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1 Introduction

The Open Cloud Computing Interface (OCCI) is a RESTful Protocol and API for all kinds of management tasks.
OCCI was originally initiated to create a remote management API for IaaS1 model-based services, allowing
for the development of interoperable tools for common tasks including deployment, autonomic scaling and
monitoring. It has since evolved into a flexible API with a strong focus on interoperability while still offering a
high degree of extensibility. The current release of the Open Cloud Computing Interface is suitable to serve
many other models in addition to IaaS, including PaaS and SaaS.

In order to be modular and extensible the current OCCI specification is released as a suite of complementary
documents, which together form the complete specification. The documents are divided into four categories
consisting of the OCCI Core, the OCCI Protocols, the OCCI Renderings and the OCCI Extensions.

• The OCCI Core specification consists of a single document defining the OCCI Core Model. OCCI
interaction occurs through renderings (including associated behaviors) and is expandable through
extensions.

• The OCCI Protocol specifications consist of multiple documents, each describing how the model can be
interacted with over a particular protocol (e.g. HTTP, AMQP, etc.). Multiple protocols can interact
with the same instance of the OCCI Core Model.

• The OCCI Rendering specifications consist of multiple documents, each describing a particular rendering
of the OCCI Core Model. Multiple renderings can interact with the same instance of the OCCI Core
Model and will automatically support any additions to the model which follow the extension rules defined
in OCCI Core.

• The OCCI Extension specifications consist of multiple documents, each describing a particular extension
of the OCCI Core Model. The extension documents describe additions to the OCCI Core Model defined
within the OCCI specification suite.

The current specification consists of seven documents. This specification describes version 1.2 of OCCI and
is backward compatible with 1.1. Future releases of OCCI may include additional protocol, rendering and
extension specifications. The specifications to be implemented (MUST, SHOULD, MAY) are detailed in the
table below.

Table 1. What OCCI specifications must be implemented for the specific version.

Document OCCI 1.1 OCCI 1.2

Core Model MUST MUST
Infrastructure Model SHOULD SHOULD
Platform Model MAY MAY
SLA Model MAY MAY
HTTP Protocol MUST MUST
Text Rendering MUST MUST
JSON Rendering MAY MUST

2 Notational Conventions

All these parts and the information within are mandatory for implementors (unless otherwise specified). The key
words ”MUST”, ”MUST NOT”, ”REQUIRED”, ”SHALL”, ”SHALL NOT”, ”SHOULD”, ”SHOULD NOT”,
”RECOMMENDED”, ”MAY”, and ”OPTIONAL” in this document are to be interpreted as described in RFC
2119 [1].

1Infrastructure as a Service
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3 Terms and definitions

Section 7 provides a glossary of all terms and definitions with a specific meaning to the OCCI specification suite.
However, for reader convenience, a sub-set of the glossary is provided here as well. The following terminology
has specific meaning in the OCCI context:

capabilities In the context of Entity sub-types capabilities refer to the Attributes and Actions exposed by an
entity instance.

entity instance An instance of a sub-type of Entity but not an instance of the Entity type itself. The OCCI
model defines two sub-types of Entity: the Resource type and the Link type. However, the term entity
instance is defined to include any instance of a sub-type of Resource or Link as well.

mix-in An instance of the Mixin type associated with an entity instance. The mix-in concept as used by
OCCI only applies to instances, never to Entity types. See section 5.3.4.

model attribute An attribute of the Core Model.

OCCI base type(s) The OCCI base types are Entity, Resource and Link. See section 5.4.

template A mechanism to provide default values for an entity instance. See section 5.3.7.

type A type refers to one of those defined by the OCCI Core Model. The OCCI Core Model types are Category,
Attribute, Kind, Mixin, Action, Entity, Resource and Link.

concrete type/sub-type A concrete type or sub-type is a type that can be instantiated.

4 OCCI Core

The Open Cloud Computing Interface is a boundary protocol and API that acts as a service front-end to a
provider’s internal management framework. Figure 1 shows OCCI’s place in a provider’s architecture.
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is HTTP

Comm. is 
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interface reqs

Comm. is 
internal

most 
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Figure 1. OCCI’s place in a provider’s architecture.

Service consumers can be both end-users and other system instances. OCCI is suitable for both cases. The
key feature is that OCCI can be used as a management API for all kinds of resources while at the same time
maintaining a high level of interoperability.

This document, the OCCI Core specification, defines the OCCI Core Model. This model is the core of the
specification suite. Renderings (including associated behaviors) can interact with it and extensions can expand
it. In itself, the core model is only useful for a very limited set of use cases. However, it provides the basis for
renderings and extensions to build upon.
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5 OCCI Core Model

The OCCI Core Model defines a representation of instance types which can be manipulated through an OCCI
protocol and rendering implementations. It is an abstraction of real-world resources, including the means to
identify, classify, associate and extend those resources.

