symmetric signaling on the Negotiation and Agreement

Layer. Both parties implement the WS-Agreement Negotiation and WS-
Agreement port types. Here, the roles of agreement initiator and

responder change for the renegotiated agreement. The responder of the
original agreement triggers the creation of the renegotiated agreement
instance through the original agreement initiator’s agreement factory.

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 35

7.4 Negotiation Factory Port Type

7.4.1 Operation wsag-neg:InitiateNegotiation
The wsag-neg:InitiateNegotiation operation is used to create a new
negotiation.

7.4.1.1 Input
<wsag-neg:InitiateNegotiationInput>

 <wsag-neg:NegotiationContext>

 …

 </wsag-neg:NegotiationContext>

<wsag-neg:InitiatorNegotiationEPR>

 <wsa:EndpointReference>

 wsa:EndpointReferenceType

 </wsa:EndpointReference>

 </wsag-neg:InitiatorNegotiationEPR> ?

 <wsag-neg:NoncriticalExtension>

 <xs:any> … </xs:any>

 </wsag-neg:NoncriticalExtension> *

 <xs:any> … </xs:any> *

</wsag-neg:InitiateNegotiationInput>

/wsag-neg:InitiateNegotiationInput
This is the outermost tag that encapsulates the input of an initiateNegotiation
request.

/wsag-neg:InitiateNegotiationInput/wsag-neg:NegotiationContext
This REQUIRED element defines the context of the negotiation that is
initiated. The negotiation context applies to the whole lifetime of the
negotiation process.

/wsag-neg:InitiateNegotiationInput/wsag-neg:InitiatorNegotiationEPR
This OPTIONAL element identifies the endpoint of a Negotiation instance
provided by the initiator of the negotiation. This endpoint is used in symmetric
deployment scenarios of the Negotiation port type in order to initiate a bilateral
negotiation.

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 36

/wsag-neg:InitiateNegotiationInput/wsag-neg:NoncriticalExtensions
Additional elements MAY carry non-critical extensions which control
augmented negotiation and agreement creation mechanisms. The responder
MAY ignore non-critical extensions and behave as if they were not present. A
responder SHOULD obey non-critical extensions if it is able and willing. The
meaning of extensions and how to obey them is domain-specific and MUST
be understood from the extension content itself.

/wsag-neg:InitiateNegotiationInput/xs:any##other
These optional elements MAY be used to carry critical extensions which
control additional (re)negotiation and agreement creation mechanisms. All
extensions are considered mandatory, i.e. the responder MUST return a fault
if any extension is not understood or the responder is unwilling to support the
extension. The meaning of extensions and how to obey them is domain-
specific and MUST be understood from the extension content itself.

7.4.1.2 Result
<wsag-neg:InitiateNegotiationOutput>

 <wsag-neg:CreatedNegotiationEPR>

 wsa:EndpointReferenceType

 </wsag-neg:CreatedNegotiationEPR>

 <xs:any> … </xs:any> *

</wsag-neg:InitiateNegotiationOutput>

/wsag-neg:InitiateNegotiationInput/wsag-neg:CreatedNegotiationEPR
This element is the EPR of the newly created negotiation. The created
negotiation instance MUST bear the same context as provided in the input.
This element MUST appear in an initiate negotiation response.

/wsag-neg:InitiateNegotiationInput/{any}
The response MAY carry additional domain specific elements that are
associated with the corresponding extensions of the input message.

7.4.1.3 Faults
A fault response indicates that the request for creating a negotiation was
rejected and may also include domain specific reasons.

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 37

7.5 Negotiation Port Type

7.5.1 Operation wsag-neg:Negotiate
The wsag-neg:Negotiate operation is used to negotiate offers based on the
offer-counter offer model.

7.5.1.1 Input
<wsag-neg:NegotiateInput>

 <wsag-neg:NegotiationOffer>

 wsag-neg:NegotiationOfferType

 </wsag-neg:NegotiationOffer> +

 <xs:any> … </xs:any> *

</wsag-neg:NegotiateInput>

/wsag-neg:NegotiateInput/wsag-neg:NegotiationOffer
The input of the negotiation operation MUST contain at least one negotiation
offer. A negotiation offer must reference one template provided by the
agreement factory specified in the negotiation context.

