
GFD-R-P.212 Guy Roberts
NSI-WG Tomohiro Kudoh

 Inder Monga
 Jerry Sobieski

John MacAuley
Chin Guok

NSI Connection Service v2.0

Status of This Document

Grid Forum Document (GFD).

Copyright Notice

Copyright © Open Grid Forum (2008-2014). Some Rights Reserved. Distribution is unlimited.

Notational Conventions

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as described
in [RFC 2119].
Words defined in the glossary are capitalized (e.g. Connection). NSI protocol messages and their
attributes are written in camel case and italics (e.g. reserveConfirmed).

Abstract

This document describes the Connection Service v2.0, which is one of a suite of services that make
up the Network Service Interface (NSI).

The NSI is a web-service based API that operates between a requester software agent and a
provider software agent. The full suite of NSI services allows an application or network provider to
request and manage circuit service instances. Apart from the Connection Service these include the
Topology Service and the Discovery Service. The complete set of NSI services is described in the
Network Services Framework v2.0.

This Connection Service document describes the protocol, state machine, architecture and
associated processes and environment in which software agents interact to deliver a Connection. A
Connection is a point-to-point network circuit that can transit multiple networks belonging to different
providers.

Contents
1. Introduction 4

1.1 The Connection Service 4
2. Network Service Framework 4

2.1 NSI Services 4
2.2 NSI Interface, Agents and Architecture 4
2.3 NSI Topology 4
2.4 NSI Service Definitions 5

3. NSI Topology 5
3.1 Connections and Topology 5
3.2 Explicit Routing Object 6
3.3 STP Semantics 6

4. NSI CS messages and state machines 7
4.1 NSI Messages and operations 7
4.2 Optional release/provision/modify functionality 10

GFD-R-P.212
NSI-WG 13 May 2014

 2

4.3 NSI state machines 10
4.3.1 Reservation State Machine 11
4.3.2 Provisioning State Machine 13
4.3.3 Lifecycle State Machine 13

4.4 Data Plane Activation 14
4.5 Provisioning Sequence 15
4.6 Guardbands 17

5. NSI Message Transport and Sync/Async messaging 17
5.1 Asynchronous Messaging 17
5.2 Synchronous Messaging 19
5.3 Message format and handling 21

5.3.1 Standard Compliance 21
5.3.2 Message checks 22
5.3.3 ACK handling 22

6. NSI Process Coordination 22
6.1 The Coordinator 22

6.1.1 Communications 23
6.1.2 Per Request Information Elements 23
6.1.3 Correlation Ids and Failure Recovery 23
6.1.4 Information maintained by the Coordinator 25
6.1.5 Per Reservation Information Elements 26
6.1.6 Reservation Versioning Information 26
6.1.7 Data Plane Status Information 27

7. Service Definitions 28
7.1 Context 28
7.2 Service Definitions 28
7.3 Using Service Definitions 29

7.3.1 Providers agree on a common multi-domain service 29
7.3.2 Building an XML Service Definition instance 29
7.3.3 Using SDs to request a service instance 30
7.3.4 Interpreting an incoming request 30

7.4 Service Definitions and a Request workflow 31
8. XML Schema Definitions 32

8.1 NSI CS Versioning 32
8.2 nsiHeader element 33

8.2.1 sessionSecurityAttr Element 35
8.3 Common types 36

8.3.1 ServiceExceptionType 36
8.3.2 VariablesType 37
8.3.3 TypeValuePairType 37
8.3.4 TypeValuePairListType 38
8.3.5 ConnectionIdType 38
8.3.6 DateTimeType 38
8.3.7 NsaIdType 39
8.3.8 UuidType 39

8.4 NSI CS operation-specific type definitions. 39
8.4.1 reserve message elements 39
8.4.2 reserveCommit message elements 42
8.4.3 reserveAbort message elements 45
8.4.4 reserveTimeout message elements 46
8.4.5 provision message elements 48
8.4.6 release message elements 49
8.4.7 terminate message elements 51
8.4.8 error message elements 52
8.4.9 errorEvent message elements 53
8.4.10 dataPlaneStateChange message elements 55

GFD-R-P.212
NSI-WG 13 May 2014

 3

8.4.11 messageDeliveryTimeout message elements 56
8.4.12 querySummary message elements 58
8.4.13 querySummarySync message elements 60
8.4.14 queryRecursive message elements 61
8.4.15 queryNotification message elements 63
8.4.16 queryNotificationSync message elements 66
8.4.17 queryResult message elements 67
8.4.18 queryResultSync message elements 70

8.5 NSI CS specific types 73
8.5.1 Complex Types 73
8.5.2 Simple Types 93

9. Security 96
9.1 Transport Layer Security 96
9.2 SAML Assertions 96

10. Contributors 96
11. Glossary 97
12. Intellectual Property Statement 98
13. Disclaimer 99
14. Full Copyright Notice 99
15. Appendix A: State Machine Transition Tables 100
16. Appendix B: Error Messages and Best Practices 101

16.1 Error Messages 101
16.2 NTP servers 102
16.3 Timeouts 102

17. Appendix C: Firewall Handling 103
18. Appendix D: Formal Statement of Coordinator 106

18.1 Aggregator NSA 106
18.1.1 Processing of NSI Requests 106
18.1.2 Requests from State Machines 107

18.2 Ultimate PA 108
18.2.1 Processing of NSI Requests 108
18.2.2 Requests from State Machines 109

19. Appendix E: Service-Specific Schema 110
19.1 Restructuring criteria element 110
19.2 The serviceType element 110
19.3 Service-specific errors 110
19.4 Point-to-point service-specific schema 111

19.4.1 Service Elements 111
19.4.2 Complex Types 113

19.5 Generic Service Types 114
19.5.1 Complex Types 114
19.5.2 Simple Types 115

19.6 Reservation request 115
19.7 Reservation modification 116

20. Appendix F: Tree and Chain Connection Examples 116
20.1 Connection managed by an NSA chain 116
20.2 Connection managed by an NSA tree 117

21. References 118

GFD-R-P.212
NSI-WG 13 May 2014

 4

1. Introduction

1.1 The Connection Service
This Open Grid Forum document defines the NSI Connection Service (CS) protocol that enables
the reservation, creation, management and removal of Connections. To ensure secure service
delivery, the NSI Connection Service incorporates authentication and authorization mechanisms.

NSI is designed to support the creation of circuits (called Connections in NSI) that transit several
networks managed by different providers. Traditional models of circuit services and control planes
adopt a single very tightly defined data plane technology, and then hard code these service
attributes into the control plane protocols. Multi-domain services need to be employed over
heterogeneous data plane technologies. The NSI supports an abstracted notion of a Connection,
and the NSI messages include a flexible schema for specifying service-specific constraints. These
service constraints will be evaluated against the technology available to local network service
providers traversed by the service. It is up to the pathfinder of the NSI-enabled service to identify a
path that meets these constraints. In this way the NSI allows a single Service Plane protocol suite to
deliver Connections that traverse heterogeneous transport technologies.

2. Network Service Framework
The CS protocol is one of several in the Network Service Interface (NSI) protocol suite; the CS
works together with these NSI services to deliver an integrated Network Services Framework
(NSF).

The NSI framework and architecture are normatively described in OGF GWD-R-P “Network Service
Framework v2.0” [1]. The NSI framework and architecture are summarized here (Section 2) for
information purposes only.

2.1 NSI Services
Network resources and capabilities are presented to the consumer through a set of Network
Services, the NSF presents a unified model for interacting with these services. The NSI operates
between a software agent requesting a network service and the software agent providing that
Network Service. Network Services include the ability to create Connections (the Connection
Service), to share topologies (the Topology Service) and to perform other services needed by a
federation of software agents (the Discovery Service).

The NSF includes the NSI Connection Service (CS) as one of the key NSI services. The
Connection Service allows a range of different types of Connections to be managed. This service is
the subject of this Grid Forum Document.

2.2 NSI Interface, Agents and Architecture
The NSF describes a set of architectural elements that make up the NSI architecture; this provides
a framework that applies to all of the NSI services. The basic building block of the NSI architecture
is Network Service Agents (NSAs) that communicate using the Network Service Interface (NSI)
protocol. The NSI and NSAs exist on the Service Plane. Agents communicate using a flexible
hierarchical communication model that allows both tree and chain message delivery models.

2.3 NSI Topology
The NSI extensions [3] to the NML base document [4] describe how NSI Connections are
represented using the NSI Topology. This topology representation is based on Service Termination
Points (STPs) which are URN identifiers of points were a Connection can be terminated.

GFD-R-P.212
NSI-WG 13 May 2014

 5

2.4 NSI Service Definitions
A Connection request includes service-specific information that describes the requirements of the
Connection that is needed. This information will typically include ingress and egress STPs, Explicit
Routing Object (ero), capacity of the Connection, and framing information, however the specific
information will vary between service types. To allow the new services to be readily defined without
a change in the NSI protocol, the service-specific attributes of a Connection request are defined in
the documents called the ‘Service Definitions’.

A Service Definition is an XML document agreed among the service providers and describes which
service parameters can be requested. The Service Definition also includes meta-data that facilitates
validation of the requested Connection parameters. So for example, the meta-data defines the
range of allowed values for each parameter and whether the parameter is optional or mandatory in
a Connection request. Service Definitions are explained in more detail in section 7.

3. NSI Topology
NSI Topology is a topological representation of the service connection capabilities of the network
and is used by the NSI CS protocol for resolving service requests. NSI Topology is based on
standard NML topology (OGF GFD.206) with NSI specific extensions and constrained naming rules:
GWD-R-P Network Service Interface Topology Representation. [3,4]

The NSI Topology exposes a set of Service Termination Point (STP) objects. STPs are used in a
Connection request to identify the source, destination and intermediate points of the desired
Connection.

3.1 Connections and Topology
Figure 1 shows how NSI Networks interconnect at a shared point known as a Service Demarcation
Point (SDP). An SDP is a grouping of two STPs belonging to adjacent connected Networks and is
considered to be a virtual point rather than a link.

End-to-end Connections extend across multiple networks; they are constructed by concatenating
Connection segments built across the individual Networks. This is done by choosing appropriate
STPs such that the egress STP of one segment corresponds directly with the ingress STP of the
successive connection segment. Figure 1 shows two Networks (Y and Z) and a Connection made
by concatenating two segments (STP a - STP b) and (STP c - STP d). The inter-Network
representation of the Connection (STP a – STP d) maps to a physical instance in the Data Plane.

Figure 1: Inter-Network representation of a Connection

GFD-R-P.212
NSI-WG 13 May 2014

 6

3.2 Explicit Routing Object
A Connection request can optionally include an Explicit Routing Object (ero) element. An ero is an

ordered list of STPs that describe the route that should be taken by the Connection. The inter-
Network pathfinder will use STPs listed in an ero element as constraints during the pathfinding
process. The Connection will include all of the STPs in the ero in the sequence in which they are
listed. However an ero is not ‘strict’ in the sense that a Connection is allowed to transit intermediate
STPs between the STPs listed in the ero.

Figure 2 shows an example of a Connection. This Connection conforms to any of the following eros:

(STP b, STP d, STP f), or (STP c, STP e, STP g). Note that as the ingress and egress STPs of a
Connection are defined in dedicated fields of the Connection request, they MUST not be included in
the ero.

Figure 2: example of an ero

The NSI CS does not require NSI messages to be forwarded through the same sequence of
NSAs/Networks that the Connection transits, and as a consequence, both tree and chain type
architectures are supported. For an example of use of the tree and chain see Appendix F: Tree and
Chain Connection Examples.

3.3 STP Semantics
An STP is defined as a three-part identifier comprising a network identifier part, a local identifier
part, and a qualifying label part:

<STP identifier> ::= <networkId> “:” <localId> <label>
<label> ::= “?” <labelType> “=” <labelValue> | “?”<labelType> | “”
<labelType> ::= <string>
<labelValue> ::= <string>

The network identifier points to the domain in which the STP is located, and the local identifier to
the specific resource in that domain. The optional label component allows flexibility in STP definition
so that the base resource can be identified by the <networkId>:<localId> portion, and then
additional qualification by a labelType and/or labelValue pair that can be used to describe
technology-specific attributes of the STP (eg. VLAN tags). The labels are defined in NML and for
this reason can be interpreted by the Requester Agents (RA) and Provider Agents (PA). . Using
these component identifiers makes it possible to easily locate the description of an identifier in the
topology. The NSI Topology syntax is normatively defined in the document ‘Network Service
Interface Topology Representation’ [3].

An STP can be fully qualified or under-qualified. A fully qualified STP refers to a specific instance of
a resource, (e.g. VLAN or any other element identifiable in NML). An under-qualified STP refers to
an STP that is not fully resolved (e.g. it identifies a range of VLANs). Under-qualified STPs are
specified using label ranges (e.g. vlan=1780-1790,1799) instead of a single label value.

GFD-R-P.212
NSI-WG 13 May 2014

 7

Both a reserve request and the NSI Topology can make use of under-qualified STPs. The
reserveConfirmed message MUST return a fully qualified STP, i.e. the NSA must choose one

<label> from the list of possible <labels>.

4. NSI CS messages and state machines
Section 4 of this document describes the messages and state machines that make up the NSI
Connection Service and forms a normative part of the NSI Connection Service protocol definition.
The Connection Service includes a set of messages that allow an RA to request connectivity from a
PA.

4.1 NSI Messages and operations
NSI messages are classified into two types, messages that are passed from an RA to a PA and
messages that are passed from a PA to an RA. In addition messages can be either synchronous or
asynchronous.

An asynchronous messaging method has been chosen that supports the indeterminate response
times that can arise from complex reservation requests across multiple domains. The NSI CS
incorporates an asynchronous callback mechanism permitting unblocking of the CS operation
request from the CS confirmed, failed, and error response messages. The RA provides a replyTo

URL within the NSI header; this URL is then used as the destination of the asynchronous reply.

In addition to asynchronous messaging, the NSI CS supports a limited set of synchronous
messages. These have been added specifically to help address the firewall issue described in the
appendix. The synchronous messages are based on a simple mechanism that utilizes the basic CS
operation request and query messages to provide a functional polling solution.

When asynchronous requests are sent from an RA to a PA, the PA first sends a response for each
request, and is then is expected to send an asynchronous reply (confirmed, failed, or error) to each
request. When synchronous requests are sent from an RA to a PA, the reply message (confirmed,
failed, or error) is included in the response. With SOAP bindings these response messages will be
included in the SOAP response part of the SOAP request-response.

The NSI CS message classifications are summarized in Table 1. A list of CS messages from RA to
PA is provided in Table 2 and a list of CS messages from PA to RA is provided in Table 3.

Message type Direction Description

Asynchronous Request RA to PA An asynchronous response is expected.

Synchronous Request RA to PA The response attributes are expected in the Synchronous SOAP
response.

Asynchronous Response PA to RA This message is sent asynchronously in response to an

asynchronous request

Asynchronous Notification PA to RA This message is sent spontaneously from a PA.

Table 1 – Message types

Each message invokes a corresponding operation in the recipient by associating it with a message
type that can be processed by one of three state machines (See Section 4.3 for a description of the
state machines):

 If the message is of type RSM then the message is to be processed using the Reservation
State Machine (RSM).

 If the message is of type PSM the message is to be processed using the Provision State
Machine (PSM).

GFD-R-P.212
NSI-WG 13 May 2014

 8

 If the message is of type LSM the message is to be processed using the Lifecycle State
Machine (LSM).

 If the message is of type Query this designates a Query request and requires an associated
reply message (synchronous or asynchronous).

 If the message is of type Notification this designates asynchronous notification messages
sent by a PA to an RA.

Table 2 below summarizes the entire set of RA to PA messages. Section 8 provides a detailed
description of these messages and their attributes.

NSI CS Message

(abbreviation)

SM Synch.
/Asynch.

Short Description

reserve
(rsv.rq)

RSM Asynch The reserve message allows an RA to send a request to reserve
network resources to build a Connection between two STP's.

reserveCommit
(rsvcommit.rq)

RSM Asynch The reserveCommit message allows an RA to request the PA commit
a previously allocated Connection reservation or modify an existing
Connection reservation. The combination of the reserve and

reserveCommit are used as a two stage commit mechanism.

reserveAbort

(rsvabort.rq)

RSM Asynch The reserveAbort message allows an RA to request the PA to abort a

previously requested Connection that was made using the reserve
message.

provision

(prov.rq)

PSM Asynch The provision message allows an RA to request the PA to transition a

previously requested Connection into the Provisioned state. A
Connection in Provisioned state will activate associated data plane

resources during the scheduled reservation time.

release
(release.rq)

PSM Asynch The release message allows an RA to request the PA to transition a
previously provisioned Connection into Released state. A Connection

in a Released state will deactivate the associated resources in the
data plane. The reservation is not affected.

terminate
(term.rq)

LSM Asynch The terminate message allows an RA to request the PA to transition a
previously requested Connection into Terminated state. A Connection
in Terminated state will release associated resources and allow the PA

to clean up the RSM, PSM and all related data structures.

querySummary

()

Query Asynch The querySummary message provides a mechanism for an RA to

query the PA for a set of Connection instances between the RA-PA
pair. This message can also be used as a Connection status polling
mechanism.

queryRecursive
()

Query Asynch The queryRecursive message provides a mechanism for an RA to
query the PA for a set of Connection Service reservation instances.

The query returns a detailed list of reservation information collected by
recursively traversing the reservation tree.

querySummarySync

()

Query Synch The querySummarySync message is sent from an RA to a PA. Unlike

the querySummary operation, the querySummarySync is synchronous
and will block further message processing until the results of the query

operation have been collected.

queryNotification
()

Query Asynch The queryNotification message is sent from an RA to a PA to retrieve
a list of notification messages against an existing reservation residing

on the PA. The returned results will be a list of notifications for the
specified connectionId.

queryNotificationSync
()

Query Synch The queryNotificationSync message is sent from an RA to a PA to
retrieve a list of notification messages associated with a connectionId
on the PA. Unlike the queryNotification operation, the

queryNotificationSync is synchronous and will block until the results of
the query operation have been collected.

queryResult
()

Query Asynch The queryResult message is sent from an RA to a PA to retrieve a list
of operation result messages against an existing reservation residing
on the PA. A list of operation results will be returned for the specified

connectionId.

queryResultSync

()

Query Synch The queryResultSync message is sent from an RA to a PA to retrieve

a list of operation result messages associated with a connectionId on
the PA. Unlike the queryResult operation, the queryResultSync is
synchronous and will block until the results of the query operation have

been collected.

Table 2 – RA to PA Connection Service messages

GFD-R-P.212
NSI-WG 13 May 2014

 9

Table 3 below summarizes the entire set of PA to RA messages. Section 8 provides a detailed
description of these messages and their attributes. Note the reserveFailed and
reserveCommitFailed messages are explicitly required for the state machine.

NSI CS Message

(abbreviation)

SM Synch.
/Asynch.

Short Description

reserveResponse
()

response Synch The reserveResponse message is sent to the RA that
issued the original reserve request immediately after

receiving that reservation request to inform the RA of the
connectionId allocated to that reservation request. There
is no impact on the RSM state machine by this message.

reserveConfirmed
(rsv.cf)

RSM Asynch The reserveConfirmed message is sent to the RA that
issued the original reserve request to indicate a

successful operation in response to the reserve request.

reserveFailed
(rsv.fl)

RSM Asynch The reserveFailed message is sent to the RA that issued
the original reserve request message if the requested

reservation criteria could not be met.

reserveCommitConfirmed

(rsvcommit.cf)

RSM Asynch The reserveCommitConfirmed message is sent to the

RA that issued the original request as an indication of a
successful operation in response to the reserveCommit
request of a Connection previously in the Reserve Held

state.

reserveCommitFailed

(rsvcommit.fl)

RSM Asynch The reserveCommitFailed message is sent to the RA

that issued the original request as an indication of a
failure of the reserveCommit request.

reserveAbortConfirmed

(rsvabort.cf)

PSM Asynch The reserveAbortConfirmed message is sent to the RA

that issued the original request as an indication of a
successful operation in response to a reserveAbort

request.

provisionConfirmed
(prov.cf)

PSM Asynch The provisionConfirmed message is sent to the RA that
issued the original request as an indication of a

successful operation in response to a provision request.

releaseConfirmed

(release.cf)

PSM Asynch The releaseConfirmed message is sent to the RA that

issued the original request as an indication of a
successful operation in response to a release request.

terminateConfirmed

(term.cf)

LSM Asynch The terminateConfirmed message is sent to the RA that

issued the original request as an indication of a
successful operation in response to a terminate request.

querySummaryConfirmed
()

query Asynch The querySummaryConfirmed message is sent to the
RA that issued the original request as an indication of a
successful operation in response to a querySummary

request. This response included the summary data
requested.

queryRecursiveConfirmed
()

query Asynch The queryRecursiveConfirmed message is sent to the
RA that issued the original request as an indication of a
successful operation in response to a queryRecursive

request. This response included the recursive data
requested.

querySummarySync
Confirmed
()

query Synch The querySummarySyncConfirmed message is sent to
the RA that issued the original request as an indication
of a successful operation in response to a

querySummarySync request. This response included the
summary data requested.

error error Asynch The error message is sent from a PA to an RA as an
indication of the occurrence of an error condition in
response to an original request from the associated RA.

errorEvent
()

notification Asynch The errorEvent notification is raised when a fault is
detected. The message includes attributes that describe

the exception and includes the identifier of the NSA
generating the exception and the error identifier for each
known fault type.

reserveTimeout
()

notification Asynch The reserveTimeout notification is sent to the RA that
issued the original commit request to notify the RA that a

request timeout has occurred at a PA.

dataPlaneStateChange
(dataPlaneStateChange.nt)

notification Asynch The dataPlaneStateChange notification is sent to the RA
that issued the original reserve request when the data

plane status has changed. Possible data plane status
changes are: activation, deactivation and activation

GFD-R-P.212
NSI-WG 13 May 2014

 10

version change.

messageDeliveryTimeout

()

notification Asynch The messageDeliveryTimeout notification is sent to the

RA that issued the original request message when the
delivery of a request message has timed out.

queryNotificationConfirmed
()

query Asynch The queryNotificationConfirmed message is sent to the
RA that issued the original request as an indication of a
successful operation in response to a queryNotification

request. This response includes the summary data
requested.

queryNotificationSyncConfirme
d
()

query Synch The queryNotificationSyncConfirmed message is sent to
the RA that issued the original request as an indication
of a successful operation in response to a

queryNotificationSync request. This response includes
the summary data requested.

queryResultConfirmed
()

query Asynch The queryResultConfirmed message is sent to the RA
that issued the original request as an indication of a
successful operation in response to a queryResult

request. This response includes the summary data
requested.

queryResultSyncConfirmed
()

query Synch The queryResultSyncConfirmed message is sent to the
RA that issued the original request as an indication of a
successful operation in response to a queryResultSync

request. This response includes the summary data
requested.

Table 3 – PA to RA Connection Service messages

4.2 Optional release/provision/modify functionality
The release/provision/modify functionality is optionally supported in a PA. To ensure correct
transitions of the statemachine, all transitions MUST be carried out as defined in the NSI
statemachines regardless of whether the release/provision actions are actually performed.

 Release: If a PA does not support the provision/release cycle on an existing reservation,
then the PA MUST spoof a releaseConfirm in response to a release request. i.e. a

response is returned even though there has been no data-plane affecting changes.

 Provision: PA MUST operate the first provision correctly. If a PA does not support the
provision/release cycle on an existing reservation, then the PA MUST spoof a
provisionConfirm in response to a provision request. I.e a response is returned even

though there has been no data-plane affecting changes.

 Modify. If the modify functionality is not supported by a PA, then a reservedFailed message
MUST be returned with a ‘not implemented’ error when an attempt is made to modify an
existing reservation. When an RA receives a ‘not implemented’ error, this is a considered a
reserve fail event. When the Agg receives a ‘not implemented’ error, this is forwarded up
the tree.

4.3 NSI state machines
The behavior of the NSI CS protocol is modeled in two ways: with state machines and with
behavioral description of the coordinator function. In total there are three state machines, the
Reservation State Machine (RSM), the Provision State Machine (PSM) and the Lifecycle State
Machine (LSM). The state machines explicitly regulate the sequence in which messages are
processed. The CS messages are each assigned to one of the three state machines: RSM, PSM
and LSM.

When the first reserve request for a new Connection is received, the Coordinator MUST coordinate

the creation of the RSM, PSM and LSM state machines for that specific connection. For details of
the coordinator funcitons see section 6.

The RSM and LSM MUST be instantiated as soon as the first Connection request is received.

The PSM MUST be instantiated as soon as the first version of the reservation is committed.

GFD-R-P.212
NSI-WG 13 May 2014

 11

The following symbols and abbreviations are used in the state machine diagrams.

Abbreviation/symbol Meaning

Rsv Reserve

Prov Provision

Rel Release

Nt Notification

Term Terminate

Rq Request

Cf Confirmed

Fl Failed

> Downstream input/output

< Upstream input/output

Table 4 – Abbreviations and symbols used in state machine diagrams

The text boxes show the messages associated with transitions between states. These are color
coded as follows:

Red: an input event that is an NSI message – this may be from either a parent or a child
NSA.

Blue: an output event that is an NSI message – this is directed towards either a parent or a
child NSA.

Appendix A provides a formal statement of the transitions that are allowed in the three state
machines.

4.3.1 Reservation State Machine

The sequence of operations related to RSM messages MUST conform to the Reservation State
Machine shown in Figure 3. The abbreviated forms of the messages and explanations of each
message are provided in Table 2 and Table 3.

GFD-R-P.212
NSI-WG 13 May 2014

 12

Figure 3: Reservation State Machine

An NSI reservation is created using a two-phase commit process. In the first phase (reserve) the

availability of the requested resources is checked; if the resources are available they are held. In
the second phase (commit) the requester has the choice to either commit or abort the reservation

that was held in the first phase.

If a requester fails to commit a held reservation after a certain period of time, the provider times out
the reservation and the held resources are released. The reserveTimeout state is only
implemented where the ultimate Provider Agent functionality is present.

