
GWD-R-P.237 Guy Roberts, GÉANT
NSI-WG John MacAuley, ESnet

Tomohiro Kudoh, University of Tokyo
Chin Guok, ESnet

 December 2, 2019

NSI Connection Service v2.1

Status of This Document

This document provides information to the Grid community on the NSI connection service. Grid
Forum Working Document (GWD).

Obsoletes

This document obsoletes GFD.212 [1]

Copyright Notice

Copyright © Open Grid Forum (2008-2019). Some Rights Reserved. Distribution is unlimited.

Abstract

This document describes the Connection Service v2.1, which is one of a suite of services that
make up the Network Service Interface (NSI).

The NSI is a web-service based protocol that operates between a requester software agent and a
provider software agent. The full suite of NSI services allows an application or network provider to
request and manage circuit service instances. Apart from the Connection Service, this includes
the Document Distribution Service, which allows NSI documents such as the NSI Topology and
the NSA Description to be shared among participating NSI agents. The complete set of NSI
services is described in the Network Services Framework v2.0.

This Connection Service document describes the protocol, state machine, architecture and
associated processes and environment in which software agents interact to deliver a Connection.
A Connection is a point-to-point network circuit that can transit multiple networks belonging to
different providers.

Contents
1.	 Introduction 4	

1.1	 The Connection Service 4	
2.	 Notational Conventions 4	
3.	 Network Service Framework 4	

3.1	 NSI Services 4	
3.2	 NSI Interface, Agents and Architecture 4	
3.3	 NSI Topology 5	
3.4	 NSI Service Definitions 5	

4.	 NSI Topology 5	
4.1	 Connections and Topology 5	
4.2	 Explicit Routing Object 6	
4.3	 STP Semantics 7	

5.	 NSI CS messages and state machines 7	
5.1	 NSI Messages and operations 7	
5.2	 Optional release/provision/modify functionality 10	
5.3	 NSI state machines 11	

5.3.1	 Reservation State Machine 11	

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 2

5.3.2	 Provisioning State Machine 13	
5.3.3	 Lifecycle State Machine 13	

5.4	 Data Plane Activation 14	
5.5	 Provisioning Sequence 15	
5.6	 Guardbands 17	

6.	 NSI Message Transport and Sync/Async messaging 17	
6.1	 Asynchronous Messaging 17	
6.2	 Synchronous Messaging 19	
6.3	 Message format and handling 21	

6.3.1	 Standard Compliance 21	
6.3.2	 Message checks 22	
6.3.3	 ACK handling 23	

7.	 NSI Process Coordination 23	
7.1	 The Coordinator 23	

7.1.1	 Communications 24	
7.1.2	 Per Request Information Elements 24	
7.1.3	 Correlation Ids and Failure Recovery 24	
7.1.4	 Information maintained by the Coordinator 26	
7.1.5	 Per Reservation Information Elements 26	
7.1.6	 Reservation Versioning Information 27	
7.1.7	 Data Plane Status Information 27	

8.	 Service Definitions 28	
8.1	 Context 28	
8.2	 Service Definitions 28	
8.3	 Using Service Definitions 29	

8.3.1	 Providers agree on a common multi-domain service 29	
8.3.2	 Building an XML Service Definition instance 29	
8.3.3	 Using SDs to request a service instance 30	
8.3.4	 Interpreting an incoming request 31	

8.4	 Service Definitions and a Request workflow 31	
9.	 XML Schema Definitions 32	

9.1	 NSI CS Versioning 33	
9.2	 nsiHeader element 33	

9.2.1	 sessionSecurityAttr Element 36	
9.3	 Common types 37	

9.3.1	 ServiceExceptionType 37	
9.3.2	 VariablesType 38	
9.3.3	 TypeValuePairType 38	
9.3.4	 TypeValuePairListType 39	
9.3.5	 ConnectionIdType 39	
9.3.6	 DateTimeType 39	
9.3.7	 NsaIdType 40	
9.3.8	 UuidType 40	