/wsag-neg:NegotiateInput/{any}
The Negotiate input message MAY contain optional elements to control the
negotiation process in a domain specific way. A responder MAY choose to
ignore this content if it does not understand it or it is not willing to support the
extensions. If responder is willing and able to understand these extensions it
SHOULD support them.

7.5.1.2 Result
<wsag-neg:NegotiateOutput>

 <wsag-neg:NegotiationCounterOffer>

 wsag-neg:NegotiationOfferType

 </wsag-neg:NegotiationCounterOffer> *

 <xs:any> … </xs:any> *

</wsag-neg:NegotiateOutput>

/wsag-neg:NegotiateOutput/wsag-neg:NegotiationCounterOffer
This element contains the created counter offers. Each counter offer SHOULD
refer to an offer provided in the input message. For each provided offer zero
or more counter offer SHOULD be created. The responder MUST NOT create
any counter offer for offers that are in rejected state.

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 38

/wsag-neg:NegotiateOutput/{any}
The Negotiate output message MAY contain optional elements in order to
include domain specific content to control the negotiation process. These
extensions are in control of the extension provided in the input message.

7.5.1.3 Faults
A fault indicates that negotiation is not possible, the provided input is not valid,
or another failure prevents negotiation. The fault may also include some
domain specific reasons.

7.5.2 Operation wsag-neg:Terminate
This operation terminates a negotiation process, if permissible. All offers
negotiated in the context of this negotiation process are invalidated.

7.5.2.1 Input
<wsag-neg:TerminateInput>

 <xs:any> … </xs:any> *

</wsag-neg:TerminateInput>

/wsag-neg:TerminateInput/{any}
These OPTIONAL elements contain domain specific content that may be
used to decide whether or not a termination is permissible.

7.5.2.2 Result
<wsag-neg:TerminateOutput>

</wsag-neg:TerminateOutput>

The result of the terminate operation does not contain any data.

7.5.2.3 Faults
This operation does not throw any faults.

7.5.3 Resource Property wsag-neg:NegotiationContext
The wsag-neg:NegotiationContext property is of the type wsag-
neg:NegotiationContextType. It represents the context used to initiate the
negotiation process. The content of the context is described in section 4.1.

7.5.4 Resource Property wsag-neg:NegotiableTemplate
The wsag-neg:NegotiableTemplate property is of the type
wsag:AgreementTemplateType. The cardinality of this resource property is 0
to n. It represents a set of agreement templates that can be used to create
negotiation offers within this particular negotiation instance.

7.5.5 Resource Property wsag-neg:NegotiationOffer
The wsag-neg:NegotiationOffer property is of the type wsag-
neg:NegotiationOfferType. The cardinality of this resource property is 0 to n. It
represents a collection of all offers and counter offers exchanged in the
context of this negotiation. Therefore, it has the function of a negotiation

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 39

history. If an implementation is not capable or willing to support this feature,
this list SHOULD be empty.

7.6 Offer Advertisement Port Type
The advertisement port type is used in order to advertise offers to a
negotiation participant.

7.6.1 Operation wsag-neg:Advertise
The wsag-neg:Advertise operation is used to notify a negotiation participant of
an offer where no counter offer is expected. Typical usage scenarios of the
Advertise method are notification of new negotiation offers, the explicit
rejection of a previously made offer, the response to a solicited offer, or the
handover of the negotiation control.

7.6.1.1 Input
<wsag-neg:AdvertiseInput>

 <wsag-neg:NegotiationOffer>

 wsag-neg:NegotiationOfferType

 </wsag-neg:NegotiationOffer> +

 <xs:any> … </xs:any> *

</wsag-neg:AdvetiseInput>

/wsag-neg:AdvertiseInput/wsag-neg:NegotiationOffer
This element MUST appear in the input of the Advertise operation. The input
may contain one or more negotiation offers of which a responder is notified.

/wsag-neg:AdvertiseInput/{any}
The Advertise input message MAY contain optional elements to control the
negotiation process in a domain specific way. A responder MAY choose to
ignore this content if it does not understand it or it is not willing to support the
extensions. If responder is willing and able to understand these extensions it
SHOULD support them.

7.6.1.2 Result
<wsag-neg:AdvertiseOutput>

</wsag-neg:AdvertiseOutput>

The result of the wsag-neg:Advertise operation is always empty.