Modification of a reservation is supported in NSI CS v2.0. The reserve request message is used for

both the initial reservation and subsequent modifications. A version number is specified in the
reservation request message. The number is an integer and should be monotonically increasing
with each subsequent modification. The version number is updated after a commit results in a
transition back to the ReserveStart state. A query will return the currently committed reservation
version number, however, if the initial version of the reservation has not yet been committed, the
query will return base reservation information (connectionId, globalReservationId, description,
requesterNSA, and connectionStates) with no versioned reservation criteria. Details of how the

version number should be managed can be found in Section 6.1.6.

Modification of start-time, end-time, and service specific parameters are all supported.

GFD-R-P.212
NSI-WG 13 May 2014

 13

4.3.2 Provisioning State Machine

The sequence of operations related to PSM messages MUST conform to the Provision State
Machine shown in Figure 3.

Figure 4: Provision State Machine

The Provision State Machine transits between the Provisioned and the Released stable states,
through intermediate transition states. An instance of the PSM is created when an initial reservation
is committed, and at that time it starts in the Released state. The PSM transits states independent
of the state of the RSM. Note that the transition to the Provisioned state is necessary but on its own
is not sufficient to activate the data plane. The Connection in the data plane is active if and only if
the PSM is in the Provisioned state AND the start time < current time < end time. See section 4.5
for details of the provisioning and activation.

The PSM is designed to allow a Connection to be repeatedly provisioned and released.

4.3.3 Lifecycle State Machine

The sequence of operations related to LSM messages MUST conform to the Lifecycle State
Machine shown in Figure 5.

GFD-R-P.212
NSI-WG 13 May 2014

 14

Figure 5: Lifecycle State Machine

The LSM processes terminate and terminateConfirmed messages. When an errorEvent of type
ForcedEnd is received/sent, the LSM transitions from the Created to the Failed state. When current
time > end time for the reservation the LSM can be transitioned from Created to the Passed
EndTime state. The LSM can only transition into the Terminated stable state through the exchange
of terminate and terminateConfirmed messages.

4.4 Data Plane Activation
Figure 6 below shows the conditions that MUST be met for data plane activation.

GFD-R-P.212
NSI-WG 13 May 2014

 15

Figure 6: Data Plane activation condition

The Connection can be restored autonomously by the uPA after a failure condition as long as the
PSM is in the Provisioned state and current time is between startTime and endTime.
The activation/deactivation of the Data Plane MUST be notified using the DataPlaneStateChange
notification message. Errors MUST be notified using the generic errorEvent message with the

following events:

 activateFailed: Activation failed at the time when uPA attempted to activate its data plane.

 deactivateFailed: Deactivation failed at the time when uPA attempted to deactivate its data

plane.

 dataplaneError: On the data plane, the Connection has deactivated unexpectedly. This
error condition may be recoverable.

 forcedEnd: Something unrecoverable has happened in the uPA/NRM.

4.5 Provisioning Sequence
Both automatic and manual provisioning modes MUST be supported. Figure 7 and Figure 8 below
show two examples of how message primitives are used to provision and consequently activate a
Connection.

Either automatic or manual activation will occur when the conditions described in Figure 6 are met.

In the automatic provisioning mode, the provision request message is sent from the RA to the PA
before the startTime, and the data plane Connection is activated at the startTime. If a provision
request message is sent after the startTime, the data plane Connection is activated when the
provisionRequest is received by the uPA - this sequence is referred to as manual provisioning.

If the uRA wishes to activate the data plane Connection as soon as possible, the uRA should leave
the startTime blank, which indicates immediate start, and issue a provisionRequest message

immediately after the reservation is committed. This behavior can be considered as an on-demand
mode of provisioning. If the endTime is left blank then this is considered to be a request for a

permanent Connection.

GFD-R-P.212
NSI-WG 13 May 2014

 16

Figure 7: Automatic Provisioning and Manual Provisioning

A Connection can be repeatedly provisioned and released by provision request messages and
release request messages, as shown in Figure 8.

Figure 8: Release and Provisioning

Start timeprovision.rq

ProvisionConfirm

terminate

terminateConfirm

RA PA

In
 s

e
rv

ic
e

R
e

se
rv

e
d

Start time

provision

provisionConfirm

RA PA

In
 s

e
rv

ic
e

R
e

se
rv

e
d

Manual ProvisioningAutomatic Provisioning

End time

End time

Start time

provision

provisionConfirm

release

releaseConfirm

provision

provisionConfirm

RA PA

In
 s

e
rv

ic
e

In
 s

e
rv

ic
e

R
e

se
rv

e
d

Automatic Provisioning

End time

Start timeprovision

provisionConfirm

release

releaseConfirm

provision

provisionConfirm

terminate

terminateConfirm

RA PA

In
 s

e
rv

ic
e

In
 s

e
rv

ic
e

R
e

se
rv

e
d

Manual Provisioning

End time

GFD-R-P.212
NSI-WG 13 May 2014

 17

4.6 Guardbands
There may be a delay between the requested in-service start time and the activation of the data
plane. So that the RA knows that the data-plane has actually changed state, a state change
notification is defined. The dataPlaneStateChange notification is sent to the RA that issued the
original reserve request when the data-plane status has changed. Possible data-plane status
changes are: activation, deactivation and activation version change.

Start Time. The start time is the earliest that the activation can occur. There may be a delay in

completing the activation depending on the time taken by the NRM to perform the activation.
In the situation where the RA wishes to ensure that the activation has completed at a guaranteed
point in time, it is the responsibility of the RA to add a guard band as they see fit to the start time.
The RA is responsible for choosing an appropriate guard time based on their knowledge of the
expected provisioning delay at t.he target NRM.

End Time. The end time is the earliest that the deactivation can occur. There may be a delay in

completing this action depending on the time taken by the NRM to complete the deactivation.
In the situation where the RA wishes to ensure that the deactivation has eit her started before or
completed after at a guaranteed point in time, it is the responsibility of the RA to add a guard band
as they see fit to the end time. The RA is responsible for choosing an appropriate guard time based
on their knowledge of the expected deactivation delay at the target NRM.

5. NSI Message Transport and Sync/Async messaging

5.1 Asynchronous Messaging
This section describes the messaging interaction models utilized within an NSI CS implementation.

Inherent to the NSI architecture is the need to support long duration operations such as complex
reservation requests across multiple domains. This requirement means that a synchronous
protocol solution would not be suitable for NSI. For this reason the NSI CS supports an
asynchronous messaging protocol that allows for indeterminate response times.

The HTTP/SOAP binding as defined in W3C standards is a synchronous request/response
interaction model. To help realize the NSI CS as an asynchronous protocol within the context of the
synchronous HTTP/SOAP binding, NSI defines an asynchronous callback mechanism permitting
unblocking of the CS operation request from the CS confirmed and failed response messages.

As an alternative to introducing the complex WS-Addressing specification, NSI CS defines a simple
mechanism that permits an RA to provide a replyTo URL within the NSI header of the operation

request message. This URL is a SOAP endpoint that the RA exposes to the PA to receive
confirmed, failed, error, and notification messages. When the PA has completed processing of the
operation request, it will invoke the URL provided in the replyTo field and deliver the resulting

confirmed, failed, or error message to the RA’s SOAP endpoint.

Figure 9 shows the basic asynchronous NSI request/reply model. In this case the NSI CS request
message is issued from an RA to a PA. If the request is successfully delivered to the PA the MTL
layer MUST send an ACK response message immediately after receiving the request to
acknowledge to the RA that the request has been accepted by the Coordinator for processing. If an
error is detected at this stage, a serviceException is returned. The RA will block until either the

request’s response is received, or an exception is returned. This blocking operation is expected to
be extremely short lived as the PA is only acknowledging the acceptance of the request for
processing. The MTL MUST provide the ACK response message to the NSA Coordinator.

For the HTTP/SOAP binding the following generic behavior SHOULD be observed for
asynchronous messaging:

GFD-R-P.212
NSI-WG 13 May 2014

 18

 The HTTP POST request carries the NSI CS operation request with the replyTo header
element set to the RA’s callback SOAP endpoint.

 The HTTP 200 OK response carries either an acknowledgement or a serviceException.

 The HTTP socket on the RA blocks until the response is returned (Standard HTTP
synchronous behaviour).

Sometime later, the PA will have assembled the data requested or determined that the request
cannot be satisfied. At this point the PA will make the asynchronous delivery of the reply message
back to the RA, as show in the lower half of Figure 9. If the request is successfully delivered to the
RA the MTL layer MUST send an ACK response message immediately after receiving the reply to
acknowledge to the PA that the confirmed or failed message has been accepted by the Coordinator
for processing. If an error is detected at this stage, a serviceException is returned. The PA MUST
maintain the repyTo endpoint value specified in the original operation request until it has delivered a

confirmed or failed message back to the RA. The MTL MUST provide the ACK response message
to the NSA Coordinator.

For the HTTP/SOAP binding the following generic behavior SHOULD be observed:

 The HTTP POST request carries the NSI CS reply.

 The HTTP 200 OK response carries an acknowledgement indicating successfully delivery
of the confirmed message, or a serviceException in the case of a processing failure

 The HTTP socket on the PA blocks until the response is returned (Standard HTTP
synchronous behaviour).

Figure 9: Asynchronous messages and MTL and Coordinator functions.

The asynchronous NSI reserve request has some special aspects:

 Instead of the MTL layer sending the generic ACK response message a specific
reserveResponse message MUST be sent. This message contains the connectionId which

is assigned by the PA and thus the MTL MUST obtain this from the PA NSA.

GFD-R-P.212
NSI-WG 13 May 2014

 19

 In this version of the NSI CS protocol the PA MUST retain the “repyTo” field supplied in the
reserve request for the duration of the reservation. This “repyTo” field SHOULD be used for

the notification messages. All other “replyTo” values can be discarded after the confirmed
or failed has been delivered to the RA.

Although most NSA deployments will support the described protocol interactions, there are
situations where an RA will not be able to participate in the described HTTP/SOAP asynchronous
messaging interaction. An example is where a firewall has been deployed between peering NSA.
See Appendix C for a discussion of this firewall issue.

The next section describes NSI CS extensions to support a synchronous messaging model required
for RAs that are behind a firewall and are not capable of meeting the public accessibility
requirements.

5.2 Synchronous Messaging
Figure 10 shows the operation of a synchronous message; an NSI CS request message is issued
from the RA, transmitted and received by the MTL layers and passed to the PA for processing.
When the PA has collected the required information, or determined that the request cannot be
satisfied, this information is sent back to the RA. The RA blocks until the response is returned, and
there are no ACK messages involved.

For the HTTP/SOAP binding the following generic behavior SHOULD be observed:

 The HTTP POST request carries the NSI CS operation request with the replyTo header
element absent.

 The HTTP 200 OK response carries either the requested data or a serviceException.

 The HTTP socket on the RA blocks until the response is returned (Standard HTTP
synchronous behaviour).

Figure 10: Synchronous messages and MTL and Coordinator functions.

GFD-R-P.212
NSI-WG 13 May 2014

 20

Most NSI messages operate in the asynchronous mode only, however, some messages also
support a synchronous mode of operation. This removes the need for asynchronous callbacks for
a requester-only NSA. This simple mechanism utilizes the basic CS operation request messages in
combination with synchronous version of the query messaged to provide a functional polling
solution removing the need for asynchronous callbacks. This has been added specifically to help
address the firewall issue described in the appendix.

As indicated in Figure 10 the synchronous messaging model relies on the mechanisms described
below to remove the need for asynchronous callbacks, and permit a firewall safe RA
implementation:

1. The RA MUST inform the PA that it is not interested in receiving asynchronous callbacks by
not specifying a replyTo address in the NSI header of the CS operation request.

2. If the request is successfully delivered to the PA the MTL layer MUST send an ACK
response message immediately after receiving the request to acknowledge to the RA that
the request has been accepted by the Coordinator for processing.

3. Note: The reserve operation returns the PA allocated connectionId for the reservation in the
synchronous reserveResponse message (this is distinct from the reserveConfirmed and
reserveFailed asynchronous messages).

4. The PA will perform the requested operation, but MUST NOT send a confirmed/failed/error
message back to the RA.

5. The RA SHOULD use the querySummarySync operation to synchronously retrieve
reservation information based on the connectionId, monitoring the state machine transitions

to determine progress and result of operation. Alternatively, the queryResultSync operation
can be used to retrieve any operation result messaged (confirmed, failed, error) generated
against the connectionId.

6. Notifications generated against a connectionId are identified in the reservation query result,
and SHOULD be retrieved using the queryNotificationSync operation.

GFD-R-P.212
NSI-WG 13 May 2014

 21

Figure 11: Asynchronous request with synchronous retrieval of the information.

As the MTL defines only basic message transport capabilities, the NSA requires more intelligent
message and process coordination to function. These capabilities are defined in a logical entity
called the coordinator. Even though both the MTL and Coordinator are part of the NSA, the
Coordinator is integral to the NSI Stack, whereas the MTL is functionally distinct and can be readily
substituted.

5.3 Message format and handling

5.3.1 Standard Compliance

The NSI CS protocol is specified using WSDL 1.1 and utilizes the SOAP 1.1 message encoding as
identified by the namespaces:

 soap - "http://schemas.xmlsoap.org/soap/envelope/"

 xsi - "http://www.w3.org/2001/XMLSchema-instance"

 xsd - "http://www.w3.org/2001/XMLSchema"

 soapenc - "http://schemas.xmlsoap.org/soap/encoding/"

 wsdl - "http://schemas.xmlsoap.org/wsdl/"

 soapbind - "http://schemas.xmlsoap.org/wsdl/soap/"

The specific NSI CS operation being invoked is identified by the NSI-CS element carried in the
SOAP message body. In addition, the the operation is uniquely identified using the “Soapaction:”

GFD-R-P.212
NSI-WG 13 May 2014

 22

element in the HTTP header as per section 6.1.1 of “Simple Object Access Protocol (SOAP) 1.1”
found at http://www.w3.org/TR/SOAP. This allows for better compatibility between SOAP
implementations even though it is not explicitly required as per WS-I Basic Profile 1.1
http://www.ws-i.org/Profiles/BasicProfile-1.1-2006-04-10.html.

5.3.2 Message checks

Additional error condition handling: Received messages must pass the following set of checks in
order to be considered valid and handed on to the relevant state machine, otherwise a message
transport layer fault will be returned:

 HTTP authentication – if the message does not have valid credentials it will be rejected with
an HTTP 40x message.

 correlationId - needed for any acknowledgment, confirmed, failed, or error message to be
returned to the requesterNSA. MUST be unique within the context of the providerNSA

otherwise the request cannot be accepted. See Section 6.1.2 for a description of
correlationIds.

 replyTo - the confirmed, failed, or error message will be sent back to this location. The
contents of the endpoint do not need to be validated, the PA SOULD check the presence
of data in the replyTo field. The replyTo field may left empty to indicate the need to

synchronous operation.

 Reservation – if the reservation parameters are not present then the message is rejected.

 requesterNSA and providerNSA – MUST be present for processing to proceed. The
providerNSA must resolve to an NSnetwork in topology. Also, the providerNSA MUST be
the NSnetwork that the NSA is managing or the message will be rejected.

 connectionId – this is used as the primary reference attribute for Reservation state
machines and MUST be present. If the message is for the first reserve request then the
connectionId is left empty and SHOULD be assigned by the providerNSA.

 If any of these fields are missing or invalid the NSA will return a message transport fault
containing the NSIServiceException set to an appropriate error message. Typically this will

be MISSING_PARAMETER - "00101", "Invalid or missing parameter" for this generic case
and specify attributes identifying the parameter in question. In some cases lower layer
errors may mean that it is not possible to send an NSIServiceException, in this case a

SOAP exception is appropriate.

5.3.3 ACK handling

Delays on the transport layer can result in ACK arriving after the confirmed/failed message. The
following guidelines are recommended for handling web-service ACKs:

1. For protocol robustness, the NSA SHOULD accept any confirmed/failed messages even if
these are received out-of-order with respect to the ACK, i.e. before the associate ACK has
been received.

2. The receipt of a confirmed/failed message cancels out the need to receive an ACK. So the
NSA should not only continue to process the confirmed/failed message, but not gate on or
wait for the ACK, i.e. consequent-messages may be sent without waiting on the receipt of
the ACK.

3. As a best practice the NSA SHOULD send the ACK before sending the associated
confirmed/failed message.

4. TCP will take care of ACK retransmission in case of a packet loss.
5. If the message transport layer is unable to transmit packets, the ACKs will eventually

timeout and generate a message transport error that the NSA will need to handle.

6. NSI Process Coordination

6.1 The Coordinator

GFD-R-P.212
NSI-WG 13 May 2014

 23

The Message coordinator forms a normative part of the NSI CS protocol and MUST be
implemented.

The Message coordinator has the following roles:

 To coordinate, track, and aggregate (if necessary) message requests, replies, and
notifications

 To process or forward notifications as necessary

 To service query requests

6.1.1 Communications

Reliable communications are essential to the reliable operation of the NSI. As the MTL provides
only basic message transport capabilities, it is the responsibility of the Coordinator to keep track of
message states and make decisions accordingly. To do this, the Coordinator MUST maintain the
following information on a per NSI request message basis:

 Whom was the (NSI request) message sent to?

 Was the message received (i.e. ack’ed) or not (i.e. MTL timeout)?

 Which NSA has sent back an NSI reply (e.g. confirmed, failed, error) for the initial NSI
request?

6.1.2 Per Request Information Elements

For each NSI request/reply interaction, the Coordinator maintains several pieces of information that
are associated with those messages. This is particularly important for the Aggregator NSAs (AG)
that MUST keep track of the message status for each of its children in the request workflow. The
information that MUST be retained includes:

 NSA IDs: A list of NSA that the messages were sent to.

 Connection ID: The name that uniquely identifies the connection request/reservation (see
“ogf_nsi_connection_types_v2_0.xsd” for more detail).

 Correlation ID: The label that identifies messages associated to a unique NSI request/reply
interaction. This is used to associate NSI replies to requests, and also to identify messages
for re-delivery (i.e. message retries).

 Message status: This provides the message state for each of the NSI requests sent to the
various NSAs to reflect the current status, such as; MTL sent, MTL receipt acknowledged,
MTL timeout, and Coordinator timeout.

In addition to the detailed information of the status for each child NSA, NSI request (see
“request_segment_list(Conn_ID, NSA)” in Figure 13.), the Coordinator MUST also maintain an
aggregate message status indicating if the messages were delivered successfully to all the children
(see “request_list(Conn_ID)” in Figure 13.).

6.1.3 Correlation Ids and Failure Recovery

In NSI CS, there is no inherent expectation that any interim NSAs (i.e not the uRAs) make a
decision and take action when they receive a message delivery failure notification. Any Aggregator
(AG) that receives the delivery failure notification MUST forward it up the workflow tree. When an
AG forwards a notification event up the tree, it SHOULD retain the information concerning the
original failure, such as nsaId, connectionId, and error information. There may be cases where local

policy prevents this, in which case the information can be removed or altered.

On receiving the message delivery failure notification, the uRA has two choices:

1. Terminate the reservation; this is done by sending down a terminate request through the

workflow tree.

GFD-R-P.212
NSI-WG 13 May 2014

 24

2. Request redelivery of the original message; this is done by resending down the original
message through the workflow tree. Requesting message redelivery is allowed for all
message types.

When the original message is resent down the workflow tree, it will contain the original correlationId.

AGs receiving the duplicate request should only attempt redelivery of the message to children that it
did not receive an acknowledgement for (i.e. MTL timeout) or reply to the original message (i.e.
Coordinator timeout). If the message sent with the original correlationId does not match the original

message (e.g. different message parameters/content), the message is rejected and an error
returned.

The RA MUST leave the connectionId field empty in the initial reservation request.

The workflow in case of resend is shown in Figure 12:

1. NSA-1 (uRA) makes request to NSA-2 (AG) with correlation ID (CorrID) “uRA-1”
2. NSA-2 forward the request to NSA-3 (uPA) with CorrID “AG-1”
3. NSA-2 forward the request to NSA-4 (uPA) with CorrID “AG-2”
4. NSA-3 replies to the request with the corresponding CorrID “AG-1”
5. NSA-2 does not receive a reply from NSA-4, which flags either an MTL timeout (no ACK),

or a Coordiinator timeout (no reply)
6. NSA-2 returns an MTL/Coor Timeout error to NSA-1 with the corresponding CorrID “uRA-1”

of the initial request
7. NSA-1 decides to resend the initial request for redelivery, which contains the original CorrID

“uRA-1” As long as the message transaction remains incomplete all partial messages
SHOULD be retained.

8. NSA-2 resends the message to NSA-4 (the only child that was non-responsive) with an
initial CorrID “AG-2”

9. NSA-4 replies to the request with the corresponding CorrID “AG-2”
10. NSA-2 aggregates the replies from NSA-3 and NSA-4, and sends the aggregated replyto

NSA-1 with the corresponding CorrID “uRA-1”

*NB: If NSA-4 did not receive the initial request from NSA-2 (CorrID = AG-2), NSA-4 will process
the request accordingly and return a reply (corrID = AG-2). However if NSA-4 did send a reply to
the initial request from NSA-2, but this was not received by NSA-2, then, when NSA-4 receives the
“duplicate” request from NSA-2 (CorrID = AG-2), it can simply return the initial reply message
(CorrID = AG-2) and not re-process the duplicate request.

GFD-R-P.212
NSI-WG 13 May 2014

 25

Figure 12: workflow when attempting a message re-send.

6.1.4 Information maintained by the Coordinator

While per request information (see Section 6.1.2 Per Request Information Elements) will only
persist for the duration of the NSI request/reply interaction, the Coordinator MUST also store
information associated with the entire reservation.

GFD-R-P.212
NSI-WG 13 May 2014

 26

Figure 13: Information maintained by Coordinator for each Connection Reservation and NSI
Request

6.1.5 Per Reservation Information Elements

To support the query function in NSI CS v2.0, an AG Coordinator MUST track the current state (i.e.
RSM, PSM, LSM) of all its children as well as the condition of the data plane status. This
information is persistent but updated over the lifetime of the reservation (see
“connection_segment_list(Conn_ID, NSA)” in Figure 13).

 NSAs: A list of the nsaId that are part of the connection request workflow tree.

 Connection IDs: The connectionId associated with each NSA in the workflow tree.

 Source and Destination STPs: The sourceSTP and destSTP of each Connection segment
that composes the end-to-end Connection.

 Reservation Parameters: A list of reservation parameters (e.g. startTime, endTime
capacity, etc.) associated with each NSA segment

 RSM States: State of children’s Reservation State Machine and current committed
reservation version number

 PSM States: State of children’s Provision State Machine

 LSM States: State of Children’s Lifecycle State Machine

 Data plane states: The status of the children’s data plane (i.e. active/not active), the version
of the reservation instantiated in the data plane if it is active (see Sections 6.1.6 and 6.1.7
for more details), and if the version is consistent.

6.1.6 Reservation Versioning Information

To support the modification of reservations, the notion of versioning has been introduced to identify
the instance of a reservation over its lifetime. Versioning MUST be used as follows:

 Version numbers are integer values ≥ 0 (zero)

 Version numbers are assigned by the RA when a reservation request (i.e. NSI_rsv.rq) is
made to a PA

GFD-R-P.212
NSI-WG 13 May 2014

 27

 If a version number is not specified in an NSI_rsv.rq, it is assumed to be 0 (zero) regardless
of whether the request is theinitial or a subsequentrequest.

 An NSI_rsv.rq with a version number ≤ the (highest) current committed reservation version
number will result in a failed request and an appropriate error

 A uPA MUST keep track of
o Version number of currently committed reservation
o Version number of pending modification request (if any)
o Version number of reservation instantiated in the data plane by the NRM

 An Aggregator MUST keep track of
o Version numbers of currently committed reservations in each child segment
o Version number of pending modification request (only one modify can be

outstanding at any time)
o Version numbers of reservations instantiated in the data plane in each child

segment (see Section 6.1.7 Data Plane Status Information)

 If a reservation request attempt fails, or a held initial reservation is aborted and the RSM is
in the ReserveStart state, then no version number will be returned.

 Version numbers of failed (e.g. timed-out) or aborted modifications are not stored, and
therefore can be reused. For example:

1. Successful initial NSI_req.rq(ver = 2) results in Reservation(v2)
2. Successful modify NSI_req.rq(ver = 5) results in Reservation(v5)
3. Failed modify NSI_req.rq(ver = 6) retains Reservation(v5)
4. Subsequent successful modify NSI_req.rq(ver = 6) results in Reservation(v6)

 Versions numbers of failed reservations can be re-used as long as they are numerically
higher than the currently committed reservation number

6.1.7 Data Plane Status Information

To reflect the state of the data plane, a Coordinator MUST maintain three flags:

 Active (boolean): To indicate whether the data plane of that Connection is active (in-service
or out-of-service)
o uPA:

 True => data plane is active

 False => data plane is not active
o AG:

 True => all children’s data planes are active

 False => one or more children’s data plane is not active

 Version (int): The version of the committed reservation instantiated in the data plane. NB:
This field is only valid when “Activate” is true.
o uPA: Version number of the committed reservation
o AG: Largest version number of the committed reservation among the children

 VersionConsistent (boolean): Reflects if the “Version” numbers are consistent
o uPA: This is always True
o AG:

 True => all children’s “Version” numbers are the same
 False => all children’s “Version” numbers are not the same

When there is a change in the data plane status (i.e. uPA is notified by its NRM, or AG notified by
one or more of its children), the Coordinator MUST send up the workflow tree a
DataPlaneStateChange notification with the updated Activate, Version, and VersionConsistent

values.