A fundamental feature of the OCCI Core Model is that it can be extended in such a way that any extension
will be discoverable and visible to an OCCI client at run-time. An OCCI client can connect to an OCCI
implementation using an extended OCCI Core Model, without knowing anything in advance, and still be able
to discover and understand, at run-time, the various instance types supported by that implementation. For
example, a web-based OCCI client could easily be reused as the management tool for a wide variety of services.

The OCCI Core Model can be extended through inheritance but also using a mixin-like concept.

Mixins first appeared in the Symbolics’ object-oriented Flavors [2] system (developed by Howard
Cannon), which was an approach to object-orientation used in Lisp Machine Lisp.2

The mix-in model only applies at the instance level, i.e., the “object level”, and thereby differs from the more
common uses of the mix-in concept. A mix-in in OCCI can never be applied to a type, only to an instance.

5.1 Overview

The UML class diagram shown in figure 2 gives an overview of the OCCI Core Model. It must be noted that
the UML diagram in itself is not a complete definition of the model. The diagram is merely provided as an
overview to help understanding the model.

parent

depends

Attr ibute
name: String
type: Enum {Object, List, Hash}
mutable: Boolean
required: Boolean
pattern: Object [0..1]
default: {Object, List, Hash} [0..1]
description: String [0..1]

Link
 target: URI
 target.kind: Kind [0..1]

Resource
 summary: String

Entity
 id: URI
 title: String

Action
MixinKind

Category
scheme: URI
term: String
title: String [0..1]

*                      applies

1 *attr ibutes

  *

*

0..1

*

1 source *links

1
          kind

*entit ies

  *
 mixins

* entit ies

1* actions0..1 *actions

Figure 2. UML class diagram of the OCCI Core Model. The diagram provides an overview of the OCCI Core Model but is not a
standalone definition thereof.

The heart of the OCCI Core Model is the Resource type. Any resource exposed through OCCI is a Resource or
a sub-type thereof. A resource can be, e.g., a virtual machine, a job in a job submission system, a user, etc.

The Resource type contains a number of common attributes that Resource sub-types inherit. The Resource
type is complemented by the Link type which associates one Resource instance with another. The Link type
contains a number of common attributes that Link sub-types inherit.

2http://en.wikipedia.org/wiki/Mixin.
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Entity is an abstract type, which both Resource and Link inherit. Each sub-type of Entity is identified by a
unique Kind instance.

The Kind type is the core of the type classification system built into the OCCI Core Model. Kind is a
specialization of Category and introduces additional capabilities in terms of Actions. An Action identifies an
invocable operation applicable to an entity instance.

Attributes describe the name and properties of attributes found in Entity and its sub-types.

The last type defined by the OCCI Core Model is the Mixin type. An instance of Mixin can be associated with
an entity instance to mix-in additional capabilities at run-time.

For compliance with OCCI Core, all of the types defined in the OCCI Core Model MUST be implemented. The
following sections of the specification contain the formal definition of the OCCI Core Model.

5.2 Mutability

Attributes of an OCCI Core Model type instance are either client mutable or client immutable. If an attribute
is noted to be mutable this MUST be interpreted that a client can create an instance that is parametrized by
the attribute. Likewise, if an attribute is mutable, a client can update that instance’s mutable attribute value
and the server side MUST support this. If an attribute is marked as immutable, it indicates that the server
side implementation MUST manage these exclusively. Immutable attributes MUST NOT be modifiable by
clients under any circumstance.

5.3 Classification and Identification

The OCCI Core Model provides a built-in type classification system allowing for safe extension towards
domain-specific usage (e.g., infrastructure). This system is the OCCI type system and offers the means to
be easily and transparently (i.e., no format translation required) exposed over either a text- or binary-based
protocol.

The classification system can be summarized with the following key features:

• Each OCCI base type and extension thereof is assigned a unique type identifier (a Kind instance), which
allows for dynamic discovery of available types. All Entity sub-types, including core model extensions,
are assigned a unique Kind instance.

• The inheritance structure of Entity, Resource and Link is client-discoverable. This also applies to any
sub-type of Resource and Link and therefore an OCCI client can discover the type inheritance structure
used by a particular OCCI implementation. The discovery of the inheritance structure is made possible
through the relationship of Kind instances.

• The classification system allows Mixin instances to be associated to Entity instances in order to assign
additional capabilities in terms of Attributes and Actions at run-time.

• Tagging of Entity instances is supported through the association of Mixin instances. A tag is simply a
Mixin instance, which defines no additional capabilities.

• A collection of associated Entity instances is implicitly defined for each Kind and Mixin instance. That
is, all Entity instances associated with a particular Kind or Mixin instance form a collection.