7.6.1.3 Faults
A fault indicates that advertisement of offers for this specific negotiation
resource is not possible and may also include some domain specific reasons.

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 40

8 Contributors
Dominic Battré
TU Berlin
Email: dominic.battre@tu-berlin.de

Frances Brazier
Delft University of Technology
Email: F.M.Brazier@tudelft.nl

Kassidy Clark
Delft University of Technology
Email: K.P.Clark@tudelft.nl

Michel Oey
Delft University of Technology
Email: M.A.Oey@tudelft.nl

Alexander Papaspyrou
TU Dortmund University
Email: alexander.papaspyrou@tu-dortmund.de

Oliver Wäldrich
Fraunhofer SCAI
Email: oliver.waeldrich@scai.fraunhofer.de

Philipp Wieder
TU Dortmund University / SLA@SOI
Email: philipp.wieder@udo.edu

Wolfgang Ziegler
Fraunhofer SCAI
Email: Wolfgang.Ziegler@scai.fraunhofer.de

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 41

9 Acknowledgements
This document is the work of the GRAAP Working Group GRAAP Working
Group (Grid Resource Allocation and Agreement Protocol WG) of the
Compute Area of the OGF.
Members of the Working Group, and other contributors to this specification in
different periods of its evolvement include Bastian Koller, Michael Parkin,
Toshiyuki Nakata, Sebastian Hudert, Karl Czajkowski, Heiko Ludwig, Alain
Andrieux , Alan Weissberger, Kate Keahey.
Furthermore the work on the specification was supported by the European
projects SLA@SOI, CoreGRID, SmartLM and OPTIMIS, as well as through
the German projects DGSI and SLA4D-Grid.

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 42

10 Security Considerations
The WS-Agreement Negotiation specification does not explicitly address any
security considerations. We expect that security issues will be addressed by
blending with other security implementations in the web services domain. In
particular, agreement negotiation participants SHOULD be authenticated to
insure their identity of the initiator during negotiation and later creation and
management of an agreement. Further, one MAY wish to provide a method
for signing or otherwise authenticating the WS- Agreement Negotiation
documents (offers/counter offers) to detect potential modifications of the
documents when sent using unsecure internet connections.

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 43

11 Intellectual Property Statement
The OGF takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the implementation
or use of the technology described in this document or the extent to which any
license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Copies of
claims of rights made available for publication and any assurances of licenses
to be made available, or the result of an attempt made to obtain a general
license or permission for the use of such proprietary rights by implementers or
users of this specification can be obtained from the OGF Secretariat.
The OGF invites any interested party to bring to its attention any copyrights,
patents or patent applications, or other proprietary rights which may cover
technology that may be required to practice this recommendation. Please
address the information to the OGF Executive Director.

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 44

12 Disclaimer
This document and the information contained herein is provided on an “As Is”
basis and the OGF disclaims all warranties, express or implied, including but
not limited to any warranty that the use of the information herein will not
infringe any rights or any implied warranties of merchantability or fitness for a
particular purpose.

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 45

13 Full Copyright Notice
Copyright (C) Open Grid Forum (2011). All Rights Reserved.
This document and translations of it may be copied and furnished to others,
and derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative
works. However, this document itself may not be modified in any way, such as
by removing the copyright notice or references to the OGF or other
organizations, except as needed for the purpose of developing Grid
Recommendations in which case the procedures for copyrights defined in the
OGF Document process must be followed, or as required to translate it into
languages other than English.
The limited permissions granted above are perpetual and will not be revoked
by the OGF or its successors or assignees.

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 46

14 References
[BRADNER1] Bradner, S. Key Words for Use in RFCs to Indicate

Requirement Levels, RFC 2119. March 1997.
[GFD192] Andrieux, A. and Czajkowski, K. and Dan, A. and Keahey, K. and

Ludwig, H. and Nakata, T. and Pruyne, J. and Rofrano, J. and Tuecke, S.
and Xu, M. WS-Agreement specification, GFD.192. September 21, 2011