For the AG, reporting the aggregate data plane state of its children requires some processing. The
following pseudo-code describes this behavior:

if all of ChildrenDataPlaneStatus[1..n].Active are true then
{
 DataPlaneStatus.Active = true

GFD-R-P.212
NSI-WG 13 May 2014

 28

}
else {
 DataPlaneStatus.Active = false
}
DataPlaneStatus.Version = maximum(ChildrenDataPlaneStatus[1..n].Version)
If all ChildrenDataPlaneStatus[1..n].Version are the same, and
 all of ChildrenDataPlaneStatus[1..n].VersionCosistent are true then
{
 DataPlaneStatus.VersionConsistent = true
}
else
{
 DataPlaneStatus.VersionConsistent = false
}

If the new state of an aggregated data plane is the same as the previous aggregated state, the
aggregator does not need to send up a dataPlaneStatus notification message. In case the

aggregated data plane status has changed, the aggregator MUST send up a notification.

The uRA and AG MUST accept dataPlaneStateChange notifications associated with a reservation

even if they arrive before StartTime. The reaon is that in case there is clock timing issues within
network notifications will not be lost.

7. Service Definitions

7.1 Context
In NSI CS version 1.x only unidirectional and bidirectional point-to-point services were offered as
part of the protocol. This limitation meant that new service types could not be added without
changing the NSI CS schema. This limitation has been removed in NSI CS version 2.0.

Service Definitions are introduced as a mechanism that adds flexibility in the protocol by decoupling
the parts of the NSI CS schema used for requesting and provisioning a Connection (the NSI CS
base schema) from the schema that describes the requested service and its associated parameters
(the service specific schema and Service Definition). This decoupling makes it possible for network
providers to define new multi-domain services without modifying the base NSI CS protocol.

7.2 Service Definitions
The Service Definition instance describes the requestable elements associated with a specific inter-
Network service, such as Connection capacity and endpoints. The Service Definition (SD) is an
XML document that includes:

 Service-specific schema: References to the service-specific schemas associated with the

NSI CS reservation request.

 Service parameters: A specification of parameters from the service specific schema such
as connection startTime, endTime, ingress STP, egress STP, capacity, and any restrictions

on these values.

 The SD also describes attributes of the service that are not specified in the reservation

request but describe features of the service being offered.

 The SD describes service-specific errors and their meanings.

These requestable elements include metadata such as information about their optionality,
modifiability, and the range of allowed values for each.

The SD becomes the definitive source of type (via service-specific schema), and units/range
definitions for the service. If a service-specific parameter is to be included in a Connection request it
MUST also be present in the associated Service Definition. Only parameters that are in the base
schema or the nominated Service Definition can be included in a Connection request.

GFD-R-P.212
NSI-WG 13 May 2014

 29

The SD does not explicitly state which STP labels must be present in a reserveRequest message

for it to be valid for a particular SD. This is necessary since the STP may be opaque (in the case
where there is no label) and it will not be possible to interpret whether the STP refers to port, VLAN
or something else entirely.

7.3 Using Service Definitions
The requesting agent should select an appropriate SD for their service request. The SD should
describe the service that is needed and be available at all of the NSAs participating in the service –
otherwise the request will fail. The Provider Agent interprets the incoming Connection request by
inspecting the serviceType field and uses this to fetch the SD and then interpret the service-specific

elements within the request. The elements of this workflow are described next.

7.3.1 Providers agree on a common multi-domain service

The aim of the Service Definition is to allow a federation of network providers to collaborate to
define their own service. First the providers have to agree on the inter-Network service that they
wish to offer. This implies that the participating providers must agree to honor a minimum level of
service functionality in accordance with this agreement. This will ensure that any provider issuing a
Connection request in the service area can be confident that the request will be delivered as long
as sufficient network capacity is available.

Once the service is agreed, the network providers can either use a pre-defined Service Definition
template or build a new Service Definition.

7.3.2 Building an XML Service Definition instance

In many situations it is expected that one of the pre-defined set of SDs (such as the P2P Ethernet
VLAN Transfer Service) will be suitable for describing a new service. Where a new service is not
fully described by an existing SD, then the providers who have developed the new service will
develop a new SD to describe the details of the service, ensuring that all requestable parameters
are included and fully defined.

The following figure shows diagrammatically how a SD is developed. The SD is built up by
incorporating parameters and attributes from a range of source documents.

Figure 14: Building a Service Definition

The XML SD instance is built up by incorporating the following elements:

GFD-R-P.212
NSI-WG 13 May 2014

 30

 Parameters from the NSI CS schema (e.g. startTime, endTime)

 Parameters from the service-specific schema (describes common service-specific types)

 SLA attributes and technology specific attributes (e.g. monitoring, VLAN framing types)

 Service errors (i.e. service errors specific to the service type)

7.3.3 Using SDs to request a service instance

When creating a Connection request message, the elements included in the message will include
the CS base schema elements and elements from the appropriate SD. In the example shown
below, the specified serviceType uniquely identifies an SD instance document requiring that the

P2P service element (psp2) must be included in the reservation request. This p2ps element is
included as a service specific extension to the existing reservation, with service parameters
populated from the P2PServcieBaseType.

Figure 15: Creating a Connection request using the Service Definition

7.3.4 Interpreting an incoming request
The serviceType element relays the specific service type being requested in the reservation. This

service type string maps to a specific Service Definition template defined by the network providers
describing the type of service offered, parameters supported in a reservation request (mandatory
and optional), defaults for parameters if not specified (as well as maximums and minimums), and
other attributes relating to the service offering. The NSA in turn uses this information to determine
the specific service parameters carried in the criteria element required to specify the requested
service.

GFD-R-P.212
NSI-WG 13 May 2014

 31

Figure 16: Interpreting a Connection request using the Service Definition

When a reserveRequest arrives the following steps are followed:

1. Extract the serviceType value.

2. Fetch the Service Definition corresponding to the serviceType.

3. Extract the service specific elements from criteria as defined in the SD.

4. Use the Service Definition to validate that these parameters are allowed for this service and

process the service request using both the supplied service parameters and additional

information as needed from the Service Definition document.

7.4 Service Definitions and a Request workflow
The complete workflow for Connection requests is summarized here:

1. The RA enters the parameter values associated with the Connection into the

ConnectionRequest message, adding service-specific parameters to the

ConnectionRequest as specified in the SD. Service-specific parameters MUST match the

parameters in the SD.
2. The serviceType element in the ConnectionRequest message MUST identify the SD to

which the request is directed.

3. The first NSA to receive the ConnectionRequest will parse the request against the

nominated SD instance to validate the request.

4. Once validated, the ConnectionRequest will then be passed to the path computation

element.

5. A successful path computation will result in a Connection being scheduled.

6. If the Connection transits another Network, the new ConnectionRequest will use the same

SD as the one from the uRA (unless adaptation is performed resulting in a new Connection

type).

GFD-R-P.212
NSI-WG 13 May 2014

 32

8. XML Schema Definitions
The NSI CS v2.0 protocol makes use of an XML schema (XSD) to describe the common message
header and individual Connection Service operation elements and types. The Web Service
Description Language (WSDL) is used to describe the interface or operation bindings, capturing the
request, response, and error (fault) interactions. Finally, the WSDL is used to provide a SOAP
specific transport binding as a reference specification; however, the XML schema definitions can be
utilized to encapsulate the NCI CS protocol into other transport bindings. This section provides a
detailed overview of the NSI CS XML schema definitions.

The following namespaces are defined as part of the NSI CS 2.0 protocol:

Description Namespace URL

Common types shared between NSI message
header and CS operation definitions.

http://schemas.ogf.org/nsi/2013/12/framework/types

NSI message header definition. http://schemas.ogf.org/nsi/2013/12/framework/headers

NSI CS operation-specific type definitions. http://schemas.ogf.org/nsi/2013/12/connection/types

NSI CS operation definitions http://schemas.ogf.org/nsi/2013/12connection/interface

PA interface SOAP binding http://schemas.ogf.org/nsi/2013/12/connection/provider

RA interface SOAP binding http://schemas.ogf.org/nsi/2013/12/connection/requester

Table 5 – XML namespaces for NSI CS 2.0

8.1 NSI CS Versioning
The common way of version SOAP and XSD is by using XML namespaces. Each of the WSDL and
XSD schema files defined as part of the NSI CS protocol are identified through their designated
namespace URL (for example, http://schemas.ogf.org/nsi/2013/12/framework/headers for the NSI
framework header definition). This versioning mechanism is vital for ensuring end-to-end syntax
consistency for message exchange; however, these namespaces do not identify specific behavioral
aspects of the protocol. To solve this NSI v2.0 has introduced a protocol version field within the NSI
header to convey both the syntactic and behavior version of the protocol. This allows additional
versions to be defined that can change behavior aspects without upgrading the base WSDL or XSD
definitions.

Versioning within the NSI suite of protocols utilizes Internet Assigned Numbers Authority (IANA)
MIME Media Types as a standard mechanism for distinguishing between releases of each protocol.
The current NSI CS 2.0 profile utilizes SOAP over HTTP as a transport that has a standard MIME
Media Type of “application/soap+xml”. We have created a custom Media Type for the NSI CS 2.0
SOAP profile to distinguish this protocol, however, it is only used in the protocolVersion field of the
SOAP header and not the Content-types field of the HTTP header that remains

“application/soap+xml”.

Table 6 below enumerates the MIME Media Types defined for each version of the protocol, and

the specific protocol interface role the NSA supports. These are the string values that will be
populated in the protocolVersion field of the NSI header for each message sent (see section 8.2).

Table 6 – NSI CS protocol version MIME Media Types.

Version Interface MIME Media Type

NSI CS version 1.0 Provider “application/vnd.ogf.nsi.cs.v1.provider+soap”

NSI CS version 1.0 Requester “application/vnd.ogf.nsi.cs.v1.requester+soap”

NSI CS version 1.1 Provider “application/vnd.ogf.nsi.cs.v1-1.provider+soap”

NSI CS version 1.1 Requester “application/vnd.ogf.nsi.cs.v1-1.requester+soap”

NSI CS version 2.0 Provider “application/vnd.ogf.nsi.cs.v2.provider+soap”

NSI CS version 2.0 Requester “application/vnd.ogf.nsi.cs.v2.requester+soap”

http://schemas.ogf.org/nsi/2013/12/framework/types
http://schemas.ogf.org/nsi/2013/12/framework/headers
http://schemas.ogf.org/nsi/2013/12/connection/types
http://schemas.ogf.org/nsi/2013/12connection/interface
http://schemas.ogf.org/nsi/2013/12/connection/provider
http://schemas.ogf.org/nsi/2013/12/connection/requester
http://schemas.ogf.org/nsi/2013/12/framework/headers

GFD-R-P.212
NSI-WG 13 May 2014

 33

8.2 nsiHeader element

Namespace definition: http://schemas.ogf.org/nsi/2013/12/framework/headers

The nsiHeader element contains attributes common to all NSI CS operations, and therefore, is sent

as part of every NSI CS message exchange. Attributes included in the header provide protocol
versioning, basic message routing for the protocol, and user security infrastructure. For the SOAP
protocol binding, the nsiHeader element is encapsulated in the SOAP header, while the NSI specific

operation is encapsulated in the SOAP body.

Figure 17 – nsiHeader structure.

Parameters

The nsiHeader has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

protocolVersion M A string identifying the specific protocol version carried in this NSI message.
The protocol version is modeled separately from the namespace of the
WSDL and XML schema to capture behavioral changes that cannot be

modeled in schema definition, and to avoid updating of the schema
namespace.

correlationId M An identifier provided by the requester used to correlate to an asynchronous
response from the responder. It is recommended that a Universally Unique
Identifier (UUID) URN as per IETF RFC 4122 be used as a globally unique

value.

requesterNSA M The NSA identifier for the NSA acting in the RA role for the specific NSI

operation.

providerNSA M The NSA identifier for the NSA acting in the PA role for the specific NSI
operation.

replyTo O The RA's SOAP endpoint address to which asynchronous messages

http://schemas.ogf.org/nsi/2013/12/framework/headers

GFD-R-P.212
NSI-WG 13 May 2014

 34

Table 7 nsiHeader parameters

The following table describes each message and its use of the individual header parameters. The
“Soapaction:” parameter identified in the last column of the table is carried in the HTTP request
attributes and not the NSI specific header.

associated with this operation request will be delivered. This is only
populated for the original operation request (reserve, provision, release,

terminate, and the query messages), and not for any additional messaging
associated with the operation. If no endpoint value is provided in an operation

request, then it is assumed the RA is not interested in a response and will
use alternative mechanism to determine the result (i.e. polling using query).

sessionSecurityAttributes O Security attributes associated with the end user's NSI session. This field can

be used to perform authentication, authorization, and policy enforcement of
end user requests. It is only provided in the operation request (reserve,

provision, release, terminate, and the query messages), and not for any
additional messaging associated with the operation.

any element and

anyAttribute

O Provides a flexible mechanism allowing additional elements in the protocol

header for exchange between two-peered NSA. Use of this element field is
beyond the current scope of this NSI specification, but may be used in the

future to extend the existing protocol without requiring a schema change.
Additionally, the field can be used between peered NSA to provide additional
context not covered in the existing specification, however, this is left up to

specific peering agreements.

 Header parameters

M = Mandatory
O = Optional

N/A = Not Applicable

p
ro

to
c
o

lV
e

rs
io

n

c
o

rr
e

la
ti
o

n
Id

re
q

u
e

s
te

rN
S

A

p
ro

v
id

e
rN

S
A

re
p

ly
T

o

s
e

s
s
io

n
S

e
c
u

ri
ty

A
tt
ri

b
u

te
s

o
th

e
r

S
o

a
p

a
c
ti
o

n

 reserve M M M M O O O M

 reserveResponse M M M M N/A N/A O N/A

 reserveConfirmed M M M M N/A O O M

 reserveConfirmedACK M M M M N/A N/A O N/A

 reserveFailed M M M M N/A O O M

 reserveFailedACK M M M M N/A N/A O N/A

 reserveCommit M M M M O O O M

 reserveCommitACK M M M M N/A N/A O N/A

 reserveCommitConfirmed M M M M N/A O O M

 reserveCommitConfirmedACK M M M M N/A N/A O N/A

 reserveCommitFailed M M M M N/A O O M

 reserveCommitFailedACK M M M M N/A N/A O N/A

 reserveAbort M M M M O O O M

 reserveAbortACK M M M M N/A N/A O N/A

 reserveAbortConfirmed M M M M N/A O O M

 reserveAbortConfirmedACK M M M M N/A N/A O N/A

 provision M M M M O O O M

 provisionACK M M M M N/A N/A O N/A

 provisionConfirmed M M M M N/A O O M

 provisionConfirmedACK M M M M N/A N/A O N/A

Messaging

Primitives

release M M M M O O O M

releaseACK M M M M N/A N/A O N/A

releaseConfirmed M M M M N/A O O M

releaseConfirmedACK M M M M N/A N/A O N/A

GFD-R-P.212
NSI-WG 13 May 2014

 35

Table 8 – NSI CS message use of header fields

8.2.1 sessionSecurityAttr Element
The sessionSecurityAttr element is defined using a standardized SAML AtttributeStatementType
imported from the SAML namespace urn:oasis:names:tc:SAML:2.0:assertion with an NSI specific
extension to add a string based attribute type and name. This allows for multiple sessionSecurityAttr

elements to be specified in the header, and each one identified for a specific use (for example,
supplying user credentials per NSA domain). The specific use of this element is out of the scope of
this document.
The expected (default) behaviour is that an NSA AG MUST pass any received session security
attributes on to all children, however, deployment specific behaviours may be introduced that
change this default behaviour.

 terminate M M M M O O O M

 terminateACK M M M M N/A N/A O N/A

 terminateConfirmed M M M M N/A O O M

 terminateConfirmedACK M M M M N/A N/A O N/A

 querySummary M M M M M O O M

 querySummaryACK M M M M N/A N/A O N/A

 querySummaryConfirmed M M M M N/A O O M

 querySummaryConfirmedACK M M M M N/A N/A O N/A

 queryRecursive M M M M M O O M

 queryRecursiveACK M M M M N/A N/A O N/A

 queryRecursiveConfirmed M M M M N/A O O M

 queryRecursiveConfirmedACK M M M M N/A N/A O N/A

 querySummarySync M M M M N/A O O M

 querySummarySyncConfirmed M M M M N/A N/A O M

 error M M M M N/A O O M

 errorACK M M M M N/A N/A O N/A

 errorEvent M M M M N/A O O M

 errorEventACK M M M M N/A N/A O N/A

 reserveTimeout M M M M N/A O O M

 reserveTimeoutACK M M M M N/A N/A O N/A

 dataPlaneStateChange M M M M N/A O O M

 dataPlaneStateChangeACK M M M M N/A N/A O N/A

 messageDeliveryTimeout M M M M N/A O O M

 messageDeliveryTimeoutACK M M M M N/A N/A O N/A

 queryNotification M M M M M O O M

 queryNotificationACK M M M M N/A N/A O N/A

 queryNotificationConfirmed M M M M N/A O O M

 queryNotificationConfirmedACK M M M M N/A N/A O N/A

 queryNotificationSync M M M M N/A O O M

 queryNotificationSyncConfimed M M M M N/A N/A O M

 queryNotificationSyncFailed N/A N/A N/A N/A N/A N/A N/A N/A

 queryResult M M M M M O O M

 queryResultACK M M M M N/A N/A O N/A

 queryResultConfirmed M M M M N/A O O M

 queryResultConfirmedACK M M M M N/A N/A O N/A

 queryResultSync M M M M N/A O O M

 queryResultSyncConfimed M M M M N/A N/A O M

GFD-R-P.212
NSI-WG 13 May 2014

 36

Figure 18 – sessionSecurityAttr type.

8.3 Common types

Namespace definition: http://schemas.ogf.org/nsi/2013/12/framework/types

These are the common types shared between NSI message header and CS operation definitions.

8.3.1 ServiceExceptionType

Common service exception used for SOAP faults and operation failed messages.

Figure 19 – ServiceExceptionType type.

http://schemas.ogf.org/nsi/2013/12/framework/types

GFD-R-P.212
NSI-WG 13 May 2014

 37

Parameters

The ServiceExceptionType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

nsaId M NSA that generated the service exception.

connectionId O The connectionId associated with the reservation impacted by this error.

serviceType O The service type identifying the applicable service definition within the

context of the NSA generating the error.

errorId M Error identifier uniquely identifying each known fault within the protocol.

text M User-friendly message text describing the error.

variables O An optional collection of type/value pairs providing additional information
relating to the error.

childException O Hierarchical list of service exceptions capturing failures within the request
tree.

Table 9 – ServiceExceptionType parameters.

8.3.2 VariablesType

A type definition providing a set of zero or more type/value variables used for modeling generic
attributes.

Figure 20 – NsaIdType type.

Parameters

The VariablesType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

variable O The variable containing the type/values.

Table 10 – VariablesType parameters.

8.3.3 TypeValuePairType
TypeValuePairType is a simple type and multi-value tuple. Includes simple string type and value, as
well as more advanced extensions if needed. A targetNamespace attribute is included to provide

additional context where needed.

GFD-R-P.212
NSI-WG 13 May 2014

 38

Figure 21 – TypeValuePairType type.

Parameters

The TypeValuePairType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

type M A string representing the name of the type.

namespace O An optional URL to qualify the name space of the capability.

anyAttribute Provides a flexible mechanism allowing additional attributes non-

specified to be provided as needed for peer-to-peer NSA
communications. Use of this attribute field is beyond the current scope
of this NSI specification, but may be used in the future to extend the

existing protocol without requiring a schema change.

value O A string value corresponding to type.

any O Provides a flexible mechanism allowing additional elements to be
provided as an alternative, or in combination with value. Use of this
element field is beyond the current scope of this NSI specification, but

may be used in the future to extend the existing protocol without
requiring a schema change.

Table 11 – TypeValuePairType parameters

8.3.4 TypeValuePairListType

 A simple holder type providing a list definition for the attribute type/values structure.

Figure 22 – TypeValuePairListType type.

Parameters

The TypeValuePairListType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

attribute O An instance of a type/value structure.

Table 12 – TypeValuePairListType parameters

8.3.5 ConnectionIdType
A connectionId is a simple string value that uniquely identifies a reservation segment within the

context of a PA. This value is not globally unique.

Figure 23 – ConnectionIdType type.

8.3.6 DateTimeType

The time zone support of W3C XML Schema is quite controversial and needs some additional
constraints to avoid comparison problems. These patterns can be kept relatively simple since the
syntax of the dateTime is already checked by the schema validator and only simple additional

checks need to be added. This type definition checks that the time part ends with a "Z" or contains a
sign. Values MUST correspond to the following pattern ".+T.+(Z|[+-].+)"

Figure 24 – DateTimeType type.

GFD-R-P.212
NSI-WG 13 May 2014

 39

8.3.7 NsaIdType
NsaIdType is a specific type for a Network Services Agent (NSA) identifier that is populated with a

OGF URN [12], [13] to be used for compatibility with other external systems.

Figure 25 – NsaIdType type.

8.3.8 UuidType

Universally Unique Identifier (UUID) URN as per ITU-T Rec. X.667 | ISO/IEC 9834-8:2005 and IETF
RFC 4122. Values MUST correspond to the following pattern “urn:uuid:[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-
9]{4}-[a-f0-9]{4}-[a-f0-9]{12}”.

Figure 26 – UuidType type.

8.4 NSI CS operation-specific type definitions.

Namespace definition: http://schemas.ogf.org/nsi/2013/12/connection/types

These are the NSI CS specific operations element definitions for each message defined in the
protocol.

8.4.1 reserve message elements
The reserve message is sent from an RA to a PA when a new reservation is being requested, or a
modification to an existing reservation is required. The reserveResponse indicates that the PA has
accepted the reservation request for processing and has assigned it the returned connectionId. The
original connectionId will be returned for the reserveResponse of a modification. A
reserveConfirmed or reserveFailed message will be sent asynchronously to the RA when reserve

operation has completed processing.

Type Direction Input Output Fault

Request RA to PA reserve reserveResponse serviceException

Confirmed PA to RA reserveConfirmed reserveConfirmedACK serviceException

Failed PA to RA reserveFailed reserveFailedACK serviceException

Error N/A N/A N/A N/A

Table 13 reserve message elements

8.4.1.1 Request: reserve

The NSI CS reserve message allows an RA to reserve network resources associated with a service
within the Network constrained by the provided service parameters. This reserve message allows

an RA to check the feasibility of a connection reservation, or modification an existing connection
reservation. Any resources associated with the reservation or modification operation will be
allocated and held until a reserveCommit message is received for the specific connectionId or a

reservation timeout occurs (whichever arrives first).

http://schemas.ogf.org/nsi/2013/12/connection/types

GFD-R-P.212
NSI-WG 13 May 2014

 40

Figure 27 – reserve request message structure.

Parameters

The reserve message has the following parameters:

Parameter Description

connectionId The PA assigned connectionId for this reservation. This value will be unique
within the context of the PA. Provided in reserve request only when an existing

reservation is being modified. This MAY be populated with a Universally
Unique Identifier (UUID) URN as per ITU-T Rec. X.667 |ISO/IEC 9834-8:2005
and IETF RFC 4122.

globalReservationId An optional global reservation id that can be used to correlate individual related
service reservations through the network. This MUST be populated with a

Universally Unique Identifier (UUID) URN as per ITU-T Rec. X.667 |ISO/IEC
9834-8:2005 and IETF RFC 4122.

description An optional description for the service reservation.

criteria Reservation request criteria including version, start and end time, service type,
and service-specific schema elements.

Table 14 reserve message parameters

Response

If the reserve operation is successful, a reserveResponse message is returned, otherwise a
serviceException is returned. A PA sends this reserveResponse message immediately after
receiving the reservation request to inform the RA of the connectionId allocated to their reservation
request. This connectionId can then be used to query reservation progress.

Figure 28 – reserveResponse message structure.

The reserveResponse message has the following parameters:

Parameter Description

connectionId The PA assigned connectionId for this reservation request. This value will be

unique within the context of the PA.

Table 15 reserveResponse message parameters

8.4.1.2 Confirmation: reserveConfirmed

A PA sends this positive reserveConfirmed response message to the RA that issued the original

reserve request message. Receipt of this message is an indication that the requested reservation
parameters were available and will be held until a reserveCommit message is received for the

reservation or a reservation timeout occurs (whichever arrives first).

GFD-R-P.212
NSI-WG 13 May 2014

 41

Figure 29 – reserveConfirmed message structure.

Parameters

The reserveConfirmed message has the following parameters:

Parameter Description

connectionId The PA assigned connectionId for this reservation. This value will be unique
within the context of the PA. Provided in reserve request only when an existing

reservation is being modified.

globalReservationId An optional global reservation id that can be used to correlate individual related
service reservations through the network. This MUST be populated with a

Universally Unique Identifier (UUID) URN as per ITU-T Rec. X.667 |ISO/IEC
9834-8:2005 and IETF RFC 4122.

description An optional description for the service reservation.

criteria A set of versioned and confirmed reservation criteria information including start
and end time, service attributes, and requested path for the service.

Table 16 reserveConfirmed message parameters
Response

If the reserveConfirmed operation is successful, a reserveConfirmedACK message is returned,
otherwise a serviceException is returned. An RA sends this reserveConfirmedACK message
immediately after receiving the reserveConfirmed request to acknowledge to the PA the
reserveConfirmed request has been accepted for processing. The reserveConfirmedACK message

is implemented using the generic acknowledgement message.

Figure 30 – reserveConfirmedACK message structure.

The reserveConfirmedACK message has no parameters as all relevant information is carried in the

NSI CS header structure.

8.4.1.3 Failed: reserveFailed

A PA sends this negative reserveFailed response to the RA that issued the original reservation

request message if the requested reservation criteria could not be met. This message is also sent in
response to a reserve request for a modification to an existing schedule if the required modification
is not possible.

GFD-R-P.212
NSI-WG 13 May 2014

 42

Figure 31 – reserveFailed message structure.

Parameters

The reserveFailed message has the following parameters:

Parameter Description

connectionId The PA assigned connectionId for this reservation. This value will be unique

within the context of the PA.

connectionStates Overall connection state for the reservation.

serviceException Specific error condition indicating the reason for the failure.