5.3.1 Category

The Category type is the basis of the type identification mechanism used by the OCCI classification system.
It MUST be implemented. There are no instances of the Category type itself in the OCCI Core Model. The
Category type is only used through its sub-types Kind, Mixin and Action. Table 2 defines the model attributes
the Category type MUST implement to be compliant.

occi-wg@ogf.org 6
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Table 2. Model attributes defined for the Category type.

Model attribute Type Value Multiplicity Required Client Mutability Description

term String 1 Yes Immutable Unique identifier of the Category instance
within the categorization scheme.

scheme URI 1 Yes Immutable The categorization scheme.
title String 0..1 – Immutable The display name of an instance.

A Category instance is uniquely identified by concatenating the categorization scheme with the category term,
e.g., http://example.com/category/scheme#term. This is done to enable discovery of Category definitions in
text-based renderings such as the OCCI Text Rendering [3]. All renderings MUST make use of and understand
concatenated unique type identifiers of Category instances. Sub-types of Category such as Kind, Mixin and
Action inherit this property.

The categorization schemes defined in the OCCI specification all use the http://schemas.ogf.org/occi/ base
URL. This base URL is reserved for OCCI an MUST NOT be used by service provider extensions.

A Category instance3 has zero or more associated Attribute instances. Each Attribute, see section 5.3.2,
describes the name and properties of a single attribute.

5.3.2 Attribute

The Attribute type has a composite relationship to Category and defines the name and properties of client
readable Attributes. Table 3 defines the model attributes the Attribute type MUST implement to be compliant.

Table 3. Model attributes defined for the Attribute type.

Model attribute Type Value Multiplicity Required Client Mutability Description

name String 1 Yes Immutable Attribute name.
type Enum {Object,

List, Hash}
1 Yes Immutable Attribute type.

mutable Boolean 1 Yes Immutable Attribute mutability.
required Boolean 1 Yes Immutable Whether the Attribute must be

supplied by the client at instance
creation-time.

pattern Object 0..1 – Immutable Attribute pattern expressed in a
rendering-specific way.

default {Object, List,
Hash}

0..1 – Immutable Attribute default value.

description String 0..1 – Immutable A description of the Attribute.

An Attribute name MUST be defined by Attribute.name. The Attribute namespace is flat and the “occi.” prefix
is reserved for the OCCI specification. Domain-specific Attribute names MUST NOT contain the “occi.” prefix,
instead they SHOULD use a prefix consisting of the provider’s reverse domain name. E.g., “com.example.”.

An Attribute MAY specify the following properties in addition to the Attribute name. Attribute properties are
OPTIONAL but MUST be client discoverable if used.

type The type of the Attribute. The types supported are “Object”, “List” and “Hash”.

mutable Whether an OCCI client can change the Attribute value. See section 5.2.

required If an Attribute is “required” a client MUST specify a value at instance creation-time.

pattern MAY be specified in a rendering-specific format, places additional restrictions on acceptable attribute
values. Detailed information is provided in every OCCI rendering document.

default The default value given to an Attribute if the client does not specify a value at instance creation time.
The default property is used to implement templates, see section 5.3.7.

3Also applies to Kind, Mixin and Action instances.
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description A summarizing description of the Attribute to complement the attribute name. For example,
an interactive OCCI client may use the description property when presenting the content of an entity
instance.

5.3.3 Kind

The Kind type, together with the Mixin type, defines the classification system of the OCCI Core Model. It
MUST be implemented. The Kind type represents the type identification mechanism for all Entity types present
in the model. Sub-types MUST NOT be derived from the Kind type.

A unique Kind instance MUST be assigned to each and every Entity sub-type defined in an OCCI implementation.

Every instance of Kind represents a unique type identifier for a particular sub-type of Entity. Consequently,
when an Entity sub-type is instantiated the entity instance MUST be associated with its type identifier, i.e., the
Kind instance. An entity instance MUST remain associated with its Kind instance throughout its lifetime.
For example an instance of Resource MUST always be associated with the Kind instance which identifies the
Resource type.

In the initial instantiation of the OCCI Core Model, with no core model extensions, three instances of Kind will
be present: one for Entity, another for Resource and the last one for Link.

Table 4. Model attributes defined for the Kind type.

Model attribute Type Value Multiplicity Required Client Mutability Description

actions List of Action 0..* – Immutable List of Action instances defined by
the Kind instance.

parent Kind 0..1 – Immutable Another Kind instance which this
Kind has an inheritance relationship
with.

entities List of Entity 0..* – Immutable List of Entity instances. Instances of
the particular Entity sub-type which
is uniquely identified by this Kind
instance.