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 47

15 Appendix 1: XML Schema and WSDL

15.1 Negotiation Types Schema
<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema

 elementFormDefault="qualified" attributeFormDefault="qualified"

 targetNamespace="http://schemas.ogf.org/graap/2009/11/ws-
agreement-negotiation"

 xmlns:wsag-neg="http://schemas.ogf.org/graap/2009/11/ws-
agreement-negotiation"

 xmlns:wsag="http://schemas.ggf.org/graap/2007/03/ws-agreement"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <xsd:import namespace="http://schemas.ggf.org/graap/2007/03/ws-
agreement"

 schemaLocation="agreement_types.xsd" />

 <xsd:import namespace="http://www.w3.org/2001/XMLSchema"

 schemaLocation="http://www.w3.org/2001/XMLSchema.xsd" />

 <xsd:import namespace="http://www.w3.org/2005/08/addressing"

 schemaLocation="http://www.w3.org/2005/08/addressing/ws-
addr.xsd"/>

 <xsd:element name="NegotiationContext"

 type="wsag-neg:NegotiationContextType" />

 <xsd:element name="NegotiableTemplate"

 type="wsag:AgreementTemplateType" />

 <xsd:element name="NegotiationOffer"

 type="wsag-neg:NegotiationOfferType" />

 <xsd:element name="NegotiationCounterOffer"

 type="wsag-neg:NegotiationOfferType" />

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 48

 <xsd:element name="NegotiationOfferContext"

 type="wsag-neg:NegotiationOfferContextType" />

 <xsd:element name="NegotiationExtension"

 type="wsag-neg:NegotiationExtensionType" />

 <xsd:element name="RenegotiationExtension"

 type="wsag-neg:RenegotiationExtensionType" />

 <xsd:complexType name="NegotiationContextType">

 <xsd:sequence>

 <xsd:element name="NegotiationType"

 type="wsag-neg:NegotiationType" />

 <xsd:element name="ExpirationTime"

 type="xsd:dateTime" minOccurs="0" />

 <xsd:element name="NegotiationInitiator"

 type="xsd:anyType" minOccurs="0" />

 <xsd:element name="NegotiationResponder"

 type="xsd:anyType" minOccurs="0" />

 <xsd:element name="AgreementResponder"

 type="wsag-neg:NegotiationRoleType"/>

 <xsd:element name="AgreementFactoryEPR"

 type="wsa:EndpointReferenceType" />

 <xsd:any namespace="##other" processContents="lax"

 minOccurs="0" maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:simpleType name="NegotiationRoleType">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="NegotiationInitiator" />

 <xsd:enumeration value="NegotiationResponder" />

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 49

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:complexType name="NegotiationType">

 <xsd:choice>

 <xsd:element name="Negotiation">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:any namespace="##other" processContents="lax"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="Renegotiation">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="ResponderAgreementEPR"

 type="wsa:EndpointReferenceType" />

 <xsd:element name="InitiatorAgreementEPR"

 type="wsa:EndpointReferenceType" minOccurs="0" />

 <xsd:any namespace="##other" processContents="lax"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:choice>

 </xsd:complexType>

 <xsd:complexType name="NegotiationOfferType">

 <xsd:complexContent>

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 50

 <xsd:extension base="wsag:AgreementType">

 <xsd:sequence>

 <xsd:element name="NegotiationOfferContext"

 type="wsag-neg:NegotiationOfferContextType"/>

 <xsd:element name="NegotiationConstraints"

 type="wsag-
neg:NegotiationConstraintSectionType" />

 </xsd:sequence>

 <xsd:attribute name="OfferId" type="xsd:string" />

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <xsd:complexType name="NegotiationConstraintSectionType">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0"
name="Item"

 type="wsag-neg:NegotiationOfferItemType" />

 <xsd:element maxOccurs="unbounded" minOccurs="0"

 ref="wsag:Constraint" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="NegotiationOfferItemType">

 <xsd:complexContent>

 <xsd:extension base="wsag:OfferItemType">

 <xsd:attribute name="Type"

 type="wsag-
neg:NegotiationConstraintType"

 use="required" />

 <xsd:attribute name="Importance" type="xsd:integer"

 default="0" use="optional"/>

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 51

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <xsd:simpleType name="NegotiationConstraintType">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="Required" />

 <xsd:enumeration value="Optional" />

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:complexType name="NegotiationOfferContextType">