9.4	 NSI CS operation-specific type definitions. 40	
9.4.1	 reserve message elements 40	
9.4.2	 reserveCommit message elements 43	
9.4.3	 reserveAbort message elements 46	
9.4.4	 reserveTimeout message elements 47	
9.4.5	 provision message elements 49	
9.4.6	 release message elements 50	
9.4.7	 terminate message elements 52	
9.4.8	 error message elements 54	
9.4.9	 errorEvent message elements 54	
9.4.10	 dataPlaneStateChange message elements 56	
9.4.11	 messageDeliveryTimeout message elements 57	
9.4.12	 querySummary message elements 59	

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 3

9.4.13	 querySummarySync message elements 62	
9.4.14	 queryRecursive message elements 64	
9.4.15	 queryNotification message elements 66	
9.4.16	 queryNotificationSync message elements 68	
9.4.17	 queryResult message elements 70	
9.4.18	 queryResultSync message elements 73	

9.5	 NSI CS specific types 76	
9.5.1	 Complex Types 76	
9.5.2	 Simple Types 97	

10.	 Security 101	
10.1	 Transport Layer Security 101	
10.2	 SAML Assertions 101	

11.	 Appendix A: State Machine Transition Tables 101	
12.	 Appendix B: Error Messages and Best Practices 103	

12.1	 Error Messages 103	
12.2	 NTP servers 103	
12.3	 Timeouts 103	

13.	 Appendix C: Firewall Handling 105	
14.	 Appendix D: Formal Statement of Coordinator 108	

14.1	 Aggregator NSA 108	
14.1.1	 Processing of NSI Requests 108	
14.1.2	 Requests from State Machines 109	

14.2	 Ultimate PA 110	
14.2.1	 Processing of NSI Requests 110	
14.2.2	 Requests from State Machines 111	

15.	 Appendix E: Service Definion Schemas 112	
15.1	 Restructuring criteria element 112	
15.2	 The serviceType element 112	
15.3	 Service-specific errors 113	
15.4	 Point-to-point Ethernet Service Definition schema 113	

15.4.1	 Service Elements 113	
15.4.2	 Complex Types 115	

15.5	 Generic Service Types 116	
15.5.1	 Complex Types 116	
15.5.2	 Simple Types 119	

15.6	 Reservation request 120	
15.7	 Reservation modification 126	

16.	 Appendix F: Using the Explicit Routing Object in practice 127	
16.1	 The P2PS element 127	
16.2	 Ordering of ERO elements 129	
16.3	 Support for internal STP 130	
16.4	 Underspecified STP 131	
16.5	 Avoiding unnecessary loops 132	
16.6	 ERO in reserveConfirmed 133	
16.7	 Error Handling 134	

17.	 Contributors 135	
18.	 Glossary 136	
19.	 Intellectual Property Statement 137	
20.	 Disclaimer 138	
21.	 Full Copyright Notice 138	
22.	 References 139	

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 4

1. Introduction
1.1 The Connection Service
This Open Grid Forum document defines the NSI Connection Service (CS) protocol that enables
the reservation, creation, management and removal of Connections. To ensure secure service
delivery, the NSI Connection Service incorporates authentication and authorization mechanisms.

NSI is designed to support the creation of circuits (called Connections in NSI) that transit several
networks managed by different providers. Traditional models of circuit services and control planes
adopt a single very tightly defined data plane technology, and then hard code these service
attributes into the control plane protocols. Multi-domain services need to be employed over
heterogeneous data plane technologies. The NSI supports an abstracted notion of a Connection,
and the NSI messages include a flexible schema for specifying service-specific constraints.
These service constraints will be evaluated against the technology available to local network
service providers traversed by the service. It is up to the pathfinder of the NSI-enabled service to
identify a path that meets these constraints. In this way the NSI allows a single Service Plane
protocol suite to deliver Connections that traverse heterogeneous transport technologies.

2. Notational Conventions
The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as
described in RFC 2119.
Words defined in the glossary are capitalized (e.g. Connection). NSI protocol messages and their
attributes are written in camel case and italics (e.g. reserveConfirmed).

3. Network Service Framework
The CS protocol is one of several in the Network Service Interface (NSI) protocol suite; the CS
works together with these NSI services to deliver an integrated Network Services Framework
(NSF).