The Kind type inherits the Category type. To be compliant the Kind type MUST implement the model
attributes defined in table 4 and the inherited model attributes defined in table 2. The following rules apply to
all instances of the Kind type:

• A unique Kind instance MUST be assigned to each and every sub-type of Entity, including Entity itself.

• A Kind instance MUST expose the discoverable attributes defined for the Entity sub-type it identifies.

• A Kind instance MUST expose the Actions defined for its Entity sub-type.

• A Kind instance MUST have the Kind instance of Entity4 as its parent.

• If type B inherits type A, where A is a sub-type of Entity, the Kind instance of B MUST have its parent
attribute set to the Kind instance of A. See Kind Relationships below.

Kind Relationships A relationship between Kind instances is defined by the “parent” attribute. This implies
a setup of a hierarchy where the capabilities of the parent MUST be inherited by the child Kind instance.

Figure 3 illustrates the relationship of the Kind instances assigned to the Entity, Resource and Compute5 types.
Compute inherits Resource and therefore the Kind instance assigned to Compute has the Kind instance of
Resource as its parent. The same applies to the Resource type, which inherits Entity.

As can be seen in figure 3 the Kind instance relationships mirror the inheritance structure of the types.

4http://schemas.ogf.org/occi/core#entity
5The Compute type is defined in the OCCI Infrastructure document [4].

occi-wg@ogf.org 8
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compute : Kind
 term = compute
 scheme = http://schemas.ogf.org/occi/infrastructure#
 title = Compute Resource
 attributes: Attribute = [occi.compute.cores, occi.compute.memory, ...]
 actions: Action = [...]
 parent: Kind = http://schemas.ogf.org/occi/core#resource
 entities: Compute = []

resource : Kind
 term = resource
 scheme = http://schemas.ogf.org/occi/core#
 title = Resource
 attributes: Attribute = [occi.core.summary]
 actions: Action = []
 parent: Kind = http://schemas.ogf.org/occi/core#entity
 entities: Resource = []

entity : Kind
 term = entity
 scheme = http://schemas.ogf.org/occi/core#
 title = Entity
 attributes: Attribute = [occi.core.title]
 actions: Action = []

Figure 3. Object diagram illustrating the Kind instances involved for the Entity, Resource and Compute types. The Compute
type is an extension to the OCCI Core Model defined in the OCCI Infrastructure document [4].

5.3.4 Mixin

The Mixin type complements the Kind type in defining the OCCI Core Model type classification system. It
MUST be implemented. The Mixin type represents an extension mechanism, which allows new capabilities to
be added to entity instances both at creation time and/or run time. Sub-types MUST NOT be derived from
the Mixin type.

A Mixin instance can be associated with any existing entity instance and thereby identify new capabilities,
i.e., Attributes and Actions, for the entity instance. However, a Mixin can never be applied to a type. In the
initial instantiation of the OCCI Core Model, with no extensions, no Mixin instances are present.

A Mixin instance MAY be associated with an entity instance either at instance creation time or at run time.
Restrictions on which entity instances a particular Mixin can be associated with MUST be advertised through
the Mixin.applies model attribute.

When a client attempts to associate a Mixin instance to an entity instance at a stage not supported by a
particular provider’s OCCI implementation, the provider MUST notify the client it has issued a bad request.
For example a “bandwidth” Mixin may only be applicable to instances of the Network6 type. An OCCI provider
MUST advertise such a restriction by setting Mixin.applies to the Kind instance of the Network type7.

Table 5. Model attributes defined for the Mixin type.

Model attribute Type Value Multiplicity Required Client Mutability Description

actions List of Action 0..* – Immutable List of Action instances defined by
the Mixin instance.

depends List of Mixin 0..* – Immutable List of Mixin instances this Mixin
instance depends on.

applies List of Kind 0..* – Immutable List of Kind instances this Mixin
instance applies to.

entities List of Entity 0..* – Mutable List of Entity instances associated
with the Mixin instance.

The Mixin type inherits the Category type. To be compliant the Mixin type MUST implement the model
attributes defined in table 5 and the inherited model attributes defined in table 2. The following rules apply to
all instances of the Mixin type:

• A Mixin instance MUST only be associated with entity instances, not types, either at creation time or at
run time.

6The Network type is defined in OCCI Infrastructure [4].
7http://schemas.ogf.org/occi/infrastructure#network

occi-wg@ogf.org 9



GFD-R-P.221 September 19, 2016

• A Mixin instance is only a type identifier. It MUST NOT provide the implementation of the new
capabilities it introduces. For example, a Mixin instance never contains the value of an OCCI Attribute.