Table 17 reserveFailed message parameters

Response

If the reserveFailed operation is successful, a reserveFailedACK message is returned, otherwise a
serviceException is returned. An RA sends this reserveFailedACK message immediately after
receiving the reserveFailed request to acknowledge to the PA the reserveFailed request has been
accepted for processing. The reserveFailedACK message is implemented using the generic

acknowledgement message.

Figure 32 – reserveFailedACK message structure.

The reserveFailedACK message has no parameters as all relevant information is carried in the NSI

CS header structure.

8.4.2 reserveCommit message elements
The reserveCommit message is sent from an RA to a PA when a reservation or modification to an

existing reservation is being committed. This reservation MUST currently reside in the Reserve Held
state for this operation to be accepted. The reserveCommitACK indicates that the PA has accepted
the modify request for processing. A reserveCommitConfirmed or reserveCommitFailed message

will be sent asynchronously to the RA when reserve or modify processing has completed.

Type Direction Input Output Fault

Request RA to PA reserveCommit reserveCommitACK serviceException

Confirmed PA to RA reserveCommitConfirmed reserveCommitConfirmedACK serviceException

Failed PA to RA reserveCommitFailed reserveCommitFailedACK serviceException

Error N/A N/A N/A N/A

Table 18 reserveCommit message elements

GFD-R-P.212
NSI-WG 13 May 2014

 43

8.4.2.1 Request: reserveCommit

The NSI CS reserveCommit message allows an RA to commit a previously allocated reservation or
modification on a reservation. The reserveCommit request MUST arrive at the Provider Agent

before the reservation timeout occurs.

Figure 33 – reserveCommit request message structure.

Parameters

The reserveCommit message has the following parameters:

Parameter Description

connectionId The PA assigned connectionId for the reservation that is to be committed.

Table 19 reserveCommit message parameters

Response

If the reserveCommit operation is successful, a reserveCommitACK message is returned, otherwise
a serviceException is returned. A PA sends this reserveCommitACK message immediately after
receiving the reserveCommit request to acknowledge to the RA the reserveCommit request has
been accepted for processing. The reserveCommitACK message is implemented using the generic

acknowledgement message.

Figure 34 – reserveCommitACK message structure.

The reserveCommitACK message has no parameters as all relevant information is carried in the

NSI CS header structure.

8.4.2.2 Confirmation: reserveCommitConfirmed

This reserveCommitConfirmed message is sent from a PA to RA as an indication of a successful
reserveCommit request for a reservation previously in a Reserve Held state.

Figure 35 – reserveCommitConfirmed message structure.

Parameters

The reserveCommitConfirmed message has the following parameters:

Parameter Description

connectionId The connection identifier for the reservation that was committed.

Table 20 reserveCommitConfirmed message parameters

GFD-R-P.212
NSI-WG 13 May 2014

 44

Response

If the reserveCommitConfirmed operation is successful, a reserveCommitConfirmedACK message
is returned, otherwise a serviceException is returned. An RA sends this
reserveCommitConfirmedACK message immediately after receiving the reserveCommitConfirmed
request to acknowledge to the PA the reserveCommitConfirmed request has been accepted for
processing. The reserveCommitConfirmedACK message is implemented using the generic

acknowledgement message.

Figure 36 – reserveAbortConfirmedACK message structure.

The reserveCommitConfirmedACK message has no parameters as all relevant information is

carried in the NSI CS header structure.

8.4.2.3 Failed: reserveCommitFailed

This reserveCommitFailed message is sent from a PA to RA as an indication of a reserve (or
modify) commit failure. This is in response to an original reserveCommit request from the

associated RA.

Figure 37 – reserveCommitFailed message structure.

Parameters

The reserveCommitFailed message takes the following parameters:

Parameter Description

connectionId The PA assigned connectionId for this reservation. This value will be unique
within the context of the PA.

connectionStates Overall connection state for the reservation.

serviceException Specific error condition indicating the reason for the failure.

Table 21 reserveCommitFailed message parameters

Response

If the reserveCommitFailed operation is successful, a reserveCommitFailedACK message is
returned, otherwise a serviceException is returned. An RA sends this reserveCommitFailedACK
message immediately after receiving the reserveCommitFailed request to acknowledge to the PA
the reserveCommitFailed request has been accepted for processing. The reserveCommitFailedACK

message is implemented using the generic acknowledgement message.

GFD-R-P.212
NSI-WG 13 May 2014

 45

Figure 38 – reserveCommitFailedACK message structure.

The reserveCommitFailedACK message has no parameters as all relevant information is carried in

the NSI CS header structure.

8.4.3 reserveAbort message elements
The reserveAbort message is sent from an RA to a PA when an initial reservation request, or

modification to an existing reservation is to be aborted, and the reservation state machine returned
to the previous version of the reservation. The reserveAbortACK indicates that the PA has accepted
the abort request for processing. A reserveAbortConfirmed message will be sent asynchronously to

the RA when the abort processing has completed. There is no associated Failed message for this
operation.

Type Direction Input Output Fault

Request RA to PA reserveAbort reserveAbortACK serviceException

Confirmed PA to RA reserveAbortConfirmed reserveAbortConfirmedACK serviceException

Failed N/A 8.4.3.1.1.1 N/A 8.4.3.1.1.2 N/A 8.4.3.1.1.3 N/A

Error PA to RA error errorACK serviceException

Table 22 reserveCommitFailed message elements

8.4.3.2 Request: reserveAbort

The NSI CS reserveAbort message allows an RA to abort a previously requested reservation or

modification on a reservation.

Figure 39 – reserveAbort request message structure.

Parameters

The reserveAbort message has the following parameters:

Parameter Description

connectionId The PA assigned connectionId for the reservation or modification that is to be

aborted.

Table 23 reserveAbort message parameters

Response

If the reserveAbort operation is successful, a reserveAbortACK message is returned, otherwise a
serviceException is returned. A PA sends this reserveAbortACK message immediately after
receiving the reserveAbort request to acknowledge to the RA the reserveAbort request has been
accepted for processing. The reserveAbortACK message is implemented using the generic

acknowledgement message.

GFD-R-P.212
NSI-WG 13 May 2014

 46

Figure 40 – reserveAbortACK message structure.

The reserveAbortACK message has no parameters as all relevant information is carried in the NSI

CS header structure.

8.4.3.3 Confirmation: reserveAbortConfirmed

This reserveAbortConfirmed message is sent from a PA to RA as an indication of a successful
reserveAbort request. The reservation in question will have any pending modifications cancelled

and returned to the reservation state existing before the modification.

Figure 41 – reserveAbortConfirmed message structure.

Parameters

The reserveAbortConfirmed message has the following parameters:

Parameter Description

connectionId The connection identifier for the reservation that was aborted.

Table 24 reserveAbortConfirmed message parameters

Response

If the reserveAbortConfirmed operation is successful, a reserveAbortConfirmedACK message is
returned, otherwise a serviceException is returned. An RA sends this reserveAbortConfirmedACK
message immediately after receiving the reserveAbortConfirmed request to acknowledge to the PA
the reserveAbortConfirmed request has been accepted for processing. The
reserveAbortConfirmedACK message is implemented using the generic acknowledgement

message.

Figure 42 – reserveAbortConfirmedACK message structure.

The reserveAbortConfirmedACK message has no parameters as all relevant information is carried

in the NSI CS header structure.

8.4.4 reserveTimeout message elements
The reserveTimeout message is an autonomous message issued from a PA to an RA when a

timeout on an existing reserve request occurs, and the PA has freed any uncommitted resources
associated with the reservation. This type of event is originated from an uPA managing network
resources associated with the reservation, and propagated up the request tree to the originating
uRA. An aggregator NSA (performing both a PA and RA role) will map the received connectionId

into a context understood by its direct parent RA in the request tree, then propagate the event
upwards. The originating connectionId and uPA are provided in separate elements to maintain the

GFD-R-P.212
NSI-WG 13 May 2014

 47

original context generating the timeout. The timeoutValue and timeStamp are populated

by the originating uPA and propagated up the tree untouched by intermediate NSA.

The reserveTimeoutACK indicates that the RA has accepted the reserveTimeout event for

processing. There is no associated Confirmed or Failed message for this operation.

Type Direction Input Output Fault

Event PA to RA reserveTimeout reserveTimeoutACK serviceException

Table 25 reserveTimeout message elements

8.4.4.1 Request: reserveTimeout

The NSI CS reserveTimeout message allows a PA to communicate to the RA a reserve timeout

condition on an outstanding reserve operation.

Figure 43 – reserveTimeout request message structure.

Parameters

The reserveTimeout message has the following parameters:

Parameter Description

connectionId The PA assigned connectionId that this notification is against.

notificationId A notification identifier that is unique in the context of a connectionId. This is a
linearly increasing identifier that can be used for ordering notifications in the
context of the connectionId.

timeStamp Time the event was generated on the originating NSA.

timeoutValue The timeout value in seconds that expired this reservation.

originatingConnectionId The connectionId that triggered the reserve timeout.

originatingNSA The NSA originating the timeout event.

Table 26 reserveTimeout request parameters

Response

If the reserveTimeout operation is successful, a reserveTimeoutACK message is returned,
otherwise a serviceException is returned. An RA sends this reserveTimeoutACK message
immediately after receiving the reserveTimeout event to acknowledge to the PA the reserveTimeout

GFD-R-P.212
NSI-WG 13 May 2014

 48

event has been accepted for processing. The reserveTimeoutACK message is implemented using

the generic acknowledgement message.

Figure 44 – reserveTimeoutACK message structure.

The reserveTimeoutACK message has no parameters as all relevant information is carried in the

NSI CS header structure.

8.4.5 provision message elements
The provision message is sent from an RA to a PA when an existing reservation is to be
transitioned into a provisioned state. The provisionACK indicates that the PA has accepted the
provision request for processing. A provisionConfirmed or message will be sent asynchronously to
the RA when provision processing has completed. There is no associated Failed message for this

operation.

Type Direction Input Output Fault

Request RA to PA provision provisionACK serviceException

Confirmed PA to RA provisionConfirmed provisionConfirmedACK serviceException

Failed N/A 8.4.5.1.1.1 N/A 8.4.5.1.1.2 N/A 8.4.5.1.1.3 N/A

Error PA to RA 8.4.5.1.1.4 error 8.4.5.1.1.5 errorACK 8.4.5.1.1.6 serviceException

Table 27 provision message elements

8.4.5.2 Request: provision

The NSI CS provision message allows an RA to transition a previously requested reservation into a

provisioned state. A reservation in a provisioned state will activate associated data plane resources
during the scheduled reservation time.

Figure 45 – provision request message structure.

Parameters

The provision message has the following parameters:

Parameter Description

connectionId The PA assigned connectionId for the reservation to be provisioned.

Table 28 provision message parameters

Response

If the provision operation is successful, a provisionACK message is returned, otherwise a
serviceException is returned. A PA sends this provisionACK message immediately after receiving
the provision request to acknowledge to the RA the provision request has been accepted for
processing. The provisionACK message is implemented using the generic acknowledgement

message.

GFD-R-P.212
NSI-WG 13 May 2014

 49

Figure 46 – provisionACK message structure.

The provisionACK message has no parameters as all relevant information is carried in the NSI CS

header structure.

8.4.5.3 Confirmation: provisionConfirmed

This provisionConfirmed message is sent from a PA to RA as an indication of a successful provision
request. This is in response to an original provision request from the associated RA.

Figure 47 – provisionConfirmed message structure.

Parameters

The provisionConfirmed message has the following parameters:

Parameter Description

connectionId The connection identifier for the reservation that was provisioned.

Table 29 provisionConfirmed message parameters

Response

If the provisionConfirmed operation is successful, a provisionConfirmedACK message is returned,
otherwise a serviceException is returned. An RA sends this provisionConfirmedACK message
immediately after receiving the provisionConfirmed request to acknowledge to the PA the
provisionConfirmed request has been accepted for processing. The provisionConfirmedACK

message is implemented using the generic acknowledgement message.

Figure 48 – provisionConfirmedACK message structure.

The provisionConfirmedACK message has no parameters as all relevant information is carried in

the NSI CS header structure.

8.4.6 release message elements
The release message is sent from an RA to a PA when an existing reservation is to be transitioned
into a Released state. The releaseACK indicates that the PA has accepted the release request for
processing. A releaseConfirmed message will be sent asynchronously to the RA when release

processing has completed. There is no associated failed message for this operation.

Type Direction Input Output Fault

Request RA to PA release releaseACK serviceException

Confirmed PA to RA releaseConfirmed releaseConfirmedACK serviceException

Failed N/A 8.4.6.1.1.1 N/A 8.4.6.1.1.2 N/A 8.4.6.1.1.3 N/A

Error PA to RA 8.4.6.1.1.4 error 8.4.6.1.1.5 errorACK 8.4.6.1.1.6 serviceException

Table 30 Release message elements

GFD-R-P.212
NSI-WG 13 May 2014

 50

8.4.6.2 Request: release

The NSI CS release message allows an RA to transition a previously requested reservation into a

released state. A reservation in a released state will deactivate associated data plane resources,
but the reservation is not affected.

Figure 49 – release request message structure.

Parameters

The release message has the following parameters:

Parameter Description

connectionId The PA assigned connectionId for the reservation to be released.

Table 31 Release message parameters

Response

If the release operation is successful, a releaseACK message is returned, otherwise a
serviceException is returned. A PA sends this releaseACK message immediately after receiving the
release request to acknowledge to the RA the release request has been accepted for processing.
The releaseACK message is implemented using the generic acknowledgement message.

Figure 50 – releaseACK message structure.

The releaseACK message has no parameters as all relevant information is carried in the NSI CS

header structure.

8.4.6.3 Confirmation: releaseConfirmed

This releaseConfirmed message is sent from a PA to RA as an indication of a successful release
request. This is in response to an original release request from the associated RA.

Figure 51 – releaseConfirmed message structure.

Parameters

The releaseConfirmed message has the following parameters:

Parameter Description

connectionId The connection identifier for the reservation that was released.

Table 32 releaseConfirmed message parameters

GFD-R-P.212
NSI-WG 13 May 2014

 51

Response

If the releaseConfirmed operation is successful, a releaseConfirmedACK message is returned,
otherwise a serviceException is returned. An RA sends this releaseConfirmedACK message
immediately after receiving the releaseConfirmed request to acknowledge to the PA the
releaseConfirmed request has been accepted for processing. The releaseConfirmedACK message

is implemented using the generic acknowledgement message.

Figure 52 – releaseConfirmedACK message structure.

The releaseConfirmedACK message has no parameters as all relevant information is carried in the

NSI CS header structure.

8.4.7 terminate message elements
The terminate message is sent from an RA to a PA when an existing reservation is to be

transitioned into a terminated state and all associated resources in the network are freed. The
terminateACK indicates that the PA has accepted the terminate request for processing. A
terminateConfirmed message will be sent asynchronously to the RA when terminate processing has

completed. There is no associated Failed message for this operation.

Type Direction Input Output Fault

Request RA to PA terminate terminateACK serviceException

Confirmed PA to RA terminateConfirmed terminateConfirmedACK serviceException

Failed N/A N/A N/A N/A

Error PA to RA error errorACK serviceException

Table 33 terminate message elements

8.4.7.1 Request: terminate

The NSI CS terminate message allows an RA to transition a previously requested reservation into a

Terminated state. A reservation in a Terminated state will release all of the associated resources.

Figure 53 – terminate request message structure.

Parameters

The terminate message has the following parameters:

Parameter Description

connectionId The PA assigned connectionId for the reservation to be terminated.

Table 34 terminate message parameters

Response

If the terminate operation is successful, a terminateACK message is returned, otherwise a
serviceException is returned. A PA sends this terminateACK message immediately after receiving
the terminate request to acknowledge to the RA the terminate request has been accepted for

GFD-R-P.212
NSI-WG 13 May 2014

 52

processing. The terminateACK message is implemented using the generic acknowledgement

message.

Figure 54 – terminateACK message structure.

The terminateACK message has no parameters as all relevant information is carried in the NSI CS

header structure.

8.4.7.2 Confirmation: terminateConfirmed

This terminateConfirmed message is sent from a PA to RA as an indication of a successful
terminate request. This is in response to an original terminate request from the associated RA.

Figure 55 – terminateConfirmed message structure.

Parameters

The terminateConfirmed message has the following parameters:

Parameter Description

connectionId The connection identifier for the reservation that was terminated.

Table 35 terminateConfirmed message parameters

Response

If the terminateConfirmed operation is successful, a terminateConfirmedACK message is returned,
otherwise a serviceException is returned. An RA sends this terminateConfirmedACK message
immediately after receiving the terminateConfirmed request to acknowledge to the PA the
terminateConfirmed request has been accepted for processing. The terminateConfirmedACK

message is implemented using the generic acknowledgement message.

Figure 56 – terminateConfirmedACK message structure.

The terminateConfirmedACK message has no parameters as all relevant information is carried in

the NSI CS header structure.

8.4.8 error message elements
The error message is sent from a PA to an RA in response to an outstanding operation request

when an error condition encountered, and as a result, the operation cannot be successfully
completed. The correlationId carried in the NSI CS header structure will identify the original request
associated with this error message. The errorACK indicates that the RA has accepted the error

request for processing. There is no associated Confirmed or Failed message for this operation.

GFD-R-P.212
NSI-WG 13 May 2014

 53

Type Direction Input Output Fault

Request PA to RA error errorACK serviceException

Table 36 error message elements

8.4.8.1 Request: error

The NSI CS error message allows a PA to communicate to the RA an error condition on an

outstanding request operation.

Figure 57 – error request message structure.

Parameters

The error message has the following parameters:

Parameter Description

serviceException Specific error condition and the reason for the failure.

Table 37 error message parameters

Response

If the error operation is successful, an errorACK message is returned, otherwise a serviceException
is returned. An RA sends this errorACK message immediately after receiving the error request to
acknowledge to the PA the error request has been accepted for processing. The errorACK

message is implemented using the generic acknowledgement message.

Figure 58 – errorACK message structure.

The errorACK message has no parameters as all relevant information is carried in the NSI CS

header structure.

8.4.9 errorEvent message elements
The errorEvent message is an autonomous message issued from a PA to an RA when an existing

reservation encounters an autonomous error condition that may impact the reservation. The three
errors currently modeled are:

 The reservation is administratively terminated on an uPA before the reservation's
scheduled end-time.

 An activation or deactivation of data plane resources associated with the reservation has
failed.

 An error has occurred within the data plane that has impacted resources associated with
the reservation.

This type of event originates from an uPA managing network resources associated with the
reservation, and propagated up the request tree to the originating uRA. An aggregator NSA
(performing both a PA and RA role) will map the received connectionId into a context understood by

its direct parent RA in the request tree, then propagate the event upwards. The originating
connectionId and uPA are provided in separate elements to maintain the original context generating

GFD-R-P.212
NSI-WG 13 May 2014

 54

the error. The timeStamp is populated by the originating uPA and propagated up the tree untouched

by intermediate NSA.

The errorEventACK indicates that the RA has accepted the errorEvent event for processing. There

is no associated Confirmed or Failed message for this operation.

Type Direction Input Output Fault

Event PA to RA errorEvent errorEventACK serviceException

Table 38 errorEvent message elements

8.4.9.1 Request: errorEvent

The NSI CS errorEvent message allows a PA to communicate to the RA an error condition on an

existing reservation.

Figure 59 – errorEvent request message structure.

Parameters

The errorEvent message has the following parameters:

Parameter Description

connectionId The PA assigned connectionId that this notification is against.

notificationId A notification identifier that is unique in the context of a connectionId. This is a
linearly increasing identifier that can be used for ordering notifications in the

context of the connectionId.

timeStamp Time the event was generated on the originating NSA.

event The type of event that generated this notification.

originatingConnectionId The connectionId that triggered the error event.

originatingNSA The NSA originating error event.

GFD-R-P.212
NSI-WG 13 May 2014

 55

additionalInfo Type/value pairs that can provide additional error context as needed.

serviceException Specific error condition - the reason for the generation of the error event.

Table 39 reserveTimeout request parameters

Response

If the errorEvent operation is successful, a errorEventACK message is returned, otherwise a
serviceException is returned. An RA sends this errorEventACK message immediately after
receiving the errorEvent event to acknowledge to the PA the errorEvent event has been accepted
for processing. The errorEventACK message is implemented using the generic acknowledgement

message.

Figure 60 – errorEventACK message structure.

The errorEventACK message has no parameters as all relevant information is carried in the NSI CS

header structure.

8.4.10 dataPlaneStateChange message elements
The dataPlaneStateChange message is an autonomous message issued from a PA to an RA when

an existing reservation encounters a data plane state change. Possible data plane status changes
are:

 Data plane activation;

 Data plane deactivation;

 Data plane activation version change.

This type of event is originated from an uPA managing network resources associated with the
reservation, and propagated up the request tree to the originating uRA. An aggregator NSA
(performing both a PA and RA role) will map the received connectionId into a context understood by

its direct parent RA in the request tree, then propagate the event upwards only if there is a change
in the last reported data plane status. The originating connectionId and uPA are provided in

separate elements to maintain the original context generating the data plane state change. The
timeStamp is populated by the originating PA and propagated up the tree untouched by

intermediate NSA.

The dataPlaneStateChangeACK indicates that the RA has accepted the dataPlaneStateChange

event for processing. There is no associated Confirmed or Failed message for this operation.

Type Direction Input Output Fault

Event PA to RA dataPlaneStateChange dataPlaneStateChangeACK serviceException

Table 40 dataPlaneStateChange message elements

8.4.10.1 Request: dataPlaneStateChange

The NSI CS dataPlaneStateChange message allows a PA to communicate to the RA when an

existing reservation encounters a data plane state change.

GFD-R-P.212
NSI-WG 13 May 2014

 56

Figure 61 – dataPlaneStateChange request message structure.

Parameters

The dataPlaneStateChange message has the following parameters:

Parameter Description

connectionId The PA assigned connectionId that experienced the data plane state change

notificationId A notification identifier that is unique in the context of a connectionId. This is a
linearly increasing identifier that can be used for ordering notifications in the

context of the connectionId.

timeStamp Time the event was generated on the originating PA.

dataPlaneStatus Current data plane activation state for the reservation identified by

connectionId.

Table 41 dataPlaneStateChange request parameters

Response

If the dataPlaneStateChange operation is successful, a dataPlaneStateChangeACK message is
returned, otherwise a serviceException is returned. An RA sends this dataPlaneStateChangeACK
message immediately after receiving the dataPlaneStateChange event to acknowledge to the PA
the dataPlaneStateChange event has been accepted for processing. The
dataPlaneStateChangeACK message is implemented using the generic acknowledgement

message.

Figure 62 – dataPlaneStateChangeACK message structure.

The dataPlaneStateChangeACK message has no parameters as all relevant information is carried

in the NSI CS header structure.

8.4.11 messageDeliveryTimeout message elements
The messageDeliveryTimeout message is an autonomous message issued from a PA to an RA

when Message Transport Layer (MTL) delivery or Coordinator timeout has occurred for an
outstanding request message within an NSA. This message is issued from the PA that has
encountered the error up the request tree towards the uRA.

GFD-R-P.212
NSI-WG 13 May 2014

 57

An MTL timeout can be generated as the result of a timeout on receiving an ACK message for a
corresponding send request. A Coordinator timeout can occur when no confirmed or failed reply
has been received to a previous request issued by the Coordinator. In both cases the timers for
these timeout conditions are locally defined.

The messageDeliveryTimeoutACK indicates that the RA has accepted the
messageDeliveryTimeout event for processing. There is no associated Confirmed or Failed

message for this operation.

Type Direction Input Output Fault

Event PA to RA messageDeliveryTimeout messageDeliveryTimeoutACK serviceException

Table 42 messageDeliveryTimeout message elements

8.4.11.1 Request: messageDeliveryTimeout

The NSI CS messageDeliveryTimeout message allows a PA to communicate to the RA when a

Message Transport Layer (MTL) delivery or Coordinator timeout has occurred for an outstanding
request message within an NSA.

Figure 63 – messageDeliveryTimeout request message structure.

Parameters

The messageDeliveryTimeout message has the following parameters:

Parameter Description

connectionId The PA assigned connectionId that experienced the message delivery timeout

notificationId A notification identifier that is unique in the context of a connectionId. This is a
linearly increasing identifier that can be used for ordering notifications in the context
of the connectionId.

timeStamp Time the event was generated on the originating NSA.

correlationId This value indicates the correlationId of the original message that the transport layer

failed to send.

 Table 43 messageDeliveryTimeout request parameters

Response

If the messageDeliveryTimeout operation is successful, a messageDeliveryTimeoutACK message
is returned, otherwise a serviceException is returned. An RA sends this
messageDeliveryTimeoutACK message immediately after receiving the messageDeliveryTimeout
event to acknowledge to the PA the messageDeliveryTimeout event has been accepted for
processing. The messageDeliveryTimeoutACK message is implemented using the generic

acknowledgement message.

GFD-R-P.212
NSI-WG 13 May 2014

 58

Figure 64 – messageDeliveryTimeout message structure.

The messageDeliveryTimeoutACK message has no parameters as all relevant information is

carried in the NSI CS header structure.

8.4.12 querySummary message elements
The querySummary message is sent from an RA to a PA to determine the status of existing
reservations. The querySummaryACK indicates that the PA has accepted the querySummary
request for processing. A querySummaryConfirmed or error message will be sent asynchronously
to the RA when querySummary processing has completed.

Type Direction Input Output Fault

Request RA to PA querySummary querySummaryACK serviceException

Confirmed PA to RA querySummaryConfirmed querySummaryConfirmedACK serviceException

Failed N/A N/A N/A N/A

Error PA to RA error errorACK serviceException

Table 44 querySummary message elements

8.4.12.1 Request: querySummary

The querySummary message provides a mechanism for an RA to query the PA for a set of

connection service reservation instances between the RA-PA pair. This message can be used to
monitor the progress of a reservation.

Elements compose a filter for specifying the reservations to return in response to the
querySummary request. Querying of reservations can be performed based on connectionId or
globalReservationId. Filter items specified are OR'ed to build the match criteria. If no criteria are

specified then all reservations associated with the RA are returned.