 <xsd:sequence>

 <xsd:element name="CounterOfferTo"

 type="xsd:string"/>

 <xsd:element name="ExpirationTime"

 type="xsd:dateTime" minOccurs="0" />

 <xsd:element name="Creator"

 type="wsag-neg:NegotiationRoleType"/>

 <xsd:element name="State"

 type="wsag-neg:NegotiationOfferStateType" />

 <xsd:any namespace="##other" processContents="lax"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="NegotiationOfferStateType">

 <xsd:choice>

 <xsd:element name="Advisory"

 type="wsag-neg:InnerNegotiationStateType"/>

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 52

 <xsd:element name="Solicited"

 type="wsag-neg:InnerNegotiationStateType"/>

 <xsd:element name="Acceptable"

 type="wsag-neg:InnerNegotiationStateType"/>

 <xsd:element name="Rejected"

 type="wsag-neg:InnerNegotiationStateType"/>

 </xsd:choice>

 </xsd:complexType>

 <xsd:complexType name="InnerNegotiationStateType">

 <xsd:sequence>

 <xsd:any namespace="##other" processContents="lax"

 minOccurs="0" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="NegotiationExtensionType">

 <xsd:sequence>

 <xsd:element name="ResponderNegotiationEPR"

 type="wsa:EndpointReferenceType" minOccurs="0" />

 <xsd:element name="InitiatorNegotiationEPR"

 type="wsa:EndpointReferenceType" minOccurs="0" />

 <xsd:element name="NegotiationOfferContext"

 type="wsag-neg:NegotiationOfferContextType"
minOccurs="1" />

 <xsd:any namespace="##other" minOccurs="0"

 processContents="lax"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="RenegotiationExtensionType">

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 53

 <xsd:sequence>

 <xsd:element name="ResponderNegotiationEPR"

 type="wsa:EndpointReferenceType" minOccurs="1" />

 <xsd:element name="InitiatorNegotiationEPR"

 type="wsa:EndpointReferenceType" minOccurs="0" />

 <xsd:element name="ResponderAgreementEPR"

 type="wsa:EndpointReferenceType" minOccurs="1" />

 <xsd:element name="NegotiationOfferContext"

 type="wsag-neg:NegotiationOfferContextType"
minOccurs="1" />

 <xsd:any namespace="##other" processContents="lax"

 minOccurs="0" />

 </xsd:sequence>

 </xsd:complexType>

</xsd:schema>

15.2 Negotiation Factory WSDL
<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:wsag="http://schemas.ggf.org/graap/2007/03/ws-agreement"

 xmlns:wsag-neg="http://schemas.ogf.org/graap/2009/11/ws-
agreement-negotiation"

 xmlns:wsrf-rp="http://docs.oasis-open.org/wsrf/rp-2"

 xmlns:wsrf-rw="http://docs.oasis-open.org/wsrf/rw-2"

 targetNamespace="http://schemas.ogf.org/graap/2009/11/ws-
agreement-negotiation">

 <wsdl:import namespace="http://docs.oasis-open.org/wsrf/rw-2"

 location="http://docs.oasis-open.org/wsrf/rw-2.wsdl"/>

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 54

 <wsdl:types>

 <xs:schema

 targetNamespace="http://schemas.ogf.org/graap/2009/11/ws-
agreement-negotiation"

 xmlns:wsag-neg="http://schemas.ogf.org/graap/2009/11/ws-
agreement-negotiation"

 xmlns:wsag="http://schemas.ggf.org/graap/2007/03/ws-
agreement"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 elementFormDefault="qualified"

 attributeFormDefault="qualified">

 <xs:import
namespace="http://www.w3.org/2005/08/addressing"

schemaLocation="http://www.w3.org/2006/03/addressing/ws-addr.xsd"/>

 <xs:import
namespace="http://schemas.ggf.org/graap/2007/03/ws-agreement"

 schemaLocation="agreement_types.xsd" />

 <xs:include
schemaLocation="agreement_negotiation_types.xsd" />

 <xs:element name="InitiateNegotiationInput"

 type="wsag-neg:InitiateNegotiationInputType"/>

 <xs:complexType name="InitiateNegotiationInputType">

 <xs:sequence>

 <xs:element ref="wsag-neg:NegotiationContext" />

 <xs:element name="InitiatorNegotiationEPR"

 type="wsa:EndpointReferenceType"
minOccurs="0" />

 <xs:element name="NoncriticalExtension"