• A Mixin instance MAY introduce additional Attributes when applied to an entity instance. The name and
properties of those Attributes MUST be exposed through Mixin.attributes inherited from Category.
E.g., a Location Mixin defining the “com.example.location” Attribute MUST have Location.attributes
populated with a single Attribute instance where Attribute.name is ‘‘com.example.location’’.

• A Mixin instance MAY define Action instances that will identify additional invocable operations on
any entity instance associated with the Mixin. Actions defined by a Mixin are exposed through the
Mixin.actions model attribute that represents the association between a Mixin instance and the Action
instances it defines.

• A Mixin instance MAY depend on another Mixin instance. If Mixin B depends on Mixin A, any entity
instance associated with Mixin B will receive the capabilities defined by both Mixin B and Mixin A. See
Mixin Relationships below.

• A Mixin instance defining no additional capabilities is considered to be a tag.

• A Mixin instance MAY be used as a template. A template defines default values for Attributes to be
applied at entity instance creation-time. See section 5.3.7.

• A Mixin instance MAY restrict which Kind instances it applies to using the applies model attribute.
If Mixin.applies is unspecified the Mixin may be associated to any entity instance, i.e., equivalent of
having Mixin.applies set to the Kind instance of Entity.

Mixin Relationships Other Mixin instances MAY depend on any given Mixin instance. Mixin relationships
are implemented using the Mixin.depends model attribute. For example a set of operating system templates,
implemented as Mixin instances, could be related to an “OS-template” Mixin in order to help identification.

Attributes and Actions defined by different Mixin instances are combined when Mixin relationships are present.
Therefore an entity instance associated with a particular Mixin will receive the additional capabilities defined
by any related Mixin instances as well as those defined by the Mixin associated.

5.3.5 Action

The Action type is the final part of the OCCI type classification system and identifies invocable operations on
individual entity instances and collections. It MUST be implemented. Each Action instance identifies a single
invocable operation. The Action instance is only an identifier and does not represent the implementation of
the operation.

The Action type inherits the Category type. To be compliant the Action type MUST implement the inherited
model attributes defined in table 2.

Table 6. Example of an Action instance which identifies a “resize” operation.

Model attribute Value

term resize
scheme http://schemas.ogf.org/occi/infrastructure/storage/action#

title Resize virtual disk
attributes Attribute(‘‘size’’)

An Action instance MUST be always bound to either a Kind or a Mixin instance through composite association.
An Action is considered to be a capability of the Kind or Mixin instance it is associated with. The operation
identified by an Action MAY be invoked on any entity instance associated with the Kind or Mixin instance
defining the Action. An OCCI implementation MAY however refuse to invoke the operation if currently not
applicable.

occi-wg@ogf.org 10
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An operation identified by an Action instance MAY be invoked on a collection of Entity sub-type instances.
The Action is only considered valid if all entity instances of the collection are associated with the Kind or
Mixin defining the Action instance.

An Action instance MAY identify Attributes which correspond to parameters of the invocable operation. The
mechanism to define Attributes is inherited from Category and follows the same semantics. The namespace
restrictions imposed on entity instance attributes (see 5.3.2) do however not apply to Actions.

Table 6 shows an example of a “resize” operation defined for a Storage instance. The operation has a
“size” parameter which represent the size argument of the resize operation. In that example the identifying
Action instance would have Action.attributes populated with an Attribute instance where Attribute.name =

‘‘size’’.

5.3.6 Instantiation

To create an entity instance a client MUST supply the concrete Entity sub-type by submitting a reference to
the type-identifying Kind. The reference MUST consist of the term and categorization scheme, which uniquely
identify the Kind instance, see section 5.3.1. All OCCI implementations MUST understand these requests.

A client MAY also submit any number of references to Mixin instances to be associated with the instance to
be created. A Mixin reference submitted by a client MUST consist of the term and categorization scheme,
which identify the Mixin instance, see section 5.3.1.

5.3.7 Templates

A template is a mechanism to provide default values for entity instances. OCCI supports templates through
Mixins.

A Mixin instance associated at entity instance creation-time MAY provide default values for Attributes. Each
default value is specified through Attribute.default.

A Mixin instance MAY provide default values for Attributes already defined by a Kind. A Mixin’s At-
tribute.default overrides the default specified by the Kind.

The handling of Mixins with a common (transitive) parent Mixin, if assigned repeatedly, MAY be defined
case-by-case. A new Mixin may, e.g., replace the previous one, be rejected, or be place alongside the previous
one. An example of this is the definition of replacing Resource Templates in [4].

5.3.8 Collections

One or more entity instances associated with the same Kind or Mixin instance, automatically form a collection.
Each Kind and Mixin instance in the system identifies a collection consisting of all different entity instances
associated with the same Kind or Mixin.

An entity instance is always a member of the collection indicated by the Entity sub-type’s unique Kind instance.
The Kind.entities model attribute implements the collection of entity instances for a specific Entity sub-type.