Figure 65 – querySummary request message structure.

Parameters

The querySummary message has the following parameters:

Parameter Description

connectionId The PA assigned connectionId for this reservation. Return reservations
containing this connectionId.

globalReservationId An optional global reservation id that can be used to correlate individual related
service reservations through the network. Return reservations containing this
globalReservationId.

Table 45 querySummary message parameters

GFD-R-P.212
NSI-WG 13 May 2014

 59

Response

If the querySummary operation is successful, a querySummaryACK message is returned, otherwise
a serviceException is returned. A PA sends this querySummaryACK message immediately after
receiving the querySummary request to acknowledge to the RA the querySummary request has
been accepted for processing. The querySummaryACK message is implemented using the generic

acknowledgement message.

Figure 66 – querySummaryACK message structure.

The querySummaryACK message has no parameters as all relevant information is carried in the

NSI CS header structure.

8.4.12.2 Confirmation: querySummaryConfirmed

This querySummaryConfirmed message is sent from the PA to RA as an indication of a successful
querySummary operation. This is in response to an original querySummary request from the

associated RA.

Figure 67 – querySummaryConfirmed message structure.

Parameters

The querySummaryConfirmed message has the following parameters:

Parameter Description

reservation A set of zero or more connection reservations matching the query criteria. If

there were no matches to the query then no reservation elements will be
present.

Table 46 querySummaryConfirmed message parameters

A query will return the currently committed reservation version number, however, if the initial version
of the reservation has not yet been committed, the query will return base reservation information
(connectionId, globalReservationId, description, requesterNSA, and connectionStates) with no
versioned reservation criteria.

Response

If the querySummaryConfirmed operation is successful, a querySummaryConfirmedACK message
is returned, otherwise a serviceException is returned. An RA sends this
querySummaryConfirmedACK message immediately after receiving the querySummaryConfirmed
request to acknowledge to the PA the querySummaryConfirmed request has been accepted for
processing. The querySummaryConfirmedACK message is implemented using the generic

acknowledgement message.

GFD-R-P.212
NSI-WG 13 May 2014

 60

Figure 68 – querySummaryConfirmedACK message structure.

The querySummaryConfirmedACK message has no parameters as all relevant information is

carried in the NSI CS header structure.

8.4.12.3 Error

An error message is sent from the PA to RA as an indication of a querySummary operation failure.
This is in response to an original querySummary request from the associated RA. It is important to
note that a querySummary operation that results in no matching reservations does not result in an
error message, but instead a querySummaryConfirmed with an empty list of reservations. This error

message follows that standard error flow defined in section 8.4.8.

8.4.13 querySummarySync message elements
The querySummarySync message is sent from an RA to a PA to determine the status of existing
reservations on the PA. Unlike the querySummary operation, the querySummarySync is

synchronous and will block until the results of the query operation have been collected. A
querySummarySyncConfirmed will be returned in response to the request once the query has
completed. A querySummarySyncFailed message will be sent in response if a processing error has

occurred. These responses will be returned directly in the SOAP response to the
querySummarySync message. Other than the synchronous transport interactions, the
querySummarySync is identical to the querySummary operation.

Type Direction Input Output Fault

Request RA to PA querySummarySync querySummarySyncConfirmed error

Table 47 querySummarySync message elements

8.4.13.1 Request: querySummarySync

The querySummarySync message provides a mechanism for an RA to query the PA for a set of

connection service reservation instances between the RA-PA pair. This message can also be used
as a reservation status polling mechanism.

Elements compose a filter for specifying the reservations to return in response to the
querySummarySync request. Querying of reservations can be performed based on connectionId or
globalReservationId. Filter items specified are OR'ed to build the match criteria. If no criteria are

specified then all reservations associated with the RA are returned.

Figure 69 – querySummarySync request message structure.

Parameters

The querySummarySync message has the following parameters:

GFD-R-P.212
NSI-WG 13 May 2014

 61

Parameter Description

connectionId The PA assigned connectionId for this reservation. Return reservations

containing this connectionId.

globalReservationId An optional global reservation id that can be used to correlate individual related

service reservations through the network. Return reservations containing this
globalReservationId.

Table 48 querySummarySync message parameters

Response (Confirmed)

If the querySummarySync operation is successful, a querySummarySyncConfirmed message is
returned directly in the (SOAP) reponse; otherwise a standard error message is returned to indicate

an error in processing the query has occurred.

Figure 70 – querySummarySyncConfirmed message structure.

Parameters

The querySummarySyncConfirmed message has the following parameters:

Parameter Description

reservation A set of zero or more connection reservations matching the query criteria. If
there were no matches to the query then no reservation elements will be

present.

Table 49 querySummarySyncConfirmed message parameters

A query will return the currently committed reservation version number, however, if the initial version
of the reservation has not yet been committed, the query will return base reservation information
(connectionId, globalReservationId, description, requesterNSA, and connectionStates) with no
versioned reservation criteria.

Response (Error)

A standard error message is sent from the PA to RA as an indication of a querySummarySync
operation failure. This is in response to an original querySummarySync request from the associated

RA, and will be returned as a SOAP fault in original request. It is important to note that a
querySummarySync operation that results in no matching reservations does not result in a error
message, but instead a querySummarySyncConfirmed with an empty list. This error message

follows that standard error flow defined in section 8.4.8.

8.4.14 queryRecursive message elements
The queryRecursive message is sent from an RA to a PA to determine the status of existing
reservations. The queryRecursiveACK indicates that the PA has accepted the queryRecursive
request for processing. A queryRecursiveConfirmed or queryRecursiveFailed message will be sent
asynchronously to the RA when queryRecursive processing has completed.

Type Direction Input Output Fault

Request RA to PA queryRecursive queryRecursiveACK serviceException

Confirmed PA to RA queryRecursiveConfirmed queryRecursiveConfirmedACK serviceException

Failed N/A N/A N/A N/A

Error PA to RA error errorACK serviceException

GFD-R-P.212
NSI-WG 13 May 2014

 62

Table 50 queryRecursive message elements

8.4.14.1 Request: queryRecursive

The queryRecursive message provides a mechanism for an RA to query the PA for a set of

connection service reservation instances between the RA-PA pair. The returned results will be a
detailed list of reservation information collected by recursively traversing the reservation tree.

Elements compose a filter for specifying the reservations to return in response to the
queryRecursive request. Querying of reservations can be performed based on connectionId or
globalReservationId. Filter items specified are OR'ed to build the match criteria. If no criteria are

specified then all reservations associated with the RA are returned.

Figure 71 – queryRecursive request message structure.

Parameters

The queryRecursive message has the following parameters:

Parameter Description

connectionId The PA assigned connectionId for this reservation. Return reservations

containing this connectionId.

globalReservationId An optional global reservation id that can be used to correlate individual related

service reservations through the network. Return reservations containing this
globalReservationId.

Table 51 queryRecursive message parameters

Response

If the queryRecursive operation is successful, a queryRecursiveACK message is returned,
otherwise a serviceException is returned. A PA sends this queryRecursiveACK message
immediately after receiving the queryRecursive request to acknowledge to the RA the
queryRecursive request has been accepted for processing. The queryRecursiveACK message is

implemented using the generic acknowledgement message.

Figure 72 – queryRecursiveACK message structure.

The queryRecursiveACK message has no parameters as all relevant information is carried in the

NSI CS header structure.

GFD-R-P.212
NSI-WG 13 May 2014

 63

8.4.14.2 Confirmation: queryRecursiveConfirmed

This queryRecursiveConfirmed message is sent from the PA to RA as an indication of a successful
queryRecursive operation. This is in response to an original queryRecursive request from the

associated RA.

Figure 73 – queryRecursiveConfirmed message structure.

Parameters

The queryRecursiveConfirmed message has the following parameters:

Parameter Description

reservation A set of zero or more connection reservations matching the query criteria. If
there were no matches to the query then no reservation elements will be

present.

Table 52 queryRecursiveConfirmed message parameters

A query will return the currently committed reservation version number, however, if the initial version
of the reservation has not yet been committed, the query will return base reservation information
(connectionId, globalReservationId, description, requesterNSA, and connectionStates) with no
versioned reservation criteria.

Response

If the queryRecursiveConfirmed operation is successful, a queryRecursiveConfirmedACK message
is returned, otherwise a serviceException is returned. An RA sends this
queryRecursiveConfirmedACK message immediately after receiving the queryRecursiveConfirmed
request to acknowledge to the PA the queryRecursiveConfirmed request has been accepted for
processing. The queryRecursiveConfirmedACK message is implemented using the generic

acknowledgement message.

Figure 74 – queryRecursiveConfirmedACK message structure.

The queryRecursiveConfirmedACK message has no parameters as all relevant information is

carried in the NSI CS header structure.

8.4.14.3 Error

An error message is sent from the PA to RA as an indication of a queryRecursive operation failure.
This is in response to an original queryRecursive request from the associated RA. It is important to
note that a queryRecursive operation that results in no matching reservations does not result in an
error message, but instead a queryRecursiveConfirmed with an empty list of reservations. This error

message follows that standard error flow defined in section 8.4.8.

8.4.15 queryNotification message elements
The queryNotification message is sent from an RA to a PA to retrieve notifications messages

against an existing reservation residing on the PA. The returned results will be a list of notifications

GFD-R-P.212
NSI-WG 13 May 2014

 64

for the specified connectionId. The synchronous version may be used by a polling RA to retrieve

the list of notifications messages issued.

The queryNotificationACK indicates that the PA has accepted the queryNotification request for
processing. A queryNotificationConfirmed or generic error message will be sent asynchronously to
the RA when queryNotification processing has completed.

Type Direction Input Output Fault

Request RA to PA queryNotification queryNotificationACK serviceException

Confirmed PA to RA queryNotificationConfirmed queryNotificationConfirmedACK serviceException

Failed N/A N/A N/A N/A

Error PA to RA error errorACK serviceException

Table 53 queryNotification message elements

8.4.15.1 Request: queryNotification

The queryNotification message provides a mechanism for an RA to query the PA for a list of
notification messages against a connectionId. This operation can be used to recover lost notification

messages, or get a historical list of notifications for analysis.

Elements compose a filter for specifying the notifications to return in response to the query
operation. The filter query provides an inclusive range of notification identifiers based on
connectionId.

Figure 75 – queryNotification request message structure.

Parameters

The queryNotification message has the following parameters:

Parameter Description

connectionId Notifications for this connectionId.

startNotificationId The start of the range of notificationIds to return. If not present then the query
should start from oldest notificationId available.

endNotificationId The end of the range of notificationIds to return. If not present then the query
should end with the newest notificationId available.

Table 54 queryNotification message parameters

Response

If the queryNotification operation is successful, a queryNotificationACK message is returned,
otherwise a serviceException is returned. A PA sends this queryNotificationACK message
immediately after receiving the queryNotification request to acknowledge to the RA the
queryNotification request has been accepted for processing. The queryNotificationACK message is

implemented using the generic acknowledgement message.

GFD-R-P.212
NSI-WG 13 May 2014

 65

Figure 76 – queryNotificationACK message structure.

The queryNotificationACK message has no parameters as all relevant information is carried in the

NSI CS header structure.

8.4.15.2 Confirmation: queryNotificationConfirmed

This queryNotificationConfirmed message is sent from the PA to RA as an indication of a successful
queryNotification operation. This is in response to an original queryNotification request from the

associated RA and contains a list of notification messages matching the query criteria.

Figure 77 – queryNotificationConfirmed message structure.

Parameters

The queryNotificationConfirmed message has the following parameters:

Parameter Description

errorEvent A set of zero or more error event notifications.

reserveTimeout A set of zero or more reserve timeout notification.

dataPlaneStateChange A data plane state change notification.

messageDeliveryTimeout A set of zero or more message delivery timeout notification.

Table 55 queryNotificationConfirmed message parameters

Response

If the queryNotificationConfirmed operation is successful, a queryNotificationConfirmedACK
message is returned, otherwise a serviceException is returned. An RA sends this
queryNotificationConfirmedACK message immediately after receiving the
queryNotificationConfirmed request to acknowledge to the PA the queryNotificationConfirmed
request has been accepted for processing. The queryNotificationConfirmedACK message is

implemented using the generic acknowledgement message.

Figure 78 – queryNotificationConfirmedACK message structure.

The queryNotificationConfirmedACK message has no parameters as all relevant information is

carried in the NSI CS header structure.

GFD-R-P.212
NSI-WG 13 May 2014

 66

8.4.15.3 Error

An error message is sent from the PA to RA as an indication of a queryNotification operation failure.
This is in response to an original queryNotification request from the associated RA. It is important to
note that a queryNotification operation that results in no matching reservations does not result in an
error message, but instead a queryNotificationConfirmed with an empty list of reservations. This

error message follows that standard error flow defined in section 8.4.8.

8.4.16 queryNotificationSync message elements
The queryNotificationSync message is sent from an RA to a PA to retriever a list of notification
messages associated with a connectionId on the PA. Unlike the queryNotification operation, the
queryNotificationSync is synchronous and will block until the results of the query operation have
been collected. A queryNotificationSyncConfirmed will be returned in response to the request once
the query has completed. A standard error message will be sent in response if a processing error

has occurred. These responses will be returned directly in the SOAP response to the
queryNotificationSync message. Other than the synchronous transport interactions, the
queryNotificationSync is identical to the queryNotification operation.

Type Direction Input Output Fault

Request RA to PA queryNotificationSync queryNotificationSyncConfirmed error

Table 56 queryNotificationSync message elements

8.4.16.1 Request: queryNotificationSync

The queryNotificationSync message provides a mechanism for an RA to query the PA for a list of
notification messages against a connectionId. This operation can be used to recover lost notification

messages, or get a historical list of notifications for analysis.

Elements compose a filter for specifying the notifications to return in response to the query
operation. The filter query provides an inclusive range of notification identifiers based on
connectionId.

Figure 79 – queryNotificationSync request message structure.

Parameters

The queryNotificationSync message has the following parameters:

Parameter Description

connectionId Notifications for this connectionId.

startNotificationId The start of the range of notificationIds to return. If not present then the query
should start from oldest notificationId available.

endNotificationId The end of the range of notificationIds to return. If not present then the query

should end with the newest notificationId available.

Table 57 queryNotificationSync message parameters

Response (Confirmed)

GFD-R-P.212
NSI-WG 13 May 2014

 67

If the queryNotificationSync operation is successful, a queryNotificationSyncConfirmed message is
returned directly in the SOAP response; otherwise a standard error message is returned to indicate

an error in processing the query has occurred.

Figure 80 – queryNotificationSyncConfirmed message structure.

Parameters

The queryNotificationSyncConfirmed message has the following parameters:

Parameter Description

errorEvent A set of zero or more error event notifications.

reserveTimeout A set of zero or more reserve timeout notification.

dataPlaneStateChange A data plane state change notification.

messageDeliveryTimeout A set of zero or more message delivery timeout notification.

Table 58 queryNotificationSyncConfirmed message parameters

Response (Error)

A standard error message structure is sent from the PA to RA as an indication of a
queryNotificationSync operation failure. This is in response to an original queryNotificationSync

request from the associated RA, and will be returned as a SOAP fault in original request. It is
important to note that a queryNotificationSync operation that results in no matching notification
messages does not result in a error message, but instead a queryNotificationSyncConfirmed with

an empty list.

8.4.17 queryResult message elements
The queryResult message is sent from an RA to a PA to retrieve operation result messages

(confirmed, failed, and error) against an existing reservation residing on the PA. The returned
results will be a list of confirmed, failed, and error messages for the specified connectionId.

The queryResultACK indicates that the PA has accepted the queryResult request for processing. A
queryResultConfirmed or generic error message will be sent asynchronously to the RA when
queryResult processing has completed.

Type Direction Input Output Fault

Request RA to PA queryResult queryResultACK serviceException

Confirmed PA to RA queryResultConfirmed queryResultConfirmedACK serviceException

Failed N/A N/A N/A N/A

Error PA to RA error errorACK serviceException

Table 59 queryResult message elements

8.4.17.1 Request: queryResult

The queryResult message provides a mechanism for an RA to query the PA for a list of operation
result messages (confirmed, failed, and error) against a connectionId. An RA can recover lost result

messages using this operation.

GFD-R-P.212
NSI-WG 13 May 2014

 68

Elements compose a filter for specifying the results to return in response to the query operation.
The filter query provides an inclusive range of result identifiers based on connectionId. The result

identifier is a sequentially increasing value maintained by the PA for each confirmed, failed, or error
message generated by the PA in the context of a single connectionId. This identifier is not returned

in the individual confirmed, failed, or error messages as with notification, however, it is tracked
against a reservation and returned in the reservation query for utilization by polling clients.

Figure 81 – queryResult request message structure.

Parameters

The queryResult message has the following parameters:

Parameter Description

connectionId Return results for this connectionId.

startResultId The start of the range of resultIds to return. If not present then the query should
start from oldest resultId available.

endResultId The end of the range of resultIds to return. If not present then the query should
end with the newest resultId available.

Table 60 queryResult message parameters

Response

If the queryResult operation is successful, a queryResultACK message is returned, otherwise a
serviceException is returned. A PA sends this queryResultACK message immediately after
receiving the queryResult request to acknowledge to the RA the queryResult request has been
accepted for processing. The queryResultACK message is implemented using the generic

acknowledgement message.

Figure 82 – queryResultACK message structure.

The queryResultACK message has no parameters as all relevant information is carried in the NSI

CS header structure.

8.4.17.2 Confirmation: queryResultConfirmed

This queryResultConfirmed message is sent from the PA to RA as an indication of a successful
queryResult operation. This is in response to an original queryResult request from the associated

RA and contains a list of confirmed, failed, and error messages matching the query criteria.

GFD-R-P.212
NSI-WG 13 May 2014

 69

Figure 83 – queryResultConfirmed message structure.

Parameters

The queryResultConfirmed message has the following parameters:

Parameter Description

result Zero or more result elements based on the results matching the specified
query.

Table 61 queryResultConfirmed message parameters.

Each result returned in the queryResultConfirmed message structure will containing a single
operation result of the type QueryResultResponseType as shown in Figure 84.

Figure 84 – QueryResultResponseType structure.

GFD-R-P.212
NSI-WG 13 May 2014

 70

Parameters

The QueryResultResponseType message has the following parameters:

Parameter Description

resultId A result identifier that is unique in the context of a connectionId. This is a
linearly increasing identifier that can be used for sequencing results in the order

in which they were generated in the context of the connectionId.

correlationId The correlationId corresponding to the operation result as would have been
returned in the NSI header element when this result was returned to the RA.

timeStamp The time this result was generated.

Choice of:

reserveConfirmed

reserveFailed

reserveCommitConfirmed
reserveCommitFailed

reserveAbortConfirmed
provisionConfirmed

 releaseConfirmed

terminateConfirmed
 error

Reserve operation confirmation.
Reserve operation failure.

Reserve commit operation confirmation.
Reserve commit operation failure.

Reserve abort operation confirmation.
Provision operation confirmation.
Release operation confirmation.

Terminate confirmation.
Error response message.

Table 62 QueryResultResponseType message parameters

Response

If the queryResultConfirmed operation is successful, a queryResultConfirmedACK message is
returned, otherwise a serviceException is returned. An RA sends this queryResultConfirmedACK
message immediately after receiving the queryResultConfirmed request to acknowledge to the PA
the queryResultConfirmed request has been accepted for processing. The
queryResultConfirmedACK message is implemented using the generic acknowledgement message.

Figure 85 – queryResultConfirmedACK message structure.

The queryResultConfirmedACK message has no parameters as all relevant information is carried in

the NSI CS header structure.

8.4.17.3 Error

An error message is sent from the PA to RA as an indication of a queryResult operation failure. This
is in response to an original queryResult request from the associated RA. It is important to note that
a queryResult operation that results in no matching reservations does not result in an error
message, but instead a queryResultConfirmed with an empty list of reservations. This error

message follows that standard error flow defined in section 8.4.8.

8.4.18 queryResultSync message elements
The queryResultSync message is sent from an RA to a PA to retriever a list of confirmed, failed,
and error messages associated with a connectionId on the PA. Unlike the queryResult operation,
the queryResultSync is synchronous and will block until the results of the query operation have
been collected. A queryResultSyncConfirmed will be returned in response to the request once the
query has completed. A generic error message will be sent in response if a processing error has
occurred. These responses will be returned directly in the SOAP response to the queryResultSync
message. Other than the synchronous transport interactions, the queryResultSync is identical to the
queryResult operation.

GFD-R-P.212
NSI-WG 13 May 2014

 71

Type Direction Input Output Fault

Request RA to PA queryResultSync queryResultSyncConfirmed error

Table 63 queryResultSync message elements

8.4.18.1 Request: queryResultSync

The queryResultSync message provides a mechanism for an RA to query the PA for a list of
confirmed, failed, and error messages against a connectionId. An RA can recover lost result

messages using this operation, or a polling RA can use it to retrieve a list of result messages for
operations issued.

Elements compose a filter for specifying the results to return in response to the query operation.
The filter query provides an inclusive range of result identifiers based on connectionId.

Figure 86 – queryResultSync request message structure.

Parameters

The queryResultSync message has the following parameters:

Parameter Description

connectionId Return results for this connectionId.

startResultId The start of the range of resultIds to return. If not present then the query should
start from oldest resultId available.

endResultId The end of the range of resultIds to return. If not present then the query should

end with the newest resultId available.

Table 64 queryResultSync message parameters.

Response (Confirmed)

If the queryResultSync operation is successful, a queryResultSyncConfirmed message is returned;
otherwise a standard error message is returned to indicate an error in processing the query has

occurred.

Figure 87 – queryResultSyncConfirmed message structure.

Parameters

The queryResultConfirmed message has the following parameters:

GFD-R-P.212
NSI-WG 13 May 2014

 72

Parameter Description

result Zero or more result elements based on the results matching the specified

query.

Table 65 queryResultSyncConfirmed message parameters.

Each result returned in the queryResultSyncConfirmed message structure will containing a single
operation result of the type QueryResultResponseType as shown in Figure 84.

Figure 88 – QueryResultResponseType structure.

Parameters

The queryNotificationConfirmed message has the following parameters:

Parameter Description

resultId A result identifier that is unique in the context of a connectionId. This is a linearly
increasing identifier that can be used for sequencing results in the order in

which they were generated in the context of the connectionId.

correlationId The correlationId corresponding to the operation result as would have been

returned in the NSI header element when this result was returned to the RA.

timeStamp The time this result was generated.

GFD-R-P.212
NSI-WG 13 May 2014

 73

Choice of:
reserveConfirmed

reserveFailed
reserveCommitConfirmed

reserveCommitFailed
reserveAbortConfirmed

provisionConfirmed

 releaseConfirmed
terminateConfirmed

 error

Reserve operation confirmation.

Reserve operation failure.
Reserve commit operation confirmation.

Reserve commit operation failure.
Reserve abort operation confirmation.
Provision operation confirmation.

Release operation confirmation.
Terminate confirmation.

Error response message.

Table 66 queryResultConfirmed message parameters

Response (Error)

A standard error message structure is sent from the PA to RA as an indication of a
queryResultSync operation failure. This is in response to an original queryResultSync request from

the associated RA, and will be returned as a SOAP fault in original request. It is important to note
that a queryResultSync operation that results in no matching result messages does not result in an
error message, but instead a queryResultSyncConfirmed with an empty list.

8.5 NSI CS specific types

Namespace definition: http://schemas.ogf.org/nsi/2013/12/connection/types

This section describes the connection services types used for the CS operation definitions.

8.5.1 Complex Types

These complex type definitions are utilized by the CS operations and are structures containing
other elements and/or attributes. Types are listed in alphabetical order.

8.5.1.1 ChildRecursiveListType

A holder element providing an envelope that will contain the list of child NSA and associated
detailed connection information. Utilized by the QueryRecursiveResultCriteriaType to provide a

nested list structure of detailed reservation information.

Figure 89 – ChildRecursiveListType.

Parameters

The ChildRecursiveListType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

child O Detailed path information for a child NSA. Each child element is ordered and
contains a connection segment in the overall path.

Table 67 ChildRecursiveListType message parameters

8.5.1.2 ChildRecursiveType

This type is used to model a connection reservation's detailed  path information. The structure is
recursive so it is  possible to model both an ordered list of connection segments, as well as the
hierarchical connection segments created on child NSA in either a tree and chain configuration.

http://schemas.ogf.org/nsi/2013/12/connection/types

GFD-R-P.212
NSI-WG 13 May 2014

 74

Figure 90 – ChildRecursiveType.

Parameters

The ChildRecursiveType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

order M Specification of ordered path elements.

connectionId M The connection identifier associated with the reservation and path segment.

providerNSA M The provider NSA holding the connection information associated with this instance
of data.

connectionStates M This reservation's segments connection states.

criteria M A set of versioned reservation criteria information.

Table 68 ChildRecursiveType message parameters.

8.5.1.3 ChildSummaryListType

A holder element containing a list of child NSA and their associated connection information. Utilized
by the QuerySummaryResultCriteriaType to provide a nested list structure of summary reservation

information.

Figure 91 – ChildSummaryListType.

Parameters

The ChildSummaryListType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

child O Summary path information for a chi ld NSA. Each chi ld element is ordered and

contains a connection segment in the overall path.

Table 69 ChildSummaryListType message parameters.

8.5.1.4 ChildSummaryType

This type is used to model a connection reservation's summary path information. The structure
provides the next level of connection information but not state.

GFD-R-P.212
NSI-WG 13 May 2014

 75

Figure 92 – ChildSummaryType.

Parameters

The ChildSummaryType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

order M Specification of ordered path elements.

connectionId M The connection identifier associated with the reservation and path segment.

providerNSA M The provider NSA holding the connection information associated with this instance

of data.

serviceType M The specific service type of this reservation. This service type string maps into the
list of supported service definitions defined by the network providers. In turn, the

service type specifies the specific service elements carried in an instance of this
type (through the ANY definition) that is associated with the requested service. This

element is mandatory.