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 55

 type="wsag:NoncriticalExtensionType"

 minOccurs="0" maxOccurs="unbounded" />

 <xs:any namespace="##other" processContents="lax"

 minOccurs="0" maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

 <xs:element name="InitiateNegotiationOutput"

 type="wsag-neg:InitiateNegotiationOutputType"/>

 <xs:complexType name="InitiateNegotiationOutputType">

 <xs:sequence>

 <xs:element name="CreatedNegotiationEPR"

 type="wsa:EndpointReferenceType"

 minOccurs="1" maxOccurs="1" />

 <xs:any namespace="##other" processContents="lax"

 minOccurs="0" maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

 </xs:schema>

 </wsdl:types>

 <wsdl:message name="InitiateNegotiationInputMessage">

 <wsdl:part name="parameters"

 element="wsag-neg:InitiateNegotiationInput" />

 </wsdl:message>

 <wsdl:message name="InitiateNegotiationOuputMessage">

 <wsdl:part name="parameters"

 element="wsag-neg:InitiateNegotiationOutput" />

 </wsdl:message>

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 56

 <wsdl:message name="InitiateNegotiationFaultMessage">

 <wsdl:part name="fault" element="wsag:ContinuingFault"/>

 </wsdl:message>

 <wsdl:portType name="NegotiationFactory">

 <wsdl:operation name="InitiateNegotiation">

 <wsdl:input

 message="wsag-
neg:InitiateNegotiationInputMessage"/>

 <wsdl:output

 message="wsag-
neg:InitiateNegotiationOuputMessage"/>

 <wsdl:fault name="ResourceUnknownFault"

 message="wsrf-rw:ResourceUnknownFault" />

 <wsdl:fault name="ResourceUnavailableFault"

 message="wsrf-rw:ResourceUnavailableFault" />

 <wsdl:fault name="NegotiationInitiationFault"

 message="wsag-neg:InitiateNegotiationFaultMessage"
/>

 </wsdl:operation>

 </wsdl:portType>

</wsdl:definitions>

15.3 Negotiation WSDL
<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:wsag="http://schemas.ggf.org/graap/2007/03/ws-agreement"

 xmlns:wsag-neg="http://schemas.ogf.org/graap/2009/11/ws-
agreement-negotiation"

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 57

 xmlns:wsrf-rp="http://docs.oasis-open.org/wsrf/rp-2"

 xmlns:wsrf-rw="http://docs.oasis-open.org/wsrf/rw-2"

 targetNamespace="http://schemas.ogf.org/graap/2009/11/ws-
agreement-negotiation">

 <wsdl:import namespace="http://docs.oasis-open.org/wsrf/rw-2"

 location="http://docs.oasis-open.org/wsrf/rw-2.wsdl"/>

 <wsdl:import namespace="http://docs.oasis-open.org/wsrf/rpw-2"

 location="http://docs.oasis-open.org/wsrf/rpw-2.wsdl" />

 <wsdl:types>

 <xs:schema

 targetNamespace="http://schemas.ogf.org/graap/2009/11/ws-
agreement-negotiation"

 xmlns:wsag-neg="http://schemas.ogf.org/graap/2009/11/ws-
agreement-negotiation"

 xmlns:wsag="http://schemas.ggf.org/graap/2007/03/ws-
agreement"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 elementFormDefault="qualified"

 attributeFormDefault="qualified">

 <xs:import
namespace="http://schemas.ggf.org/graap/2007/03/ws-agreement"

 schemaLocation="agreement_types.xsd" />

 <xs:include
schemaLocation="agreement_negotiation_types.xsd" />

 <xs:element name="NegotiationProperties"

 type="wsag-neg:NegotiationPropertiesType" />

 <xs:complexType name="NegotiationPropertiesType">

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 58

 <xs:sequence>

 <xs:element ref="wsag-neg:NegotiationContext" />

 <xs:element ref="wsag-neg:NegotiableTemplate"

 minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="wsag-neg:NegotiationOffer"

 minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="NegotiateInput"

 type="wsag-neg:NegotiateInputType"/>

 <xs:complexType name="NegotiateInputType">

 <xs:sequence>

 <xs:element ref="wsag-neg:NegotiationOffer"