A Kind instance maintains the collection of all entity instances of the type identified by the Kind.

Since a Mixin instance can be associated to any entity instance, a collection can contain entity instances of
different Entity sub-types. For example, an instance of the Resource type will always be associated to the
Kind instance http://scheme.ogf.org/occi/core#resource and thus part of the collection implied by that Kind
instance.

Adding an entity instance to a collection is accomplished by associating the entity instance to the corre-
sponding Mixin instance.

Removing an entity instance from a collection is accomplished by disassociating the entity instance from
the corresponding Mixin instance.
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An OCCI implementation MUST allow a client to navigate collections. The following basic navigation operations
MUST be supported:

• Retrieve the whole collection.

• Retrieve a specific item in a collection.

• Retrieve a subset of a collection.

The details of collection navigation is rendering specific.

5.3.9 Discovery

An OCCI client MUST be able to discover all instances of Kind, Mixin and Category a particular service
provider’s OCCI implementation has defined. By examining these instances a client MUST be able to, at a
minimum, deduce the following information:

• The Entity sub-types available from the service provider, including core model extensions. This information
is provided through the Kind instances of the OCCI implementation.

• The attributes defined for each Entity sub-type. The identifying Kind instance provides this information.

• The invocable operations, i.e., Actions, defined for each Entity sub-type. The identifying Kind instance
provides this information.

• Any Mixin instances that can be associated to entity instances.

• Additional capabilities defined by a particular Mixin instance, i.e., Attributes and Actions.

The above requirements comprise the OCCI discovery mechanism. It MUST be implemented.

The details of exactly how the Category, Kind and Mixin instances are exposed to an OCCI client are specific
to the particular rendering used. The relevant details can be found in the OCCI Rendering documents.

5.4 The OCCI Core Base Types

The following sections describe the OCCI base types defined by the OCCI Core Model. The base types are
Entity, Resource, Link. All base types MUST be implemented.

An instance of the Resource type, the Link type or one of their sub-types is called a entity instance. Each entity
instance within an OCCI system MUST have a unique identifier8 stored in the id model attribute of the Entity
type, as defined in table 7. The structure of these identifiers is opaque and the system should not assume
a static, pre-determined scheme for their structure other than the rules imposed by the Uniform Resource
Identifier (URI) [5] syntax.

Although every unique entity instance identifier MUST be a valid URI it is RECOMMENDED to use the
Uniform Resource Name (URN) [6] syntax.

For example Entity.id could be urn:uuid:de7335a7-07e0-4487-9cbd-ed51be7f2ce4.

5.4.1 Entity

The Entity type is an abstract parent type of the Resource type and the Link type. It MUST be implemented.
Table 7 defines model attributes the Entity type MUST implement to be compliant.

Every sub-type of Entity MUST be assigned a Kind instance, see section 5.3.3.

8An entity instance identifier MUST be unique within the service provider’s name-space. It is RECOMMENDED to use globally
unique identifiers.
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Table 7. Model attributes defined for the Entity type.

Model attribute Type Value Multiplicity Required Client Mutability Description

id URI 1 Yes Immutable A unique identifier (within the service
provider’s name-space) of the Entity
sub-type instance.

title String 0..1 – Mutable The display name of the instance.
kind Kind 1 Yes Immutable The Kind instance uniquely identify-

ing the particular Entity sub-type of
this instance.

mixins List of Mixin 0..* – Mutable Mixin instances associated to this en-
tity instance. Consumers can expect
the Attributes and Actions of the as-
sociated Mixins to be exposed by the
instance.

Entity itself is assigned the Kind instance http://schemas.ogf.org/occi/core#entity. Being an abstract type
Entity itself can never be instantiated.

An Entity sub-type instance, also referred to as an entity instance, MAY be associated with one or more Mixin
instances.

An Entity sub-type instance MUST expose its identifying Kind instance and any associated Mixin instances
together with the Attributes and Actions defined by them.

5.4.2 Resource

The Resource type inherits Entity and describes a concrete resource that can be inspected and manipulated. It
represents a general object in the OCCI model and MUST be implemented. A Resource is suitable to represent
real world resources, e.g., virtual machines, networks, services, etc. through specialization.

Table 8. Model attributes defined for the Resource type.

Model attribute Type Value Multiplicity Required Client Mutability Description

links List of Link 0..* – Mutable List of Link compositions. Being a
composite relation the removal of a
Link from the set MUST also remove
the Link instance.

summary String 0..1 – Mutable A summarizing description of the Re-
source instance.

The Resource type is assigned the Kind instance http://schemas.ogf.org/occi/core#resource.

Resource enforces the inheritance of a set of common attributes into sub-types. Moreover, it introduces
relationships to other Resource instances through instances of the Link type.