##other O Provides a flexible mechanism allowing additional elements  to be provided such as
the service specific attributes specified  by serviceType. Additional use of this

element field is beyond  the current scope of this NSI specification, but may be
used in  the future to extend the existing protocol without requiring a  schema

change.

Table 70 ChildSummaryType message parameters.

8.5.1.5 ConnectionStatesType

A holder element containing the state machines associated with a connection reservation.

Figure 93 – ConnectionStatesType.

Parameters

The ConnectionStatesType has the following parameters (M = Mandatory, O = Optional):

GFD-R-P.212
NSI-WG 13 May 2014

 76

Parameter M/O Description

reservationState M Models the current connection reservation state.

provisionState O Models the current connection provisioning state.

lifecycleState M Models the current connection lifecycle state.

dataPlaneStatus M Models the current connection data plane activation state.

Table 71 ConnectionStatesType message parameters

8.5.1.6 DataPlaneStateChangeRequestType

Type definition for the data plane state change notification message.

This notification message sent up from a PA when a data plane status has changed. Possible data
plane status changes are: activation, deactivation and activation version change.

Figure 94 – DataPlaneStateChangeRequestType.

Parameters

The DataPlaneStateChangeRequestType has the following parameters (M = Mandatory, O =

Optional):

Parameter M/O Description

connectionId M The reservation experiencing the data plane state change.

notificationId M A notification identifier that is unique in the context of a connectionId. This is a
linearly increasing identifier that can be used for ordering notifications in the
context of the connectionId.

timeStamp M Time the event was generated on the originating NSA.

dataPlaneStatus M Current data plane activation state for the reservation identified by connectionId.

Table 72 DataPlaneStateChangeRequestType message parameters

8.5.1.7 DataPlaneStatusType

Models the current connection activation state within the data plane.

Figure 95 – DataPlaneStatusType.

GFD-R-P.212
NSI-WG 13 May 2014

 77

Parameters

The DataPlaneStatusType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

active M True if the dataplane is active. For an aggregator, this flag is true when data plane

is activated in all participating chi ldren.

version M Version of the connection reservation this entry is modeling.

versionConsistent M Always true for uPA. For an aggregator, if version numbers of all children are the
same. This flag is true. This field is valid when Active is true.

Table 73 DataPlaneStatusType message parameters

8.5.1.8 ErrorEventType

Type definition for an autonomous message issued from a PA to an RA when an existing
reservation encounters an autonomous error condition such as being administratively terminated
before the reservation's scheduled end-time.

Figure 96 – ErrorEventType.

Parameters

The ErrorEventType has the following parameters (M = Mandatory, O = Optional):

GFD-R-P.212
NSI-WG 13 May 2014

 78

Parameter M/O Description

connectionId M The PA assigned connectionId for this reservation. This value will be unique within

the context of the PA.

notificationId M A notification identifier that is unique in the context of a connectionId. This is a

linearly increasing identifier that can be used for ordering notifications in the
context of the connectionId.

timeStamp M Time the event was generated on the originating NSA.

event M The type of event that generated this notification.

originatingConnectionId M The connectionId that triggered the error event.

originatingNSA M The NSA originating the error event.

additionalInfo O Type/value pairs that can provide additional error context as needed.

serviceException O Specific error condition - the reason for the generation of the error event.

Table 74 ErrorEventType message parameters

8.5.1.9 GenericAcknowledgmentType

A common acknowledgment message type definition. The correlationId has been moved to the

header in CS version 2 so this is now an empty response.

Figure 97 – GenericAcknowledgmentType.

Notes on acknowledgment:
Depending on NSA implementation and thread timing an acknowledgment to a request operation
may be returned after a confirmed/failed for the request has been returned to the RA. For protocol
robustness, the RA should be able to accept confirmed/failed before acknowledgment.

8.5.1.10 GenericConfirmedType

This is a generic type definition for a Confirmed messages in response to a successful processing
of a previous Request message such as provision, release, and terminate.

Figure 98 – GenericConfirmedType.

Parameters

The GenericConfirmedType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

connectionId M The PA assigned connectionId for this reservation request. This value will be unique
within the context of the PA.

Table 75 GenericConfirmedType message parameters

8.5.1.11 GenericErrorType

A generic "Error" message type sent in response to a previous protocol "Request" message. An
error message is generated when an error condition occurs that does not result in a state machine
transition. This type is used in response to all request types that can return an error.

The correlationId carried in the NSI header will identify the original request associated with this error

message.

GFD-R-P.212
NSI-WG 13 May 2014

 79

Figure 99 – GenericErrorType.

Parameters

The GenericErrorType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

serviceException M Specific error condition indicating the reason for the failure.

Table 76 GenericErrorType message parameters

8.5.1.12 GenericFailedType

A generic failed message type sent as request in response to a failure to process a previous
protocol request message. This is used in response to all request types that can return an error.

Figure 100 – GenericFailedType.

Parameters

The GenericFailedType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

connectionId M The PA assigned connectionId for this reservation request. This value will be unique
within the context of the PA.

connectionStates M Overall connection state for the reservation.

serviceException M Specific error condition - the reason for the failure.

Table 77 GenericFailedType message parameters

8.5.1.13 GenericRequestType

This is a generic type definition for request messages such as provision, release, and terminate that
only need a connectionId as a request parameter.

Figure 101 – GenericRequestType.

Parameters

The GenericRequestType has the following parameters (M = Mandatory, O = Optional):

GFD-R-P.212
NSI-WG 13 May 2014

 80

Parameter M/O Description

connectionId M The PA assigned connectionId for this reservation request. This value will be unique

within the context of the PA.

Table 78 GenericRequestType message parameters

8.5.1.14 MessageDeliveryTimeoutRequestType

A notification message type definition for the Message Transport Layer (MTL) delivery timeout of a
request message. In the event of an MTL timed out or Coordinator timeout, the Coordinator will
generate this message delivery failure notification and send it up the workflow tree (towards the
uRA).

An MTL timeout can be generated as the result of a timeout on receiving an ACK message for a
corresponding send request. A Coordinator timeout can occur when no confirmed or failed reply
has been received to a previous request issued by the Coordinator. In both cases the local timers
for these timeout conditions are locally defined.

Figure 102 – MessageDeliveryTimeoutRequestType.

Parameters

The MessageDeliveryTimeoutRequestType has the following parameters (M = Mandatory, O =

Optional):

Parameter M/O Description

connectionId M The reservation experiencing the data plane state change.

notificationId M A notification identifier that is unique in the context of a connectionId. This is a

linearly increasing identifier that can be used for ordering notifications in the context
of the connectionId.

timeStamp M Time the event was generated on the originating NSA.

correlationId M This value indicates the correlationId of the original message that the transport layer
failed to send.

Table 79 MessageDeliveryTimeoutRequestType message parameters.

8.5.1.15 NotificationBaseType

A base type definition for an autonomous message issued from a PA to an RA.

GFD-R-P.212
NSI-WG 13 May 2014

 81

Figure 103 – NotificationBaseType.

Parameters

The NotificationBaseType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

connectionId M The reservation experiencing the data plane state change.

notificationId M A notification identifier that is unique in the context of a connectionId. This is a
linearly increasing identifier that can be used for ordering notifications in the context

of the connectionId.

timeStamp M Time the event was generated on the originating NSA.

Table 80 NotificationBaseType message parameters.

8.5.1.16 QueryFailedType

A query failed message type sent as request in response to a failure to process a queryRequest

message. This is message is returned as a result of a processing error and not for the case where a
query returns an empty result set.

Figure 104 – QueryFailedType.

Parameters

The QueryFailedType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

ServiceException M Specific error condition - the reason for the failure.

Table 81 QueryFailedType message parameters

8.5.1.17 QueryNotificationConfirmedType

A query notification confirmation containing a list of notification messages matching the specified
query criteria.

Figure 105 – QueryNotificationConfirmedType.

GFD-R-P.212
NSI-WG 13 May 2014

 82

Parameters

The QueryNotificationConfirmedType is an optional choice of zero or more of the following

parameters (M = Mandatory, O = Optional):

Parameter M/O Description

errorEvent O Specific error condition - the reason for the failure.

reserveTimeout O Reserve timeout notification.

dataPlaneStateChange O A data plane state change notification.

messageDeliveryTimeout O Message delivery timeout notification.

Table 82 QueryNotificationConfirmedType message parameters

8.5.1.18 QueryNotificationType

Type definition for the QueryNotification message providing a mechanism for a Requester NSA to
query a Provider NSA for a set of notifications against a specific connectionId.

Elements compose a filter for specifying the notifications to return in response to the query
operation. The filter query provides an inclusive range of notification identifiers based on
connectionId.

Figure 106 – QueryNotificationType.

Parameters

The QueryNotificationType is has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

connectionId M Notifications for this connectionId.

startNotificationId O The start of the range of notificationIds to return. If not present then the query

should start from oldest notificationId available.

endNotificationId O The end of the range of notificationIds to return. If not present then the query

should end with the newest notificationId available.

Table 83 QueryNotificationType message parameters

8.5.1.19 QueryRecursiveConfirmedType

This is the type definition for the queryRecursiveConfirmed message. An NSA sends this positive
queryRecursiveRequest response to the NSA that issued the original request message. There can

be zero or more results retuned in this confirmed message depending on the query parameters
supplied in the request.

Figure 107 – QueryRecursiveConfirmedType.

GFD-R-P.212
NSI-WG 13 May 2014

 83

Parameters

The QueryRecursiveConfirmedType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

reservation O Resulting recursive set of connection reservations matching the query criteria. If

there were no matches to the query then no reservation elements will be present.

Table 84 QueryRecursiveConfirmedType message parameters

8.5.1.20 QueryRecursiveResultCriteriaType

Type definition for the query recursive result containing versioned reservation information and
associated child connection identifiers.

Figure 108 – QueryRecursiveResultCriteriaType.

Parameters

The QueryRecursiveResultCriteriaType has the following parameters (M = Mandatory, O =

Optional):

Parameter M/O Description

version M Version of the reservation instance.

schedule M Time parameters specifying the life of the service.

serviceType M The specific service type of this reservation. This service type string maps

into the list of supported service definitions defined by the network providers.
In turn, the service type specifies the specific service elements carried in an

instance of this type (through the ANY definition) associated with the
requested service.

children O If this connection reservation is aggregating child connections then this

element contains detailed information about the child connection segment.
The level of detail include is left up to the individual NSA and their

authorization policies.

any ##other O Provides a flexible mechanism allowing additional elements  to be provided
such as the service-specific parameters specified  by serviceType. Additional

use of this element field is beyond  the current scope of this NSI
specification, but may be used in  the future to extend the existing protocol

without requiring a  schema change. 

Table 85 QueryRecursiveResultCriteriaType message parameters

8.5.1.21 QueryRecursiveResultType

This type contains the common reservation elements and detailed path data for recursive query
results.

GFD-R-P.212
NSI-WG 13 May 2014

 84

Figure 109 – QueryRecursiveResultType.

Parameters

The QueryRecursiveResultType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

connectionId M The PA assigned connectionId for this reservation. This value will be unique within

the context of the PA.

globalReservationId O An optional global reservation id that can be used to correlate individual related

service reservations through the network. This MUST be populated with a
Universally Unique Identifier (UUID) URN as per ITU-T Rec. X.667 | ISO/IEC 9834-
8:2005 and IETF RFC 4122.

description O An optional description for the service reservation.

criteria O A set of versioned reservation criteria information.

requesterNSA M The RA associated with the reservation.

connectionStates M The reservation's overall connection states.

notificationId O A notification identifier that is unique in the context of a connectionId. This is a

linearly increasing identifier that can be used for ordering notifications in the
context of the connectionId. This parameter is present when there is an error

notification against this reservation.

Table 86 QueryRecursiveResultType message parameters.

8.5.1.22 QueryResultConfirmedType

Type definition for the QueryResultConfirmedType providing a mechanism for a Requester NSA to
get a list of Confirmed, Failed, or Error results against a specific connectionId.

Figure 110 – QueryResultConfirmedType.

Parameters

The queryResultConfirmedType structure has the following parameters (M = Mandatory, O =

Optional):

Parameter M/O Description

result O Zero or more result elements based on the results matching the specified query.

Table 87 QueryResultConfirmedType message parameters.

GFD-R-P.212
NSI-WG 13 May 2014

 85

8.5.1.23 QueryResultResponseType

A QueryResultResponseType type containing a single operation result matching the specified query
criteria.

Figure 111 – QueryResultResponseType structure.

Parameters

The QueryResultResponseType structure has the following parameters (M = Mandatory, O =

Optional):

Parameter M/O Description

resultId M A result identifier that is unique in the context of a connectionId. This is
a linearly increasing identifier that can be used for sequencing results

in the order in which they were generated in the context of the
connectionId.

correlationId M The correlationId corresponding to the operation result as would have

been returned in the NSI header element when this result was returned
to the RA.

timeStamp M The time this result was generated.

Choice of:
reserveConfirmed

reserveFailed
reserveCommitConfirmed

reserveCommitFailed

M
Reserve operation confirmation.

Reserve operation failure.
Reserve commit operation confirmation.

Reserve commit operation failure.

GFD-R-P.212
NSI-WG 13 May 2014

 86

reserveAbortConfirmed
provisionConfirmed

 releaseConfirmed
terminateConfirmed

 error

Reserve abort operation confirmation.
Provision operation confirmation.

Release operation confirmation.
Terminate confirmation.

Error response message.

Table 88 QueryResultResponseType message parameters

8.5.1.24 QueryResultType

The queryResultType message provides a mechanism for a Requester NSA to query a Provider
NSA for a set of Confirmed, Failed, or Errors results against a specific connectionId.

Figure 112 – QueryResultType.

Parameters

The QueryResultType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

connectionId M Retrieve results for this connectionId.

startResultId O The start of the range of result Ids to return. If not present, then the query should

start from oldest result available.

endResultId O The end of the range of result Ids to return. If not present then the query should end

with the newest result available.

Table 89 QueryResultType message parameters.

8.5.1.25 QuerySummaryConfirmedType

This is the type definition for the querySummaryConfirmed message (both synchronous and
asynchronous versions). An NSA sends this positive querySummaryRequest response to the NSA

that issued the original request message. There can be zero or more results retuned in this
confirmed message depending on the number of matching reservation results.

Figure 113 – QuerySummaryConfirmedType.

Parameters

The QuerySummaryConfirmedType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

reservation O Resulting recursive set of connection reservations matching the query criteria. If

there were no matches to the query then no reservation elements will be present.

Table 90 QuerySummaryConfirmedType message parameters.

GFD-R-P.212
NSI-WG 13 May 2014

 87

8.5.1.26 QuerySummaryResultCriteriaType

Type definition for the query summary result containing versioned reservation information and
associated child connection identifiers.

 Figure 114 – QuerySummaryResultCriteriaType.

Parameters

The QuerySummaryResultCriteriaType has the following parameters (M = Mandatory, O =

Optional):

Parameter M/O Description

version M Version of the reservation instance.

schedule M Time parameters specifying the life of the service.

serviceType M The specific service type of this reservation. This service type string maps into

the list of supported service definitions defined by the network providers. In
turn, the service type specifies the specific service elements carried in an
instance of this type (through the ANY definition) associated with the

requested service.

children O If this connection reservation is aggregating child connections then this

element contains summary information about the child connection segment.

any ##other O Provides a flexible mechanism allowing additional elements  to be provided

such as the service-specific parameters specified  by serviceType. Additional
use of this element field is beyond  the current scope of this NSI specification,

but may be used in  the future to extend the existing protocol without requiring
a  schema change. 

Table 91 QuerySummaryResultCriteriaType message parameters.

8.5.1.27 QuerySummaryResultType

Type containing the set of reservation parameters associated with a summary query result.

GFD-R-P.212
NSI-WG 13 May 2014

 88

Figure 115 – QuerySummaryResultType.

Parameters

The QuerySummaryResultType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

connectionId M The PA assigned connectionId for this reservation. This value will be unique within
the context of the PA.

globalReservationId O An optional global reservation id that can be used to correlate individual related
service reservations through the network. This MUST be populated with a

Universally Unique Identifier (UUID) URN as per ITU-T Rec. X.667 | ISO/IEC 9834-
8:2005 and IETF RFC 4122.

description O An optional description for the service reservation.

criteria O A set of versioned reservation criteria information.

requesterNSA M The RA associated with the reservation.

connectionStates M The reservation's overall connection states.

notificationId O A notification identifier that is unique in the context of a connectionId. This is a
linearly increasing identifier that can be used for ordering notifications in the

context of the connectionId.

resultId O If present will hold the result identifier of the most recent confirmed, failed, or error

result against this reservation. The resultId can be used in the queryResult
operation to retrieve the associated operation results.

Table 92 QuerySummaryResultType message parameters

8.5.1.28 QueryType

Type definition for the querySummary message providing a mechanism for either RA or PA to query

the other NSA for a set of Connection service reservation instances between the RA-PA pair. This
message can also be used as a status polling mechanism.

Elements compose a filter for specifying the reservations to return in response to the queryRequest.
Supports the querying of reservations based on connectionId or globalReservationId. Filter items

specified are OR'ed to build the match criteria. If no criteria are specified then all reservations
associated with the RA are returned.

GFD-R-P.212
NSI-WG 13 May 2014

 89

Figure 116 – QueryType.

Parameters

The QueryType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

connectionId O Return reservations containing this connectionId.

globalReservationId O Return reservations containing this globalReservationId.

Table 93 QueryType message parameters

8.5.1.29 ReservationConfirmCriteriaType

A type definition for the reservation confirmation information used by PA to return reservation
information to an RA. Includes the reservation version id to track version of the reservation criteria.

Figure 117 – ReservationConfirmCriteriaType.

Parameters

The ReservationConfirmCriteriaType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

version M Version of the reservation instance.

schedule M Time parameters specifying the life of the service.

serviceType M The specific service type of this reservation. This service type string maps into the
list of supported service definitions defined by the network providers. In turn, the
service type specifies the specific service elements carried in an instance of this type

(through the ANY definition) that are associated with the requested service.

any ##other O Provides a flexible mechanism allowing additional elements  to be provided such as

the service-specific attributes specified  by serviceType. Additional use of this
element field is beyond  the current scope of this NSI specification, but may be
used in  the future to extend the existing protocol without requiring a  schema

change. 

Table 94 ReservationConfirmCriteriaType message parameters

8.5.1.30 ReservationRequestCriteriaType

Type definition for a reservation and modification request criteria. Only those values requiring
change are specified in the modify request. The version value specified in a reservation or modify
request MUST be a positive integer larger than the previous version number. A version value of

GFD-R-P.212
NSI-WG 13 May 2014

 90

zero is a special number indicating an allocated but not yet reserved reservation and cannot be
specified by the RA.

Figure 118 – ReservationRequestCriteriaType.

Parameters

The ReservationRequestCriteriaType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

version M The version number assigned by the RA to this reservation instance. If not
specified in the initial reservation request, the new reservation will default to one
for the first version; however, an initial request can specify any positive integer

except zero. Each further reservation request on an existing reservation (a modify
operation), wi ll be assigned a linear increasing number, either specified by the RA,

or assigned by the PA if not specified.

schedule O Time parameters specifying the life of the service. If not present then the service to
start immediately and run for an infinite time.

serviceType O Specific service type being requested in the reservation. This service type string
maps into the list of supported service definitions defined by the network providers,

and in turn, to the specific service elements carried in this element (through the
ANY definition) required to specify the requested service. The service type is
mandatory in the original reserve request, and optional in a reserve issued to

modify an existing reservation.

any ##other O Provides a flexible mechanism allowing additional elements to be provided such as

the service-specific attributes specified by serviceType. Additional use of this
element field is beyond the current scope of this NSI specification, but may be
used in the future to extend the existing protocol without requiring a schema

change.

Table 95 ReservationRequestCriteriaType message parameters

8.5.1.31 ReserveConfirmedType

Type definition for the reserveConfirmed message. A PA sends this positive reserve request

response to the RA that issued the original request message.

Figure 119 – ReserveConfirmedType.

GFD-R-P.212
NSI-WG 13 May 2014

 91

Parameters

The ReserveConfirmedType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

connectionId M The PA assigned connectionId for this reservation. This value will be unique within

the context of the PA.

globalReservationId O An optional global reservation id that can be used to correlate individual related

service reservations through the network. This MUST be populated with a
Universally Unique Identifier (UUID) URN as per ITU-T Rec. X.667 | ISO/IEC 9834-
8:2005 and IETF RFC 4122.

description O An optional description for the service reservation.

criteria M Versioned reservation criteria information.

Table 96 ReserveConfirmedType message parameters

8.5.1.32 ReserveResponseType

Type definition for the reserveResponse message. A PA sends this reserveResponse message
immediately after receiving the reserve request to inform the RA of the connectionId allocated to
their reserve request. This connectionId can then be used to query reservation progress.

Figure 120 – ReserveResponseType.

Parameters

The ReserveResponseType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

connectionId M The PA assigned connectionId for this reservation. This value will be unique within
the context of the PA.

Table 97 ReserveResponseType message parameters

8.5.1.33 ReserveTimeoutRequestType

This is the type definition for the reserve timeout notification message. This is an autonomous
message issued from a PA to an RA when a timeout on an existing reserve request occurs and

uncommitted resources have been freed. The type of event originates from a uPA, and is
propagated up the request tree to the uRA. The aggregator NSA will map the received connectionId

into a context understood by the next parent NSA in the request tree, then propagate the event
upwards. The originating connectionId and NSA are provided in separate elements to maintain the
original context generating the timeout. The timeoutValue and timeStamp are populated by the

originating NSA and propagated up the tree untouched.

GFD-R-P.212
NSI-WG 13 May 2014

 92

Figure 121 – ReserveTimeoutRequestType.

Parameters

The ReserveTimeoutRequestType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

connectionId M The reservation experiencing the data plane state change.

notificationId M A notification identifier that is unique in the context of a connectionId. This is
a linearly increasing identifier that can be used for ordering notifications in

the context of the connectionId.

timeStamp M Time the event was generated on the originating NSA.

timeoutValue M The timeout value in seconds that expired this reservation.

originatingConnectionId M The connectionId that triggered the reserve timeout.

originatingNSA M The NSA originating the timeout event.

Table 98 ReserveTimeoutRequestType message parameters

8.5.1.34 ReserveType

This is the type definition that models the reserve message that allows an RA to reserve network
resources for a Connection between two STP's constrained by a certain service parameters. This
operation allows an RA to check the feasibility of Connection reservation or a modification to an
existing reservation. Any resources associated with the reservation or modification will be allocated
and held until commit is received or timeout occurs.

Figure 122 – ReserveType.

GFD-R-P.212
NSI-WG 13 May 2014

 93

Parameters

The ReserveType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

connectionId O The PA assigned connectionId for this reservation. This value will be unique within

the context of the PA. Provided in reserve request only when an existing
reservation is being modified.

globalReservationId O An optional global reservation id that can be used to correlate individual related
service reservations through the network. This MUST be populated with a
Universally Unique Identifier (UUID) URN as per ITU-T Rec. X.667 | ISO/IEC 9834-

8:2005 and IETF RFC 4122.

description O An optional description for the service reservation.

criteria M Reservation request criteria including start and end time, service attributes, and
requested path for the service.

Table 99 ReserveType message parameters

8.5.1.35 ScheduleType

This type definition models the reservation schedule start and end time parameters.

Figure 123 – ScheduleType.

Parameters

The ScheduleType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

startTime O Reservation start time. If not specified then immediate reservation.

endTime O Reservation end time. If endTime is not specified then the schedule end is

indefinite.

Table 100 ScheduleType message parameters

8.5.2 Simple Types

These simple type definitions are utilized by the CS complex type definitions. Types are listed in
alphabetical order.

8.5.2.1 EventEnumType

Notification event message types. Possible values are:

 activateFailed – Indicates that the data plane activation related to a reservation has failed,
and therefore, there is no data plane connectivity for the reporting uPA.

 deactivateFailed – Indicates that deactivation of the data plane has failed, and as a result,

data plane connectivity may still be in place.

 dataplaneError – Indicates that an error has occurred in the data plane and a loss of
connectivity may be the result.

 forcedEnd – Indicates that the reservation was administratively terminated by a PA within
the network.

Figure 124 – EventEnumType.

GFD-R-P.212
NSI-WG 13 May 2014

 94

8.5.2.2 GlobalReservationIdType

A globalReservationId is a type representing a globally unique identifier for a reservation. This will

be populated with a OGF URN (reference artifact 6478 "Procedure for Registration of
Subnamespace Identifiers in the URN:OGF Hierarchy") to be used for compatibility with other
external systems.

Figure 125 – GlobalReservationIdType.

8.5.2.3 LifecycleStateEnumType

Connection lifecycle state values for the reservation lifecycle state machine. The lifecycle state
machine is instantiated when a reservation is committed. Possible state values are:

 Created – A steady state for the lifecycle state machine and the initial state after a
reservation has been committed.

 Failed – A steady state for the lifecycle state machine that is reached if a forcedEnd error is
received from a uPA.

 PassedEndTime - The reservation has exceeded scheduled end time.

 Terminating - A transient state modeling the act of terminating the reservation.

 Terminated - A steady state for the lifecycle state machine that is reached when the
reservation is terminated by the uRA.

Figure 126 – LifecycleStateEnumType.

8.5.2.4 NotificationIdType

A specific type for a notificationId that is an identifier unique in the context of a connectionId.

Figure 127 – NotificationIdType.

8.5.2.5 ProvisionStateEnumType

Connection provisioning state values for modeling the connection services provision state machine.

The Provision State Machine (PSM) is a simple state machine that transits between the Provisioned
and the Released state. An instance of the PSM for a reservation is created in the Released state
when the first reserve request is received, however, a provision request cannot be processed until
the first version of the reservation has been successful committed. If a provision request is received
before the first version of a reservation has been created, then it must be rejected with an error.

The PSM transits states independent of the state of the Reservation State Machine. Note that
staying at the Provisioned state is necessary but not sufficient to activate the data plane. The data
plane is active if the PSM is in “Provisioned” state AND current_time is between startTime and
endTime.