 minOccurs="1" maxOccurs="unbounded" />

 <xs:any namespace="##other" processContents="lax"

 minOccurs="0" maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

 <xs:element name="NegotiateOutput"

 type="wsag-neg:NegotiateOutputType"/>

 <xs:complexType name="NegotiateOutputType">

 <xs:sequence>

 <xs:element ref="wsag-
neg:NegotiationCounterOffer"

 minOccurs="0" maxOccurs="unbounded" />

 <xs:any namespace="##other" processContents="lax"

 minOccurs="0" maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 59

 <xs:element name="TerminateInput"

 type="wsag-neg:TerminateInputType" />

 <xs:complexType name="TerminateInputType">

 <xs:sequence>

 <xs:any processContents="lax" namespace="##other"

 minOccurs="0" maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

 <xs:element name="TerminateResponse"

 type="wsag-neg:TerminateOutputType" />

 <xs:complexType name="TerminateOutputType" />

 </xs:schema>

 </wsdl:types>

 <wsdl:message name="NegotiateInputMessage">

 <wsdl:part name="parameters"

 element="wsag-neg:NegotiateInput" />

 </wsdl:message>

 <wsdl:message name="NegotiateOuputMessage">

 <wsdl:part name="parameters"

 element="wsag-neg:NegotiateOutput" />

 </wsdl:message>

 <wsdl:message name="NegotiationFaultMessage">

 <wsdl:part name="fault"

 element="wsag:ContinuingFault"/>

 </wsdl:message>

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 60

 <wsdl:message name="TerminateNegotiationInputMessage">

 <wsdl:part name="parameters"

 element="wsag-neg:TerminateInput" />

 </wsdl:message>

 <wsdl:message name="TerminateNegotiationOuputMessage">

 <wsdl:part name="parameters"

 element="wsag-neg:TerminateResponse" />

 </wsdl:message>

 <wsdl:portType name="Negotiation"

 wsrf-rp:ResourceProperties="wsag-
neg:NegotiationProperties">

 <wsdl:operation name="Negotiate">

 <wsdl:input

 message="wsag-neg:NegotiateInputMessage" />

 <wsdl:output

 message="wsag-neg:NegotiateOuputMessage" />

 <wsdl:fault name="ResourceUnknownFault"

 message="wsrf-rw:ResourceUnknownFault" />

 <wsdl:fault name="ResourceUnavailableFault"

 message="wsrf-rw:ResourceUnavailableFault" />

 <wsdl:fault name="NegotiationFault"

 message="wsag-neg:NegotiationFaultMessage" />

 </wsdl:operation>

 <wsdl:operation name="Terminate">

 <wsdl:input

 message="wsag-neg:TerminateNegotiationInputMessage"
/>

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 61

 <wsdl:output

 message="wsag-neg:TerminateNegotiationOuputMessage"
/>

 <wsdl:fault name="ResourceUnknownFault"

 message="wsrf-rw:ResourceUnknownFault" />

 <wsdl:fault name="ResourceUnavailableFault"

 message="wsrf-rw:ResourceUnavailableFault" />

 </wsdl:operation>

 </wsdl:portType>

</wsdl:definitions>

15.4 Advertisement WSDL
<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:wsag="http://schemas.ggf.org/graap/2007/03/ws-agreement"

 xmlns:wsag-neg="http://schemas.ogf.org/graap/2009/11/ws-
agreement-negotiation"

 xmlns:wsrf-rp="http://docs.oasis-open.org/wsrf/rp-2"

 xmlns:wsrf-rw="http://docs.oasis-open.org/wsrf/rw-2"

 targetNamespace="http://schemas.ogf.org/graap/2009/11/ws-
agreement-negotiation">