The NSI framework and architecture are normatively described in OGF GWD-R-P “Network
Service Framework v2.0” [2]. The NSI framework and architecture are summarized here (Section
3) for information purposes only.

3.1 NSI Services
Network resources and capabilities are presented to the consumer through a set of Network
Services, the NSF presents a unified model for interacting with these services. The NSI operates
between a software agent requesting a network service and the software agent providing that
Network Service. Network Services include the ability to create Connections (the Connection
Service), to share documents (the NSI Document Distribution Service) and to perform other
services needed by a federation of software agents (the NSI Discovery Service).

The NSF includes the NSI Connection Service (CS) as one of the key NSI services. The
Connection Service allows a range of different types of Connections to be managed. This service
is the subject of this Grid Forum Document.

3.2 NSI Interface, Agents and Architecture
The NSF describes a set of architectural elements that make up the NSI architecture; this
provides a framework that applies to all of the NSI services. The basic building block of the NSI
architecture is Network Service Agents (NSAs) that communicate using the Network Service
Interface (NSI) protocol. The NSI and NSAs exist on the Service Plane. Agents communicate

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 5

using a flexible hierarchical communication model that allows both tree and chain message
delivery models.

3.3 NSI Topology
The NSI extensions [5] to the NML base document [6] describe how NSI Connections are
represented using the NSI Topology. This topology representation is based on Service
Termination Points (STPs) which are URN identifiers of points were a Connection can be
terminated.

3.4 NSI Service Definitions
A Connection request includes service-specific information that describes the requirements of the
Connection that is needed. This information will typically include ingress and egress STPs,
Explicit Routing Object (ero), capacity of the Connection, and framing information, however the
specific information will vary between service types. To allow the new services to be readily
defined without a change in the NSI protocol, the service-specific attributes of a Connection
request are defined in the documents called the ‘Service Definitions’.

A Service Definition is an XML document agreed among the service providers and describes
which service parameters can be requested. The Service Definition also includes meta-data that
facilitates validation of the requested Connection parameters. So for example, the meta-data
defines the range of allowed values for each parameter and whether the parameter is optional or
mandatory in a Connection request. Service Definitions are explained in more detail in section 8.

See section 15: ‘Appendix E: Service Definion Schemas’ for a sample an example Ethernet pt2pt
Service Definition.

4. NSI Topology
Section 4 of this document describes the NSI topology. This section is informational, please refer
to the indicated references for normative definitions of the NSI topology and related functions.

NSI Topology is a topological representation of the service connection capabilities of the network
and is used by the NSI CS protocol for resolving service requests. NSI Topology is based on
standard NML topology (OGF GFD.206) with NSI specific extensions and constrained naming
rules: GWD-R-P Network Service Interface Topology Representation. [5,6]

The NSI Topology exposes a set of Service Termination Point (STP) objects. STPs are used in a
Connection request to identify the source, destination and intermediate points of the desired
Connection.

4.1 Connections and Topology
Figure 1 shows how NSI Networks interconnect at a shared point known as a Service
Demarcation Point (SDP). An SDP is a grouping of two STPs belonging to adjacent connected
Networks and is considered to be a virtual point rather than a link.

End-to-end Connections extend across multiple networks; they are constructed by concatenating
Connection segments built across the individual Networks. This is done by choosing appropriate
STPs such that the egress STP of one segment corresponds directly with the ingress STP of the
successive connection segment. Figure 1 shows two Networks (Y and Z) and a Connection made
by concatenating two segments (STP a - STP b) and (STP c - STP d). The inter-Network
representation of the Connection (STP a – STP d) maps to a physical instance in the Data Plane.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 6

Figure 1: Inter-Network representation of a Connection

4.2 Explicit Routing Object
A Connection request can optionally include an Explicit Routing Object (ERO) element. An ERO
is an ordered list of STPs that describe the route that should be taken by the Connection. The
inter-Network pathfinder will use STPs listed in an ERO element as constraints during the
pathfinding process. The Connection will include all of the STPs in the ERO in the sequence in
which they are listed. However an ERO is not ‘strict’ in the sense that a Connection is allowed to
transit intermediate STPs between the STPs listed in the ERO.