Possible state values are:

 Released – A steady state for the provision state machine in which data plane resources
for this reservation are in a released state, resulting in an inactive data plane.

GFD-R-P.212
NSI-WG 13 May 2014

 95

 Provisioning - A transient state modeling the act of provisioning the reservation’s
associated data plane resources.

 Provisioned - A steady state for the provision state machine in which data plane resources

for this reservation are in a provisioned state. This state does not imply that data plane
resources are active, but it does indicate that a uPA can active the data plane resources if
current_time is between startTime and endTime.

 Releasing - A transient state modeling the act of releasing the reservation’s associated
data plane resources.

Figure 128 – ProvisionStateEnumType.

8.5.2.6 ReservationStateEnumType

Connection reservation state values for the connection services reservation state machine. Possible
state values are:

 ReserveStart – A steady state for the reservation state machine in which a reservation is
created and committed. In the case of the first reservation request this state represents the
initial reservation shell has been committed to database.

 ReserveChecking – A transient state modeling the act of checking the feasibility of a new
reservation request, or a request to modify an existing reservation.

 ReserveFailed – A steady state for the reservation state machine in which the initial

reservation or a subsequent modification request has failed.

 ReserveAborting - A transient state modeling the act of aborting a pending reservation
modify request.

 ReserveHeld - A steady state for the reservation state machine in which the initial
reservation or a subsequent modification request has successfully had the request
resources reserved, but has not yet been committed.

 ReserveCommitting - A transient state modeling the act of committing a held set of

reservation resources.

 ReserveTimeout - A steady state for the reservation state machine in which the held
resources have been locally timed out on a uPA, resulting in a transition from the
ReserveHeld to ReserveTimeout state.

Figure 129 – ReservationStateEnumType.

8.5.2.7 ResultIdType

A specific type for a resultId that is an identifier unique in the context of a connectionId.

Figure 130 – ResultIdType.

GFD-R-P.212
NSI-WG 13 May 2014

 96

9. Security

This section describes how NSI CS protocol achieves secure communication and provides
authentication data across requests. Security is achieved using Transport Layer Security (TLS)
between NSAs and SAML attributes to convey information regarding request authentication.

9.1 Transport Layer Security

TLS is used to ensure secure communication between NSAs. TLS also supports X.509 certificates
for authentication. Trust between NSAs is pairwise and MUST be established out-of-band. It is
possible to have unidirectional trust between NSAs, i.e. reservations can only be created in one
direction, as this is simply a policy special case. Transitive trust between NSAs cannot be assumed,
i.e., NSAs A & B trust each other, and B & C trust each other, but this does not imply trust between
A & C. However a request from A may end up using resources from C if passed through B. In the
current security framework, B (if its policies permit) can proxy A’s request to C. From C’s point of
view, it receives the request from B, and authenticates and authorizes the request using B’s
credentials. This document does not describe security policies, as these will always be site-specific.
Note that due to the requirement for direct NSA-to-NSA communications (i.e. NSAs cannot forward
communications via a third party NSA), message-level signing provides little value and is not used.

TLS provides message integrity, confidentiality and authentication via the X.509 certificates, and
protects against replay attacks. Authorization is done at the NSAs application level. TLS version 1.0
MUST be supported. NSAs MAY use SSLv3 and TLS versions higher than 1.0 where possible.

9.2 SAML Assertions

As TLS by design only provides transport-level security, an additional mechanism for conveying
request authentication is required. For this, SAML assertions are used. NSAs can include SAML
assertions in the CS message header, which providers MAY use to authorize the request. SAML
attributes can describe information such as user, group, originating NSA, or even OAuth tokens.
What and how to describe with SAML headers is outside the scope of this document, but will be
described in a best current practices (BCP) document. The intent of such a document is to provide
a baseline of what to support, but attributes can be created as needed and can be unique to NSA
peerings.

10. Contributors
Chin Guok, ESnet
Jeroen van der Ham, University of Amsterdam
Radek Krzywania, PSNC
Tomohiro Kudoh, AIST
John MacAuley, SURFnet
Takahiro Miyamoto, KDDI R&D Laboratories
Inder Monga, ESnet
Guy Roberts, DANTE
Jerry Sobieski, NORDUnet
Henrik Thostrup Jensen, NORDUnet

GFD-R-P.212
NSI-WG 13 May 2014

 97

11. Glossary

Activate When provisioning of a Connection has been completed the Connection is considered to

be Active. A dataPlaneStateChange notification is sent to the RA with “active” set to
“true” informing them that the Connection is Active.

Aggregator (AG) The Aggregator is an NSA that has more than one child NSA, and has the responsibility

of aggregating the responses from each child NSA.

Connection A Connection is an NSI construct that identifies the physical instance of a circuit in the

data plane. A Connection has a set of properties (for instance, Connection identifier,
ingress and egress STPs, capacity, or start time). Connections can be either
unidirectional or bidirectional.

Connection Service (CS) The NSI Connection Service is a service that allows an RA to request and manage a
Connection from a PA.

Connection Service Protocol The Connection Service Protocol is the protocol that describes the messages and
associated attributes that are exchanged between RA and PA.

Control and Management

Planes

The Control Plane and/or Management Plane are not defined in this document, but

follow common usage.

Coordinator The Coordinator function has the role of providing intelligent message and process

coordination, this includes tracking and aggregating messages, replies and notifications
and the servicing of query requests.

Data Plane The Data Plane refers to the infrastructure that carries the physical instance of the

Connection, e.g. the Ethernet switches that deliver the circuit.

Discovery Service The NSI discovery service is a web service that allows an RA to discover information

about the services available in a PA and the versions of these services.

Edge Point A network resource that resides at the boundary of an intra-network topology, this may
include for example a connector on a distribution frame, a port on an Ethernet switch, or

a connector at the end of a fibre.

Inter-Network Topology This is a topological description of a set of Networks and their transfer functions, and the

connectivity between Networks.

Lifecycle State Machine
(LSM)

The LSM allows messages relating to terminating a Connection to be sent and received.

Message Transport Layer
(MTL)

The MTL delivers an abstracted message delivery mechanism to the NSI layer.

Network A Network is an Inter-Network topology object that describes a set of STPs with a
Transfer Function between STPs.

Network Resource Manager

(NRM)

The Network Resource Manager owns a set of transport resources and has ultimate

responsibility for authorizing and managing the use of these resources. Each NRM is
always associated with a single NSA.

Network Services Network Services are the full set of services offered by an NSA. Each NSA will support
one or more Network Services.

Network Service Agent (NSA) The Network Service Agent is a concrete piece of software that sends and receives NSI

Messages. The NSA includes a set of capabilities that allow Network Services to be
delivered.

Network Service Interface
(NSI)

The NSI is the interface between RAs and PAs. The NSI defines a set of interactions or
transactions between these NSAs to realize a Network Service.

Network Services Framework

(NSF)

The Network Services framework describes an NSI message-based platform capable of

supporting a suite of Network Services such as the Connection Service and the
Topology Service.

NSI Message An NSI Message is a structured unit of data sent between an RA and a PA.

NSI Topology The NSI Topology defines a standard ontology and a schema to describe network
resources that are managed to create the NSI service. The NSI Topology as used by the

NSI CS (and in future other NSI services) is described in: GWD-R-P: Network Service
Interface Topology Representation [3].

GFD-R-P.212
NSI-WG 13 May 2014

 98

ero An Explicit Routing Object (ero) is a parameter in a Connection request. It is an ordered
list of STP constraints to be used by the inter-Network pathfinder.

Provision Provisioning is the process of requesting the creation of the physical instance of a
Connection in the data plane.

Provision State Machine
(PSM)

The Provision State Machine is a simple state machine which transits between the
Provisioned and the Released state.

Release Releasing is the process of de-provisioning resources on the data-plane. When a

Connection is Released on the data-plane, the Reservation is retained.

Requester/Provider Agent

(RA/PA)

An NSA acts in one of two possible roles relative to a particular instance of an NSI.

When an NSA requests a service, it is called a Requester Agent (RA). When an NSA
realizes a service, it is called a Provider Agent (PA). A particular NSA may act in
different roles at different interfaces.

Reservation State Machine
(RSM)

The state machine that defines the message sequence for creating Connection
reservations and managing these reservations.

Service Demarcation Point
(SDP)

Service Demarcation Points (SDPs) are NSI topology objects that identify a grouping of
two Edge Points at the boundary between two Networks.

Service Termination Point

(STP)

Service Termination Points (STPs) are NSI topology objects that identify the Edge

Points of a Network in the intra-network topology.

Service Plane

The Service Plane is a plane in which services are requested and managed; these

services include the Network Service. The Service Plane contains a set of Network
Service Agents communicating using Network Service Interfaces.

Simple Object Access

Protocol (SOAP)

SOAP is a protocol specification for exchanging structured information in the

implementation of Web Services in computer networks.

Reservation State Machine

(RSM)

The Reservation State Machine state machine defines the sequence of operation of

messages for creating or modifying a reservation.

Reserve When a Provider Agent receives (and then confirms) a Connection Reservation request
the Provider Agent then holds the resources needed by the Connection.

Topology Distribution Service The NSI Topology distribution Service is a service that allows the NSI topology to be
exchanged between NSAs.

Terminate Terminating is the process which will completely remove a Reservation and Release any
associated Connections. This term has a formal definition in the CS state-machine.

Ultimate PA (uPA) The ultimate PA is a Provider Agent that has an associated NRM.

Ultimate RA (uRA) The Ultimate RA is a Requester Agent is the originator of a service request.

XML Schema Definition (XSD) XSD is a schema language for XML.

eXtensible Markup Language
(XML)

XML is a markup language that defines a set of rules for encoding documents in a
format that is both human-readable and machine-readable.

12. Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other rights
that might be claimed to pertain to the implementation or use of the technology described in this
document or the extent to which any license under such rights might or might not be available;
neither does it represent that it has made any effort to identify any such rights. Copies of claims of
rights made available for publication and any assurances of licenses to be made available, or the
result of an attempt made to obtain a general license or permission for the use of such proprietary
rights by implementers or users of this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the OGF Executive Director.

GFD-R-P.212
NSI-WG 13 May 2014

 99

13. Disclaimer
This document and the information contained herein is provided on an “As Is” basis and the OGF
disclaims all warranties, express or implied, including but not limited to any warranty that the use of
the information herein will not infringe any rights or any implied warranties of merchantability or
fitness for a particular purpose.

14. Full Copyright Notice

Copyright (C) Open Grid Forum (2008-2013). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the above
copyright notice and this paragraph are included on all such copies and derivative works. However,
this document itself may not be modified in any way, such as by removing the copyright notice or
references to the OGF or other organizations, except as needed for the purpose of developing Grid
Recommendations in which case the procedures for copyrights defined in the OGF Document
process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its
successors or assignees.

GFD-R-P.212
NSI-WG 13 May 2014

 100

15. Appendix A: State Machine Transition Tables
This appendix describes the transitions that are allowed in the NSI CS state machines. These
tables should be read in conjunction with the state machines described in section 4.3.

Table 101 RSM transition table

Table 102 PSM transition table

>rsv.rq >rsvabort.rq >rsvcommit.rq <rsv.cf <rsv.fl <rsvabort.cf <rsvcommit.cf <rsvcommit.fl (ReserveTimeout)

Reserve

Checking

Reserve

Start

Reserve

Start

Reserve

Start

Reserve

Start

Reserve

Start

Reserve

Start

Reserve

Start

Reserve

Start

>rsv.rq <rsvabort.na <rsvcommit.na

Reserve

Checking

Reserve

Checking

Reserve

Checking

Reserve

Held

Reserve

Failed

Reserve

Checking

Reserve

Checking

Reserve

Checking

Reserve

Checking

<rsv.na <rsvabort.na <rsvcommit.na <rsv.cf <rsv.fl

Reserve

Held

Reserve

Aborting

Reserve

Commiting

Reserve

Held

Reserve

Held

Reserve

Held

Reserve

Held

Reserve

Held

Reserve

Timeout

<rsv.na >rsvabort.rq >rsvcommit.rq <rsvtimeout.nt

Reserve

Committing

Reserve

Committing

Reserve

Committing

Reserve

Committing

Reserve

Committing

Reserve

Committing

Reserve

Start

Reserve

Start

Reserve

Committing

<rsv.na <rsvabort.na <rsvcommit.na <rsvcommit.cf <rsvcommit.fl

Reserve

Failed

Reserve

Aborting

Reserve

Failed

Reserve

Failed

Reserve

Failed

Reserve

Failed

Reserve

Failed

Reserve

Failed

Reserve

Failed

<rsv.na >rsvabort.rq <rsvcommit.na

Reserve

Aborting

Reserve

Aborting

Reserve

Aborting

Reserve

Aborting

Reserve

Aborting

Reserve

Start

Reserve

Aborting

Reserve

Aborting

Reserve

Aborting

<rsv.na <rsvabort.na <rsvcommit.na <rsvabort.cf

Reserve

Timeout

Reserve

Aborting

Reserve

Start

Reserve

Timeout

Reserve

Timeout

Reserve

Timeout

Reserve

Timeout

Reserve

Timeout

Reserve

Timeout

<rsv.na >rsvabort.rq <rsvcommit.fl

Illeagal request. Reply with "not applicable".

Non expected input. Should be an error

Reserve

Start

Reserve

Committing

Output message

Next State

Input message/Event

Reserve

Timeout

Reserve

Checking

Reserve

Held

Reserve

Failed

Reserve

Aborting

Current

State

>prov.rq >rel.rq <prov.cf <rel.cf

Provisioning Released Released Released

>prov.rq <rel.na

Provisioning Provisioning Provisioned Provisioning

<prov.na <rel.na <prov.cf

Provisioned Releasing Provisioned Provisioned

<rsv.na >rel.rq

Releasing Releasing Releasing Released

<prov.na <rel.na <rel.cf

Illeagal request. Reply with "not applicable".

Non expected input. Should be an error

Input message

Current

State

Next State

Output message

Released

Provisioning

Provisioned

Releasing

GFD-R-P.212
NSI-WG 13 May 2014

 101

Table 103 LSM transition table

A service exception MUST be immediately returned when an invalid message is detected. For
example:

 In the case where a .na message is specified in these tables Service exception 201 ‘invalid
message’ is returned.

 Undefined connectionId in the request will return a service exception 203.

An error response message is sent when the incoming message is valid but there are processing
issues that need to be notified (e.g. a problem has been encountered during provisioning).

16. Appendix B: Error Messages and Best Practices

16.1 Error Messages

The following set of error codes SHOULD be used. Any of these service exceptions can be sent in
either the SOAP fault reply to the original request, a failed reply message, or an error reply
message.

errorId errorDescription Text variables

00100 PAYLOAD_ERROR

00101 MISSING_PARAMETER Invalid or missing parameter Include the parameter name

that is missing.

00102 UNSUPPORTED_PARAMETER A provided request parameter that

MUST be processed contains an
unsupported value..

Include the parameter name

that is unsupported.

00103 NOT_IMPLEMENTED Include the capability that is not
implemented.

00104 VERSION_NOT_SUPPORTED The service version requested in
NSI header is not supported.

Return type protocolVersion and
value the version requested.

00200 CONNECTION_ERROR

00201 INVALID_TRANSITION Connection state machine is in
invalid state for received message.

Include the current state of the
state machine.

00202 CONNECTION_EXISTS Schedule already exists for

connectionId

00203 CONNECTION_NONEXISTENT Schedule does not exist for
connectionId.

00204 CONNECTION_GONE

Lifecycle State Machine (LSM)

>term.rq <term.cf <forcedEnd

Terminating Created Failed

>term.rq <forcedEnd

Failed Terminated Failed

<term.na <term.cf <forcedEnd

Terminating Terminated Terminating

<term.na <term.cf <forcedEnd

Terminated Terminated Terminated

<term.na <forcedEnd

Illeagal request. Reply with "not applicable".

Non expected input. Should be an error

Created

Terminating

Terminated

Input message

Current

State

Next State

Output message

Failed

GFD-R-P.212
NSI-WG 13 May 2014

 102

00205 CONNECTION_CREATE_ERROR Failed to create connection
(payload was ok, something went

wrong)

00300 SECURITY_ERROR

00301 AUTHENTICATION_FAILURE

00302 UNAUTHORIZED

00400 TOPOLOGY_ERROR

00403 NO_PATH_FOUND Path computation failed to resolve
route for reservation.

00500 INTERNAL_ERROR An internal error has caused a
message processing failure.

00501 INTERNAL_NRM_ERROR An internal NRM error has caused

a message processing failure.

Include information describing

the specific NRM error.

00600 RESOURCE_UNAVAILABLE

00700 SERVICE_ERROR Reserved for service specific

errors as defined by serviceType
and the corresponding service

definition.

Table 104 Error messages

16.2 NTP servers
The server running the NSA SHOULD use NTP version 4 [8]. This will reduce the risk of clock skew
between the NSAs.

16.3 Timeouts
In order to identify communication failures, both the MTL and Coordinator have defined timeouts to
detect breakdowns in certain aspects of the communication channel. The characteristics of these
timeouts are outlined below for informational purposes:

 MTL Timeout
o Symptoms

 No acknowledgement of message receipt after a pre-determined time period
after the message was sent.

o Causes
 Failure in end-to-end communication between NSAs.

 Coordinator Timeout
o Symptoms

 No NSI reply after a pre-determined time period after the NSI request was sent.
o Causes

 Failure in the MTL such that the NSI reply (from the PA) could not be delivered
to the RA (the RA).

 The NSA processing the request (e.g. PA) was unable to reply due to
incapacitation.

 The NSA processing the request (AG) was blocked waiting for NSI replies from
downstream NSAs. (This scenario can be resolved by adjusting the
Coordinator timeout value of the requester.)

As both the MTL and Coordinator timeouts are distinct and can be set exclusively, it is important to
understand the interplay between the MTL and Coordinator timeouts in order to mitigate artificial
“failures”. The RA may choose to send queries to check the status of a request rather than
terminating at timeout.

In the event of an MTL or Coordinator timeout, the Coordinator MUST generate a message delivery
failure notification and send it up the workflow tree (towards the uRA).

GFD-R-P.212
NSI-WG 13 May 2014

 103

Timeouts MAY be configurable on a per operation basis and it is suggested that they are set to 2
minutes as a default. Requester side timeouts: It is up to the individual provider to choose
appropriate NSA timeouts for their network. As a guide the timeout should be set to 2 minutes for
reservations to a provider-only NSA, and longer for hierarchical requests to aggregator NSAs
depending on the number of levels of recursion.

Figure 131: Potential MH/MTL timeout sequences

17. Appendix C: Firewall Handling

Firewalls are commonly disruptive of application level protocols (such as FTP), with specific
protocol solutions such as uPnP defined to help applications properly traverse a firewall. The NSI
CS HTTP/SOAP binding has similar firewall issues. It is important to maintain appropriate firewall
and application configurations for the NSI protocol to function correctly. However, it is recognized
there will be situations where an NSA administrator may not be able to influence firewall
configurations and therefore need an alternative solution.

GFD-R-P.212
NSI-WG 13 May 2014

 104

Figure 132 shows an example of the common firewall issue that is encountered when deploying an

NSA behind a firewall within a private address space. This flow proceeds as follows:

 The RA composes an NSI reserve request message populating the replyTo field with its
SOAP endpoint using private IP address for asynchronous response.

 The RA behind the firewall issues HTTP reserve request to PA on the public network.

 The firewall NATs the HTTP request and passes on to the PA but does not NAT the private
IP address in replyTo since this is embedded in the SOAP message.

 The PA is unable to reach the private IP address to deliver the reserveConfirmed message.

Figure 132 – RA behind a firewall with private IP address.

Similar issues can occur when the RA is assigned a public IP address but is behind a firewall not
configured to forward HTTP traffic to the callback endpoint. Figure 133 shows an example of this

specific issue. This flow proceeds as follows:

 The RA composes an NSI reserve request message populating the replyTo field with its
SOAP endpoint using public IP address for asynchronous response.

 The RA behind the firewall issues the HTTP reserve request to the PA on the public
network.

 The firewall passes the request on to PA but requires no NATing of addresses.

 The PA cannot reach the public IP address of the RA to deliver the reserveConfirmed
message as the firewall is blocking incoming HTTP connections.

Figure 133 – RA behind a firewall with public IP address.

It should also be noted that if these NSAs are in a true peer-to-peer configuration both supporting
the requester and provider roles, then communications between the two NSAs needs to be possible
for either NSA to issue requests or return asynchronous confirmations. This also needs to be
possible if both NSAs are behind firewall devices.

GFD-R-P.212
NSI-WG 13 May 2014

 105

There are a number of solutions to help address these firewall issues. The most obvious is proper
firewall configuration for the specific NSA deployment. For an NSA with public IP addresses
assigned but behind a firewall, access control lists can be set in combination with port filtering to
allow communication between these peer NSAs. This will allow the NSA-specific HTTP traffic to be
passed between servers and therefore to achieve proper NSI asynchronous protocol behavior.

 Figure 134 – Peer NSA behind a firewall with public IP addresses.

A slightly more complicated NSA deployment occurs when one or both of the peer NSAs are
assigned private IP addresses and are behind a firewall. In this situation the NSA will need to use
the IP address of the firewall providing HTTP port forwarding or a full HTTP proxy as its public
identity. Access control lists can be set for peer NSA in combination with NAT and port forwarding
to allow the RA to be mapped through to the PA’s HTTP server port within the DMZ. However, the
key configuration change is that an RA behind the firewall will need to provide the public-facing IP
address and port of the firewall/proxy within the replyTo field of the NSI operation request. This will

allow the PA to correctly map the SOAP endpoint for the asynchronous response back to the
firewall/proxy that will tunnel the message through to the target RA.

Figure 135 – Peer NSA behind a firewall with private IP addresses.

To summarize, a PA needs to have a publically accessible interface to receive request messages
from an RA, and an RA needs to also have a publically accessible interface to receive response
messages (confirm, failed, or event) from the PA when using the asynchronous messaging
interface.

In NSI CS a simple set of synchronous operations have been added to allow an RA isolated behind
a firewall to interact with a PA supporting a publically accessible interface. These synchronous
operations will block until the confirmed, failed, or error message is available and return it in the
results of the synchronous request (where the current asynchronous operations return an ACK).

The existing reserve, reserveCommit, reserveAbort, provision, release, and terminate operation
sets have been modified to accept requests without a replyTo parameter within the NSI CS header.

GFD-R-P.212
NSI-WG 13 May 2014

 106

These operations will behave normally, except a confirmed/failed response will not be sent back to
the RA. This behavior is triggered by the lack of a replyTo parameter. It is the responsibility of an

RA to determine the result of these operations through changes to state machines associated with
the reservation via the firewall safe querySummarySync operation. Results of a previously issued

operation can be determined by polling state machines associated with the reservation.

NS CS version 2.0 also introduced additional modeling of event notifications and operation results
against reservations to help support a synchronous polling RA. A notification identifier and result
identifier has been added to the reservation query information to indicate a notification/result has
been received against that reservation. Without the ability to receive asynchronous
notifications/results, these synchronous polling RA can use the new firewall safe
queryNotificationSync operation to retrieve a list of notifications against the reservation, or the
queryResultSync operation to retrieve a list of operation results against the reservation.

To summarize, with the optional replyTo parameter, the introduction of notification modeling within a
reservation, and the firewall safe querySummarySync , queryNotificationSync, and
queryResultSync operations, it is possible to build a fully functional firewall-safe RA.

18. Appendix D: Formal Statement of Coordinator

The following is an attempt to describe the behavior of the Coordinator in relation to the processing
of requests and interactions with the various state machines in the NSA. Due to the slight difference
in behavior between an AG and a uPA, these are described separately.

18.1 Aggregator NSA
18.1.1 Processing of NSI Requests

The following outlines the messages received by the AG’s Coordinator from external NSAs (e.g.
parent or child NSAs), and the corresponding interactions between the Coordinator and various
internal state machine functions.