The Resource type is the first of three entry points to extend the OCCI Core Model, see section 5.5.

5.4.3 Link

An instance of the Link type defines a base association between two Resource instances. It MUST be
implemented. A Link instance indicates that one Resource instance is connected to another.

The Link type MUST implement all attributes inherited from the Entity type together with the model attributes
defined in table 9 in order to be compliant.

The Link type is assigned the Kind instance http://schemas.ogf.org/occi/core#link.

The source attribute of a Link instance MUST refer to a Resource instance within the service provider’s
namespace. The Link’s target attribute MUST point to a resource instance either within the provider’s
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Table 9. Model attributes defined for the Link type.

Model attribute Type Value Multiplicity Required Client Mutability Description

source Resource 1 Yes Mutable The Resource instances the Link instance
originates from.

target URI 1 Yes Mutable The unique identifier of an Object this
Link instance points to.

target.kind Kind 0..1 – Mutable The Kind of target, if applicable.

namespace or outside, hosted by a third-party. target.kind MAY be used to explicitly define the Kind of the
Resource instance referenced by target. The source Kind is implied by the assigned Resource instance.

The Link type is the second of three entry points to extend the OCCI Core Model, see section 5.5.

5.5 Extensibility

The OCCI Core Model has a flexible yet fairly simple extension mechanism based on the type classification
system described in section 5.3.

The OCCI Core Model can be extended using three different methods: provider-specific category instances,
sub-typing and mix-ins. Custom sub-typing requires provider-specific Kind instances and custom mix-ins require
provider-specific Mixin instances. Both methods MAY involve the use of provider-specific Action instances.
The following sections define the rules for extending the OCCI Core Model.

The rules defined in section 5.3 and 5.4 are REQUIRED for all extensions of the OCCI Core Model.

5.5.1 Category instances

Provider-specific instances of Category, Kind and Mixin MAY be introduced by an OCCI implementation. Since
Kind and Mixin both inherit Category the extension rules for Category, defined below, apply to them as well.

A Category instance defined outside of the OCCI specification MUST use a Category scheme unique to the
provider, e.g., http://example.com/occi#. The term of a provider-specific Category instance can be any string
corresponding to a “token” as defined by the OCCI Rendering documents.

An Attribute introduced by a provider-specific Category MUST use an attribute name prefix. This prefix MUST
NOT be the “occi.” prefix, which is reserved for the OCCI specification. Domain-specific Attribute names
SHOULD use a prefix consisting of the provider’s reverse domain name, e.g., “com.example.”.

5.5.2 Sub-typing

The OCCI Core Model MAY be extended through sub-typing. Two OCCI Core Model types MAY be sub-typed;
those are Resource and Link.

In order to define a new sub-type of Resource or Link, a provider-specific Kind instance MUST be defined
and assigned to the new sub-type. This provider-specific Kind instance MUST have its Kind.parent model
attribute equal to the Kind instance of the type extended. See figure 3 for an example of Kind relationships.

5.5.3 Mix-ins

The OCCI Core Model MAY be extended using a mix-in like concept by defining provider-specific Mixin instances.
A Mixin instance can be associated with any entity instance although a provider MAY apply restrictions.

In order to support user-defined tags9 an OCCI implementation must allow custom Mixin instances to be
created and destroyed by request of a client. There is no limitation in the OCCI Core Model from doing so but
it is RECOMMENDED to assign a separate Category scheme for each user’s Mixin instances (e.g., per-user
schemes).

9A tag is a Mixin instance, which does not introduce additional capabilities.
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6 Security Considerations

Since the OCCI Core and Model specification describes a model, not an interface or protocol, no specific security
mechanisms are described as part of this document. However, the elements described by this specification,
namely type instance attribute mutability, Category, Kind, and Mixin instantiations; Entity, Resource, and Link
subtypes, whether direct or indirect; resource or collection manipulation; and the discovery mechanism need to
implement a proper authorization scheme, which MUST be part of a concrete OCCI rendering specification,
part of an OCCI specification profile, or part of the specific OCCI implementation.

Concrete security mechanisms and protection against attacks SHOULD be specified by OCCI rendering specifi-
cation. In any case, OCCI rendering specifications MUST address transport level security and authentication
on the protocol level.

All security considerations listed above apply to all (existing and future) extensions of the OCCI Core and
Model specification.