Figure 2 shows an example of a Connection. This Connection conforms to any of the following
ERO: (STP b, STP d, STP f), or (STP c, STP e, STP g). Note that as the ingress and egress
STPs of a Connection are defined in dedicated fields of the Connection request, they are not
included in the ERO. Also note that STP at either end of an SDP can be used to uniquely identify
the SDP to transit. Both STPs in a single SDP are not required in the ERO, and in fact, only a
single one should be specified.

Figure 2: example of an ero

The NSI CS does not require NSI messages to be forwarded through the same sequence of
NSAs/Networks that the Connection transits, and as a consequence, both tree and chain type
architectures are supported. Appendix F provides an explanation of how EROs are used in
practice. See GFD.217 [7] Network Service Interface Signaling and Path Finding for details on
how EROs are used with signaling.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 7

4.3 STP Semantics
An STP is defined as a three-part identifier comprising a network identifier part, a local identifier
part, and a qualifying label part:

<STP identifier> ::= <networkId> “:” <localId> <label>
<label> ::= “?” <labelType> “=” <labelValue> | “?”<labelType> | “”
<labelType> ::= <string>
<labelValue> ::= <string>

The network identifier points to the domain in which the STP is located, and the local identifier to
the specific resource in that domain. The optional label component allows flexibility in STP
definition so that the base resource can be identified by the <networkId>:<localId> portion, and
then additional qualification by a labelType and/or labelValue pair that can be used to describe
technology-specific attributes of the STP (eg. VLAN tags). The labels are defined in NML and for
this reason can be interpreted by the Requester Agents (RA) and Provider Agents (PA). Using
these component identifiers makes it possible to easily locate the description of an identifier in the
topology. The NSI Topology syntax is normatively defined in the document ‘Network Service
Interface Topology Representation’ [5].

An STP can be fully qualified or under-qualified. A fully qualified STP refers to a specific instance
of a resource, (e.g. VLAN or any other element identifiable in NML). An under-qualified STP
refers to an STP that is not fully resolved (e.g. it identifies a range of VLANs). Under-qualified
STPs are specified using label ranges (e.g. vlan=1780-1790, 1799) instead of a single label
value.

Both a reserve request and the NSI Topology can make use of under-qualified STPs. The
reserveConfirmed message will return a fully qualified STP, i.e. the NSA will choose one <label>
from the list of possible <labels>.

5. NSI CS messages and state machines
Section 5 of this document describes the messages and state machines that make up the NSI
Connection Service and forms a normative part of the NSI Connection Service protocol definition.
The Connection Service includes a set of messages that allow an RA to request connectivity from
a PA.

5.1 NSI Messages and operations
NSI messages are classified into two types, messages that are passed from an RA to a PA and
messages that are passed from a PA to an RA. In addition messages can be either synchronous
or asynchronous.

An asynchronous messaging method has been chosen that supports the indeterminate response
times that can arise from complex reservation requests across multiple domains. The NSI CS
incorporates an asynchronous callback mechanism permitting unblocking of the CS operation
request from the CS confirmed, failed, and error response messages. The RA provides a replyTo
URL within the NSI header; this URL is then used as the destination of the asynchronous reply.

In addition to asynchronous messaging, the NSI CS supports a limited set of synchronous
messages. These have been added specifically to help address the firewall issue described in
appendix C. The synchronous messages are based on a simple mechanism that utilizes the basic
CS operation request and query messages to provide a functional polling solution.

When asynchronous requests are sent from an RA to a PA, the PA first sends a response for
each request, and is then is expected to send an asynchronous reply (confirmed, failed, or error)
to each request. When synchronous requests are sent from an RA to a PA, the reply message

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 8

(confirmed, failed, or error) is included in the response. With SOAP bindings these response
messages will be included in the SOAP response part of the SOAP request-response.

The NSI CS message classifications are summarized in Table 1. A list of CS messages from RA
to PA is provided in Table 2 and a list of CS messages from PA to RA is provided in Table 3.

Message type Direction Description
Asynchronous Request RA to PA An asynchronous response is expected.
Synchronous Request RA to PA The response attributes are expected in the Synchronous SOAP

response.
Asynchronous Response PA to RA This message is sent asynchronously in response to an

asynchronous request
Asynchronous Notification PA to RA This message is sent spontaneously from a PA.