NSI_rsv.rq(Conn_ID, Corr_ID, Ver) /* from parent NSA */

 if (new Conn_ID) then

 {

 create state machine RSM(Conn_ID) /* initial state = ReserveStart */

 create state machine LSM(Conn_ID) /* initial state = Created */

 create state machine PSM(Conn_ID) /* initial state = Released */

 do pathfinding -> create entry for all children in

 connection_segment_list(Conn_ID, Child_NSA)

 }

 send rsv.rq(Corr_ID, Ver) to RSM(Conn_ID)

NSI_rsvcommit.rq(Conn_ID, Corr_ID, ver) /* from parent NSA */

 send rsvcommit.rq(Corr_ID, Ver) to RSM(Conn_ID)

NSI_rsvabort.rq(Conn_ID, Corr_ID, ver) /* from parent NSA */

 send rsvabort.rq(Corr_ID, Ver) to RSM(Conn_ID)

NSI_prov.rq(Conn_ID, Corr_ID) /* from parent NSA */

 send prov.rq(Corr_ID) to PSM(Conn_ID)

NSI_rel.rq(Conn_ID, Corr_ID) /* from parent NSA */

 send rel.rq(Corr_ID) to PSM(Conn_ID)

NSI_term.rq /* from parent NSA */

 send term.rq(Corr_ID) to LSM(Conn_ID)

 send term.rq to RSM(Conn_ID), PSM(Conn_ID) /* if RSM and PSM exist */

NSI_rsv.cf(Conn_ID, Corr_ID) /* from child NSA */

 set request_segment_list(Conn_ID, Child_NSA, Corr_ID).Status = replied

 if all children in request_segment_list(Conn_ID, Child_NSA,

 Corr_ID).Status == replied then

GFD-R-P.212
NSI-WG 13 May 2014

 107

 {

 send res.cf(Corr_ID, Ver) to RSM(Conn_ID)

 }

NSI_rsv.fl(Conn_ID, Corr_ID) /* from child NSA */

 if request_list(Conn_ID, Corr_ID).Status != fail then

 {

 set request_list(Conn_ID, Corr_ID).Status = fail

 send res.fl(Corr_ID, Ver) to RSM(Conn_ID)

 }

NSI_rsvcommit.cf(Conn_ID, Corr_ID, Ver) /* from child NSA */

 set request_segment_list(Conn_ID, Child_NSA, Corr_ID).Status = replied

 if all children in request_segment_list(Conn_ID, Child_NSA,

 Corr_ID).Status == replied then

 {

 send rsvcommit.cf(Corr_ID, Ver) to RSM(Conn_ID)

 }

NSI_rsvcommit.fl(Conn_ID, Corr_ID, Ver) /* from child NSA */

 set request_segment_list(Conn_ID, Child_NSA, Corr_ID).Status = replied

 if all children in request_segment_list(Conn_ID, Child_NSA,

 Corr_ID).Status == replied then

 {

 send rsvcommit.fl(Corr_ID, Ver) to RSM(Conn_ID)

 }

NSI_rsvabort.cf(Conn_ID, Corr_ID, Ver) /* from child NSA */

 set request_segment_list(Conn_ID, Child_NSA, Corr_ID).Status = replied

 if all children in request_segment_list(Conn_ID, Child_NSA,

 Corr_ID).Status == replied then

 {

 send rsvabort.cf(Corr_ID, Ver) to RSM(Conn_ID)

 }

NSI_prov.cf(Conn_ID, Corr_ID) /* from child NSA */

 set request_segment_list(Conn_ID, Child_NSA, Corr_ID).Status = replied

 if all children in request_segment_list(Conn_ID, Child_NSA,

 Corr_ID).Status == replied then

 {

 send prov.cf(Corr_ID) to PSM(Conn_ID)

 }

NSI_rel.cf(Conn_ID, Corr_ID) /* from child NSA */

 set request_segment_list(Conn_ID, Child_NSA, Corr_ID).Status = replied

 if all children in request_segment_list(Conn_ID, Child_NSA,

 Corr_ID).Status == replied then

 {

 send rel.cf(Corr_ID) to PSM(Conn_ID)

 }

NSI_term.cf(Conn_ID, Corr_ID) /* from child NSA */

 set request_segment_list(Conn_ID, Child_NSA, Corr_ID).Status = replied

 if all children in request_segment_list(Conn_ID, Child_NSA,

 Corr_ID).Status == replied then

 {

 send term.cf(Corr_ID) to LSM(Conn_ID)

 }

18.1.2 Requests from State Machines

The following outlines the messages received by the AG’s Coordinator from internal state machine
functions, and the corresponding actions and messages to external NSAs (e.g. parent or child
NSAs).

rsv.rq(Corr_ID, Ver) /* from RSM(Conn_ID) */

 create entry for all children in request_segment_list(Conn_ID,

 Child_NSA, Corr_ID)

 send NSI_rsv.rq(Conn_ID, Corr_ID, Ver) to children in

 connection_segment_list(Conn_ID, Child_NSA)

GFD-R-P.212
NSI-WG 13 May 2014

 108

rsvcommit.rq(Corr_ID, Ver) /* from RSM(Conn_ID) */

 create entry for all children in request_segment_list(Conn_ID,

 Child_NSA, Corr_ID)

 send NSI_rsvcommit.rq(Conn_ID, Corr_ID, Ver) to children in

 connection_segment_list(Conn_ID, Child_NSA)

rsvabort.rq(Corr_ID, Ver) /* from RSM(Conn_ID) */

 create entry for all children in request_segment_list(Conn_ID,

 Child_NSA, Corr_ID)

 send NSI_rsvabort.rq(Conn_ID, Corr_ID, Ver) to children in

 connection_segment_list(Conn_ID, Child_NSA)

rsv.cf(Corr_ID) /* from RSM(Conn_ID) */

 send NSI_rsv.cf(Conn_ID, Corr_ID, Ver) to the parent

rsv.fl(Corr_ID) /* from RSM(Conn_ID) */

 send NSI_rsv.fl(Conn_ID, Corr_ID, Ver) to the parent

rsvcommit.cf(Corr_ID, Ver) /* from RSM(Conn_ID) */

 send NSI_rsvcommit.cf(Conn_ID, Corr_ID, Ver) to the parent

rsvcommit.fl(Corr_ID, Ver) /* from RSM(Conn_ID) */

 send NSI_rsvcommit.fl(Conn_ID, Corr_ID, Ver) to the parent

rsvabort.cf(Corr_ID, Ver) /* from RSM(Conn_ID) */

 send NSI_rsvabort.cf(Conn_ID, Corr_ID, Ver) to the parent

prov.rq(Corr_ID) /* from PSM(Conn_ID) */

 create entry for all children in request_segment_list(Conn_ID,

 Child_NSA, Corr_ID)

 send NSI_prov.rq(Conn_ID, Corr_ID) to children in

 connection_segment_list(Conn_ID, Child_NSA)

rel.rq(Corr_ID) /* from PSM(Conn_ID) */

 create entry for all children in request_segment_list(Conn_ID,

 Child_NSA, Corr_ID)

 send NSI_prov.rq(Conn_ID, Corr_ID) to children in

 connection_segment_list(Conn_ID, Child_NSA)

prov.cf(Corr_ID) /* from PSM(Conn_ID) */

 send NSI_prov.cf(Conn_ID, Corr_ID) to the parent

rel.cf(Corr_ID) /* from PSM(Conn_ID) */

 send NSI_rel.cf(Conn_ID, Corr_ID) to the parent

term.rq(Corr_ID) /* from LSM(Conn_ID) */

 create entry for all children in request_segment_list(Conn_ID,

 Child_NSA, Corr_ID)

 send NSI_term.rq(Conn_ID, Corr_ID) to children in

 connection_segment_list(Conn_ID, Child_NSA)

term.cf(Corr_ID) /* from LSM(Conn_ID) */

 clean up everything related to Conn_ID

 send NSI_term.cf(Conn_ID, Corr_ID) to the parent

18.2 Ultimate PA
18.2.1 Processing of NSI Requests

The following outlines the messages received by the uPA’s Coordinator from external NSAs (e.g.
parent NSAs), and the corresponding interactions between the Coordinator and various internal
state machine functions.

NSI_rsv.rq(Conn_ID, Corr_ID) /* from parent NSA */

 if (new Conn_ID) then

 {

 create state machines RSM(Conn_ID), PSM(Conn_ID), LSM(Conn_ID)

 }

 send res.rq(Corr_ID, Ver) to RSM(Conn_ID)

GFD-R-P.212
NSI-WG 13 May 2014

 109

 if reservation is made by checking the Reservation DB then

 {

 send res.cf(Corr_ID, Ver) to RSM(Conn_ID)

 }

 else

 {

 send res.fl(Corr_ID, Ver) to RSM(Conn_ID)

 }

NSI_rsvcommit.rq(Conn_ID, Corr_ID, Ver) /* from parent NSA */

 send rsvcommit.rq(Corr_ID, Ver) to RSM(Conn_ID)

NSI_rsvabort.rq(Conn_ID, Corr_ID, Ver) /* from parent NSA */

 send rsvabort.rq(Corr_ID, Ver) to RSM(Conn_ID)

NSI_prov.rq(Conn_ID, Corr_ID) /* from parent NSA */

 send prov.rq(Corr_ID) to PSM(Conn_ID)

NSI_rel.rq(Conn_ID, Corr_ID) /* from parent NSA */

 send rel.rq(Corr_ID) to PSM(Conn_ID)

NSI_term.rq(Conn_ID, Corr_ID) /* from parent NSA */

 send term.rq(Corr_ID) to LSM(Conn_ID)

 send term.rq to RSM(Conn_ID), PSM(Conn_ID), ASM(Conn_ID)

 /* if RSM, PSM and ASM exist */

18.2.2 Requests from State Machines

The following outlines the messages received by the uPA’s Coordinator from internal state machine
functions, and the corresponding actions and messages to external NSAs (e.g. parent NSAs).

rsv.rq(Corr_ID, Ver) /* from RSM(Conn_ID) */

 ignore

rsvcommit.rq(Corr_ID, Ver) /* from RSM(Conn_ID) */

 ignore

rsvabort.rq(Corr_ID, Ver) /* from RSM(Conn_ID) */

 ignore

rsv.cf(Corr_ID) /* from RSM(Conn_ID) */

 set REPLIED(Corr_ID)

 send NSI_rsv.cf(Conn_ID, Corr_ID, Ver) to the parent

rsv.fl(Corr_ID) /* from RSM(Conn_ID) */

 set REPLIED(Corr_ID)

 send NSI_rsv.fl(Conn_ID, Corr_ID) to the parent

rsvcommit.cf(Corr_ID, Ver) /* from RSM(Conn_ID) */

 commit the reservation(Conn_ID, Ver)

 set REPLIED(Corr_ID)

 send NSI_rsvcommit.cf(Conn_ID, Corr_ID, Ver) to the parent

rsvcommit.fl(Corr_ID, Ver) /* from RSM(Conn_ID) */

 commit the reservation(Conn_ID, Ver)

 set REPLIED(Corr_ID)

 send NSI_rsvcommit.fl(Conn_ID, Corr_ID, Ver) to the parent

rsvabort.cf(Corr_ID, Ver) /* from RSM(Conn_ID) */

 abort the reservation(Conn_ID, Ver)

 set REPLIED(Corr_ID)

 send NSI_rsvabort.cf(Conn_ID, Corr_ID, Ver) to the parent

prov.rq(Corr_ID) /* from PSM(Conn_ID) */

 set prov_flag(Conn_ID)

 if in_period_flag is set then

 {

 activate data plane according to the latest reservation

 send prov.cf(Corr_ID) to PSM(Conn_ID)

 }

GFD-R-P.212
NSI-WG 13 May 2014

 110

rel.rq(Corr_ID) /* from PSM(Conn_ID) */

 reset prov_flag(Conn_ID)

 deactivate data plane

 send rel.cf(Corr_ID) to PSM(Conn_ID)

prov.cf(Corr_ID) /* from PSM(Conn_ID) */

 send NSI_prov.cf(Conn_ID, Corr_ID) to the parent

rel.cf(Corr_ID) /* from PSM(Conn_ID) */

 send NSI_rel.cf(Conn_ID, Corr_ID) to the parent

term.rq(Corr_ID) /* from LSM(Conn_ID) */

 ignore

term.cf(Corr_ID) /* from LSM(Conn_ID) */

 clean up everything related to Conn_ID

 send NSI_term.cf(Conn_ID, Corr_ID) to the parent

19. Appendix E: Service-Specific Schema
One of the primary objectives of NSI CS is to remove the dependencies of data plane service
specification from the core NSI CS protocol (this is new in NSI CS v2.0 compared to earlier versions
of NSI). This decoupling allows the existing NSI CS protocol to remain stable while permitting
changes to the services offered by a network provider without impacting the existing protocol. This
section documents the decoupled Point-to-Point Service Schema.

19.1 Restructuring criteria element

In NSI CS 2.0 the Point-to-Point service-specific capacity, path, and serviceAttributes elements are
removed from the criteria element, used for example in the reserve message elements. These

Point-to-Point service-specific elements are repackaged into a separate service-specific schema
definition, which is allocated a dedicated namespace for use when referencing the contained
elements. The criteria element was extended to include an ANY child element allowing generic

inclusion of external service schemas. In addition to the service specification decoupling, the CS
uses an element called serviceType, which is described in the next section. These criteria are

shown in Section 8.5.1.30.

19.2 The serviceType element

The serviceType element names the specific service type requested in the reservation. This service

type string maps to a specific Service Definition template defined by the network providers
describing the type of service offered, parameters supported in a reservation request (mandatory
and optional), defaults for parameters if not specified (as well as maximums and minimums), and
other attributes relating to the service offering. The NSA in turn uses this information to determine
the specific service parameters carried in the criteria element as part of the reservation request.

The Service Definition template is an important component in the solution, linking the opaque
information carried in the NSI CS protocol to the concrete parameters needed to satisfy a specific
service request.

19.3 Service-specific errors

The NSI CS protocol commonly utilizes the ServiceExceptionType structure to convey error

information associated with SOAP faults, failed messages, and error messages. The structure is
extremely flexible and able to handle both simple high-level error information, as well as detailed
errors down to the individual attribute value causing a problem. The current ServiceExceptionType

is defined in Section 8.3.1.

GFD-R-P.212
NSI-WG 13 May 2014

 111

The NSI CS protocol uses a hierarchal error code structure to group related error codes together
under a common parent error code value. A service-specific parent error code
SERVICE_ERROR(00700) has been defined for use by individual service specification. As new

services are offered, and existing ones modified, these service-specific errors can be modified as
needed with no impact on the core NSI CS protocol.

Context for these service-specific errors is provided by the serviceType element included in the
ServiceExceptionType structure returned when an NSA generates a service-specific error. This
serviceType element maps into the service definition used for the service request

1
 on this failed

segment and, in turn, to a detailed description of the service-specific error. Table 105 shows the
service-specific errors defined for the basic point-to-point service.

text errorId Description
SERVICE_ERROR 00700 Parent error classification for a service-specific

error.

UNKNOWN_STP 00701 Could not find STP in topology database.

STP_RESOLUTION_ERROR 00702 Could not resolve STP to a managing NSA.

VLANID_INTERCANGE_NOT_SUPPORTED 00703 VLAN interchange not supported for requested
path.

STP_UNAVALABLE 00704 Specified STP already in use.

CAPACITY_UNAVAILABLE 00705 Insufficient capacity available for reservation.

Table 105 – NSI-CS point-to-point service-specific errors.

19.4 Point-to-point service-specific schema

All service capabilities of earlier versions of the NSI CS have been captured in the service-specific
schema for NSI CS. Service parameters must be encapsulated in an XML element for inclusion in
the criteria element of a reservation request. In addition, any modifiable parameters of the
reservation must also be defined as XML elements for inclusion in the criteria element of a

modification request.

Namespace definition: http://schemas.ogf.org/nsi/2013/12/services/point2point

19.4.1 Service Elements

19.4.1.1 p2ps

This point-to-point service element is used within the criteria element to specify a generic point-to-

point service request in the NSI CS protocol. It provides functional equivalent to the point-to-point
service integrated in earlier versions of NS CS, and can be used for point-to-point Ethernet service
offerings.

1
 The serviceType is included since the original serviceType specified in the reserve request may have been re-mapped into

a different serviceType when sent to a child NSA.

http://schemas.ogf.org/nsi/2013/12/services/point2point

GFD-R-P.212
NSI-WG 13 May 2014

 112

Figure 136 – p2ps service element.

Parameters

The p2ps service element has the following parameters:

Parameter Description

capacity Capacity of the service. Units for the capacity parameter are defined in the

associated service definition.

directionality The (uni or bi) directionality of the service.

symmetricPath An indication that both directions of a bidirectional circuit must follow the same
path. Only applicable when directionality is "Bidirectional". If not specified then
value is assumed to be false.

sourceSTP Source STP identifier of the service.

destSTP Destination STP identifier of the service.

ero A hop-by-hop ordered list of STPs from sourceSTP to destSTP representing a
path that the connection must follow. This list does not include sourceSTP or
destSTP.

parameter A flexible non-specific parameters definition allowing for specification of
parameters in the Service Definition that are not defined directly in the service-

specific schema.

##other For future expansion and extensibility.

Table 106 p2ps service element parameters

19.4.1.2 capacity

The capacity element is defined for a modification of the capacity of an existing service. The unit of

capacity is specified in the Service Definition associated with the requested service.

Figure 137 – capacity service element.

GFD-R-P.212
NSI-WG 13 May 2014

 113

19.4.1.3 parameter

The parameter element, as a member of the p2ps service element, is used to add additional service

parameters not explicitly defined in the schema, but specified in the Service Definition.
The parameter element is specified individually within the criteria element when a modification to

one of these Service Definition defined parameters is required in an existing reservation.

Figure 138 – parameter service element.

19.4.2 Complex Types

These complex type definitions are utilized by the service-specific schema element definitions.

19.4.2.1 P2PServiceBaseType

The P2PServiceBaseType is a structure for a generic point-to-point service specification. At the

moment this type supports a unidirectional or bidirectional service.

Figure 139 – P2PServiceBaseType.

Parameters

The P2PServiceBaseType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

capacity M Capacity of the service. Units for the capacity parameter are defined in the
associated service definition.

directionality M The (uni- or bi-) directionality of the service.

symmetricPath O An indication that both directions of a bidirectional circuit must follow the same

GFD-R-P.212
NSI-WG 13 May 2014

 114

path. Only applicable when directionality is "Bidirectional". If not specified then
value is assumed to be false.

sourceSTP M Source STP identifier of the service.

destSTP M Destination STP identifier of the service.

ero O A hop-by-hop ordered list of STP from sourceSTP to destSTP representing a
path that the connection must follow. This list does not include sourceSTP or
destSTP.

parameter O A flexible non-specific parameters definition allowing for specification of
parameters in the Service Definition that are not defined directly in the service

specific schema.

##other O For future expansion and extensibility.

Table 107 P2PServiceBaseType parameters.

19.5 Generic Service Types
These are generic service type definitions that can be used to build service-specific schema. These
definitions are currently used by the point-to-point service definitions.

Namespace definition: http://schemas.ogf.org/nsi/2013/12/services/types

19.5.1 Complex Types

These complex type definitions are utilized by the service-specific schema complex type definitions.

19.5.1.1 OrderedStpType

A Service Termination Point (STP) that can be ordered in a list for use in ero Object definition.

Figure 140 – OrderedStpType.

Parameters

The OrderedStpType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description

order M Order attribute is provided only when the STP is part of an orderedSTPList.

stp M The Service Termination Point (STP).

Table 108 OrderedStpType parameters.

19.5.1.2 StpListType

This type is a simple ordered list type of Service Termination Points (STPs). The list order is
determined by the integer order attribute in the orderedSTP element.

Figure 141 – StpListType.

Parameters

The StpListType has the following parameters (M = Mandatory, O = Optional):

http://schemas.ogf.org/nsi/2013/12/services/types

GFD-R-P.212
NSI-WG 13 May 2014

 115

Parameter M/O Description

orderedSTP O A list of STP ordered 0..n by their integer order attribute.

Table 109 StpListType message parameters

19.5.2 Simple Types

These simple type definitions are utilized by the service-specific schema complex type definitions.

19.5.2.1 StpIdType

This is the Service Termination Point (STP) identifier type used in a service request for identifying
endpoints in path selection.

Figure 142 – StpIdType.

19.5.2.2 DirectionalityType

This type is used to indicate the directionality of the requested data service. Possible values are
Bidirectional for a bidirectional data service, and Unidirectional for a unidirectional data service.

Figure 143 – DirectionalityType.

19.6 Reservation request
Here is an example reserve request XML message for a bidirectional service as defined in NSI CS

version 2.0. There are a few things to note:

 The serviceType element is added to identify the desired service requested and will identify
the specific service elements carried in criteria. (in this case the p2ps element).

 The p2p namespace is defined in the reserve element using a unique URL defining the
service XSD document. All types needed for this point-to-point service in that XSD
document.

 The p2ps element is included in the criteria element and includes all service-specific
parameters.

<nsi:reserve xmlns:nsi="http://schemas.ogf.org/nsi/2013/12/connection/types"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:p2p="http://schemas.ogf.org/nsi/2013/12/services/point2point">

 <connectionId>urn:uuid:4b4a71d0-3c71-47cf-a646-beacb14a4c72</connectionId>
 <globalReservationId>urn:uuid:83fe4f36-5b38-41b6-bc46-a362a06a54ee</globalReservationId>
 <description>My example reservation using NSI CS 2.0.</description>
 <criteria version="1">
 <schedule>
 <startTime>2013-12-30T09:30:10Z</startTime>
 <endTime>2013-12-30T10:30:10Z</endTime>
 </schedule>
 <serviceType>http://services.ogf.org/nsi/2013/12/descriptions/EVTS.A-GOLE</serviceType>
 <p2p:p2ps>
 <capacity>1000</capacity>
 <directionality>Bidirectional</directionality>

GFD-R-P.212
NSI-WG 13 May 2014

 116

 <symmetricPath>true</symmetricPath>
 <sourceSTP>urn:ogf:network:netherlight.net:2012:uvalight-netherlight</sourceSTP>
 <destSTP>urn:ogf:network:netherlight.net:2012:netherlight-czechlight</destSTP>
 <parameter type=”mtu”>9500</parameter>
 </p2p:p2ps>
 </criteria>
</nsi:reserve>

19.7 Reservation modification

For a base point-to-point service specification we support the modification of schedule (start or end
time), as well as the capacity of the service. The schedule element is within the core criteria
element, and remains as is, specifying a change in the combination of startTime and endTime as

desired. For the external service schema, only the elements to be modified are included in the
request. These will be defined as separate elements within their schema definition for inclusion as
modifiable items.

Below is an example reserve modification request XML message where we are requesting a
modification to the capacity parameter of the reservation. Notice the serviceType element is not
required since the reservation is already bound by the original serviceType specified in the reserve

request.

<nsi:reserve xmlns:nsi="http://schemas.ogf.org/nsi/2013/12/connection/types"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:p2p="http://schemas.ogf.org/nsi/2013/12/services/point2point">

 <connectionId>urn:uuid:4b4a71d0-3c71-47cf-a646-beacb14a4c72</connectionId>
 <criteria version="2">
 <p2p:capacity>500</p2p:capacity>
 </criteria>
</nsi:reserve>

20. Appendix F: Tree and Chain Connection Examples

20.1 Connection managed by an NSA chain

Figure 144 shows an example of a Connection managed by an NSA chain. Each NSA is associated
with one Network as an NSA/Network pairing. In this case the Connection request is forwarded
between NSAs in the same sequence as the Connection transits the Networks.

GFD-R-P.212
NSI-WG 13 May 2014

 117

Figure 144: Example of Connection managed by an NSA chain

This example shows an NSI Topology consisting of 3 Networks, one per NSA. This topology has
the following STPs: Network X (STP a, STP b), Network Y (STP c, STP d, STP e), and Network Z
(STP f, STP g)

Here the NSAs are connected as a chain: uRA NSA to NSA-X, NSA-X to NSA-Y and NSA-Y to
NSA-Z

Assuming a Connection request comes from the uRA to NSA-X to reserve a Connection STP a to
STP g, then NSA-X will perform pathfinding on the topology and determine that, to make this
Connection, NSA-X needs to reserve a local connection from STP a to STP b and then NSA-X
forwards a request for the remainder of the connection to NSA-Y: STP c to STP g.

NSA-Y gets this request and reserves a Connection between STP c and STP e and requests a
Connection from NSA-Z from STP f to STP g.

20.2 Connection managed by an NSA tree

Figure 145 shows an example of a Connection managed by an NSA tree. In this case the NSI
message is forwarded between NSAs in a different sequence compared to the sequence in which
the Connection transits the Networks.

GFD-R-P.212
NSI-WG 13 May 2014

 118

Figure 145: Example of a Connection managed by a NSA tree

The topology remains the same as for the previous example: Network X (STP a, STP b), Network Y
(STP c, STP d, STP e), and Network Z (STP f, STP g).

Here the NSAs are connected as a tree: uRA NSA to NSA-X, NSA-X to NSA-Y and NSA-X to NSA-
Z

Assuming a Connection request comes from the uRA to NSA-X to reserve a Connection from STP
a to STP g, then NSA-X will perform pathfinding on the topology and determine that, to make this
Connection, NSA-X needs to reserve a local Connection from STP a to STP b. Next NSA-X
forwards a requestto NSA-Y to connect STP c to STP e, and to NSA-Z to connect STP f to STP g. .
NSA-Y builds its local Connection STP c to STP e and NSA-Z builds its local Connection STP f to
STP g. In this scenario, NSA-X is responsible for stitching Network Y and Network Z together at the
SDP made up of STP e/STP f. This is because NSA-Y and NSA-Z will not communicate directly
with one another.

21. References
1. OGF GWD-R-P “Network Service Framework v2.0”
2. OGF GWD-I Network Service Interface Topology Service Distribution Mechanisms

https://redmine.ogf.org/dmsf_files/12980?download=
3. GWD-R-P Network Service Interface Topology Representation
4. OGF GFD.206: Network Markup Language Base Schema version 1

http://www.gridforum.org/documents/GFD.206.pdf
5. IETF RFC 5905, Network Time Protocol Version 4: Protocol and Algorithms Specification
6. IETF RFC 4122, A Universally Unique IDdentifier (UUID) URN Namespace
7. ITU-T Rec. X.667 Information technology - Open Systems Interconnection - Procedures for

the operation of OSI Registration Authorities: Generation and registration of Universally
Unique Identifiers (UUIDs) and their use as ASN.1 Object Identifier components

8. ISO/IEC 9834-8:2005 Information technology -- Open Systems Interconnection --
Procedures for the operation of OSI Registration Authorities: Generation and registration of
Universally Unique Identifiers (UUIDs) and their use as ASN.1 Object Identifier components

https://redmine.ogf.org/dmsf_files/12980?download
http://www.gridforum.org/documents/GFD.206.pdf

GFD-R-P.212
NSI-WG 13 May 2014

 119

9. IETF RFC 4655, "A Path Computation Element (PCE)-Based Architecture", http://www.rfc-
editor.org/rfc/rfc4655.txt

10. ISO 8601:2000 “Data elements and interchange formats — Information interchange —
Representation of dates and times” or xsd dateTime

11. IETF RFC 5905, “Network Time Protocol Version 4: Protocol and Algorithms Specification”,
http://tools.ietf.org/html/rfc5905

12. IETF RFC 6453, “A URN Namespace for the Open Grid Forum (OGF)”,
http://tools.ietf.org/html/rfc6453

13. OGF GFD-CP.191 "Procedure for Registration of Subnamespace Identifiers in the
URN:OGF Hierarchy”, http://www.ogf.org/gf/docs/

14. W3C XML “Schema Definition Language (XSD) 1.1 Part 2: Datatypes”,
http://www.w3.org/TR/xmlschema11-2/#anyURI

http://www.rfc-editor.org/rfc/rfc4655.txt
http://www.rfc-editor.org/rfc/rfc4655.txt
http://tools.ietf.org/html/rfc6453
http://www.ogf.org/gf/docs/
http://www.w3.org/TR/xmlschema11-2/#anyURI