7 Glossary

Term Description
Action An OCCI base type. Represents an invocable operation on an Entity sub-type

instance or collection thereof.
Attribute A type in the OCCI Core Model. Describes the name and properties of attributes

found in Entity types.
Category A type in the OCCI Core Model and the basis of the OCCI type identification

mechanism. The parent type of Kind.
capabilities In the context of Entity sub-types capabilities refer to the Attributes and Actions

exposed by an entity instance.
Collection A set of Entity sub-type instances all associated to a particular Kind or Mixin

instance.
Entity An OCCI base type. The parent type of Resource and Link.
entity instance An instance of a sub-type of Entity but not an instance of the Entity type itself. The

OCCI model defines two sub-types of Entity: the Resource type and the Link type.
However, the term entity instance is defined to include any instance of a sub-type
of Resource or Link as well.

Kind A type in the OCCI Core Model. A core component of the OCCI classification
system.

Link An OCCI base type. A Link instance associates one Resource instance with another.
Mixin A type in the OCCI Core Model. A core component of the OCCI classification

system.
mix-in An instance of the Mixin type associated with an entity instance. The “mix-in”

concept as used by OCCI only applies to instances, never to Entity types.
OCCI Open Cloud Computing Interface.
OGF Open Grid Forum.
Resource An OCCI base type. The parent type for all domain-specific Resource sub-types.
resource instance See entity instance. This term is considered obsolete.
tag A Mixin instance with no attributes or actions defined. Used for taxonomic organi-

sation of entity instances.
template A Mixin instance which if associated at instance creation-time pre-populate certain

attributes.
type One of the types defined by the OCCI Core Model. The Core Model types are

Category, Attribute, Kind, Mixin, Action, Entity, Resource and Link.
concrete type/sub-type A concrete type/sub-type is a type that can be instantiated.
URI Uniform Resource Identifier.
URL Uniform Resource Locator.
URN Uniform Resource Name.
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9 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or the
extent to which any license under such rights might or might not be available; neither does it represent that
it has made any effort to identify any such rights. Copies of claims of rights made available for publication
and any assurances of licenses to be made available, or the result of an attempt made to obtain a general
license or permission for the use of such proprietary rights by implementers or users of this specification can be
obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to practice this recommendation.
Please address the information to the OGF Executive Director.

10 Disclaimer

This document and the information contained herein is provided on an “As Is” basis and the OGF disclaims all
warranties, express or implied, including but not limited to any warranty that the use of the information herein
will not infringe any rights or any implied warranties of merchantability or fitness for a particular purpose.

11 Full Copyright Notice

Copyright c© Open Grid Forum (2009-2016). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment
on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in
whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph
are included as references to the derived portions on all such copies and derivative works. The published OGF
document from which such works are derived, however, may not be modified in any way, such as by removing
the copyright notice or references to the OGF or other organizations, except as needed for the purpose of
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developing new or updated OGF documents in conformance with the procedures defined in the OGF Document
Process, or as required to translate it into languages other than English. OGF, with the approval of its board,
may remove this restriction for inclusion of OGF document content for the purpose of producing standards in
cooperation with other international standards bodies.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors or
assignees.
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A Change Log

The corrections introduced by the September 19, 2016 update are summarized below. The following sub-
sections describe the possible impact of the corrections on existing implementations and associated dependent
specifications such as OCCI Text Rendering [3] and OCCI Infrastructure [4].

• Adjusted language and types in Model Attribute tables (using lists where applicable).

• Added optional typed Link (via the target.kind attribute).

• Introduce an explicit Attribute type to expose the discoverable attribute properties already defined for
the OCCI base types Entity, Resource, Link and their sub-types.

• Correct the previously unclear definition of OCCI Action. The Action type inherits Category and is only
an identifier of an invocable operation. It does not represent the operation itself. The Action definition
now aligns with its use in the OCCI Text Rendering [3].

• Clarify the format of the unique entity instance identifier defined in OCCI Entity. Incorporate the
description and recommendations from the OCCI Text Rendering [3].

• Clarify that an OCCI Mixin instance is only a type identifier. The Core Model does not specify how a
mixed-in attribute is implemented. The Mixin instance only states that the attribute exists.

• Rename the term resource instance to entity instance. An entity instance refers to an instance of either
OCCI Resource, OCCI Link or a sub-type of either type. The resource instance term, while defined
identically, was due to its name a source of misinterpretations in the specification.

• Rename Kind.related to Kind.parent and Mixin.related to Mixin.depends. Clarify the use of Kind
and Mixin relationships.

• Add a new model attribute Mixin.applies to optionally advertise which entity instances a Mixin instance
may be associated to.

A.1 Action definition

The corrected definition of OCCI Action has impact neither on discovery nor on invocation of Actions in
existing implementations. The OCCI Text Rendering [3] is better aligned with OCCI Core after the corrections
since it already uses type=‘‘action’’ in its rendering of categories.

A.2 Rename “resource instance” to “entity instance”

The change is editorial and does not affect existing implementations. The glossary contains both terms for
compatibility with the OCCI Text Rendering [3] specification.
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