 <wsdl:import namespace="http://docs.oasis-open.org/wsrf/rw-2"

 location="http://docs.oasis-open.org/wsrf/rw-2.wsdl"/>

 <wsdl:import namespace="http://docs.oasis-open.org/wsrf/rpw-2"

 location="http://docs.oasis-open.org/wsrf/rpw-2.wsdl" />

 <wsdl:types>

 <xs:schema

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 62

 targetNamespace="http://schemas.ogf.org/graap/2009/11/ws-
agreement-negotiation"

 xmlns:wsag-neg="http://schemas.ogf.org/graap/2009/11/ws-
agreement-negotiation"

 xmlns:wsag="http://schemas.ggf.org/graap/2007/03/ws-
agreement"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 elementFormDefault="qualified"

 attributeFormDefault="qualified">

 <xs:import
namespace="http://schemas.ggf.org/graap/2007/03/ws-agreement"

 schemaLocation="agreement_types.xsd" />

 <xs:include
schemaLocation="agreement_negotiation_types.xsd" />

 <xs:element name="AdvertiseInput"

 type="wsag-neg:AdvertiseInputType"/>

 <xs:complexType name="AdvertiseInputType">

 <xs:sequence>

 <xs:element ref="wsag-neg:NegotiationOffer"

 minOccurs="1" maxOccurs="unbounded" />

 <xs:any namespace="##other" processContents="lax"

 minOccurs="0" maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

 <xs:element name="AdvertiseOutput"

 type="wsag-neg:AdvertiseOutputType"/>

 <xs:complexType name="AdvertiseOutputType" />

 </xs:schema>

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 63

 </wsdl:types>

 <wsdl:message name="AdvertiseInputMessage">

 <wsdl:part name="parameters"

 element="wsag-neg:AdvertiseInput" />

 </wsdl:message>

 <wsdl:message name="AdvertiseOuputMessage">

 <wsdl:part name="parameters"

 element="wsag-neg:AdvertiseOutput" />

 </wsdl:message>

 <wsdl:message name="AdvertiseFaultMessage">

 <wsdl:part name="fault"

 element="wsag:ContinuingFault"/>

 </wsdl:message>

 <wsdl:portType name="Advertise">

 <wsdl:operation name="Advertise">

 <wsdl:input

 message="wsag-neg:AdvertiseInputMessage" />

 <wsdl:output

 message="wsag-neg:AdvertiseOuputMessage" />

 <wsdl:fault name="ResourceUnknownFault"

 message="wsrf-rw:ResourceUnknownFault" />

 <wsdl:fault name="ResourceUnavailableFault"

 message="wsrf-rw:ResourceUnavailableFault" />

 <wsdl:fault name="Advertise"

 message="wsag-neg:AdvertiseFaultMessage" />

 </wsdl:operation>

 </wsdl:portType>

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 64

</wsdl:definitions>

15.5 Example for specifying negotiation metadata
Negotiation related metadata is specified in the negotiation context when a
new negotiation process is initiated. Such metadata can for example include
the maximum number of negotiation rounds, the maximum number of counter
offers, or a specific negotiation strategy.

The following schema is used for reference in this example:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:foo="http://www.foo.org/bar"

 targetNamespace="http://www.foo.org/bar">

 <xs:element name="NegotiationProperties"

 type="foo:NegotiationPropertiesType" />

 <xs:complexType name="NegotiationPropertiesType">

 <xs:sequence>

 <xs:element name="MaxRounds" type="xs:positiveInteger"/>

 <xs:element name="MaxCounterOffers"

 type="xs:positiveInteger"/>

 <xs:element name="NegotiationStrategy" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

Given the schema above a valid negotiation context would look as follows:

<wsag-neg:NegotiationContext

 xmlns:wsag="http://schemas.ggf.org/graap/2007/03/ws-agreement"

 xmlns:wsag-neg="http://schemas.ogf.org/graap/2009/11

 /ws-agreement-negotiation">

 <wsag-neg:NegotiationType>

GFD-R-P.193 October 10, 2011
GRAAP-WG

graap-wg@ogf.org 65

 <wsag-neg:Negotiation/>

 </wsag-neg:NegotiationType>

 <wsag-neg:ExpirationTime>

 2011-07-15T20:00:00+02:00

 </wsag-neg:ExpirationTime>

 <wsag-neg:AgreementResponder>

 NegotiationInitiator

 </wsag-neg:AgreementResponder>

 <foo:NegotiationProperties xmlns:foo="http://www.foo.org/bar">

 <MaxRounds>10</MaxRounds>

 <MaxCounterOffers>4</MaxCounterOffers>

 <NegotiationStrategy>WIN-WIN</NegotiationStrategy>

 </foo:NegotiationProperties>

</wsag-neg:NegotiationContext>