Table 1 – Message types

Each message invokes a corresponding operation in the recipient by associating it with a
message type that can be processed by one of three state machines (See Section 5.3 for a
description of the state machines):

• If the message is of type RSM then the message is to be processed using the
Reservation State Machine (RSM).

• If the message is of type PSM the message is to be processed using the Provision State
Machine (PSM).

• If the message is of type LSM the message is to be processed using the Lifecycle State
Machine (LSM).

• If the message is of type Query this designates a Query request and requires an
associated reply message (synchronous or asynchronous).

• If the message is of type Notification this designates asynchronous notification messages
sent by a PA to an RA.

Table 2 below summarizes the entire set of RA to PA messages. Section 9 provides a detailed
description of these messages and their attributes.

NSI CS Message
(abbreviation)

SM Synch.
/Asynch.

Short Description

reserve
(rsv.rq)

RSM Asynch The reserve message allows an RA to send a request to reserve
network resources to build a Connection between two STP's.

reserveCommit
(rsvcommit.rq)

RSM Asynch The reserveCommit message allows an RA to request the PA commit
a previously allocated Connection reservation or modify an existing
Connection reservation. The combination of the reserve and
reserveCommit are used as a two stage commit mechanism.

reserveAbort
(rsvabort.rq)

RSM Asynch The reserveAbort message allows an RA to request the PA to abort a
previously requested Connection that was made using the reserve
message.

provision
(prov.rq)

PSM Asynch The provision message allows an RA to request the PA to transition a
previously requested Connection into the Provisioned state. A
Connection in Provisioned state will activate associated data plane
resources during the scheduled reservation time.

release
(release.rq)

PSM Asynch The release message allows an RA to request the PA to transition a
previously provisioned Connection into Released state. A Connection
in a Released state will deactivate the associated resources in the
data plane. The reservation is not affected.

terminate
(term.rq)

LSM Asynch The terminate message allows an RA to request the PA to transition a
previously requested Connection into Terminated state. A Connection
in Terminated state will release associated resources and allow the PA
to clean up the RSM, PSM and all related data structures.

querySummary
()

Query Asynch The querySummary message provides a mechanism for an RA to
query the PA for a set of Connection instances. This message can
also be used as a Connection status polling mechanism.

queryRecursive
()

Query Asynch The queryRecursive message provides a mechanism for an RA to
query the PA for a set of Connection Service reservation instances.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 9

The query returns a detailed list of reservation information collected by
recursively traversing the reservation tree.

querySummarySync
()

Query Synch The querySummarySync message is sent from an RA to a PA. Unlike
the querySummary operation, the querySummarySync is synchronous
and will block further message processing until the results of the query
operation have been collected.

queryNotification
()

Query Asynch The queryNotification message is sent from an RA to a PA to retrieve
a list of notification messages against an existing reservation residing
on the PA. The returned results will be a list of notifications for the
specified connectionId.

queryNotificationSync
()

Query Synch The queryNotificationSync message is sent from an RA to a PA to
retrieve a list of notification messages associated with a connectionId
on the PA. Unlike the queryNotification operation, the
queryNotificationSync is synchronous and will block until the results of
the query operation have been collected.

queryResult
()

Query Asynch The queryResult message is sent from an RA to a PA to retrieve a list
of operation result messages against an existing reservation residing
on the PA. A list of operation results will be returned for the specified
connectionId.

queryResultSync
()

Query Synch The queryResultSync message is sent from an RA to a PA to retrieve
a list of operation result messages associated with a connectionId on
the PA. Unlike the queryResult operation, the queryResultSync is
synchronous and will block until the results of the query operation have
been collected.

Table 2 – RA to PA Connection Service messages

Table 3 below summarizes the entire set of PA to RA messages. Section 9 provides a detailed
description of these messages and their attributes. Note the reserveFailed and
reserveCommitFailed messages are explicitly required for the state machine.

NSI CS Message
(abbreviation)

SM Synch.
/Asynch.

Short Description

reserveResponse
()

response Synch The reserveResponse message is sent to the RA that
issued the original reserve request immediately after
receiving that reservation request to inform the RA of the
connectionId allocated to that reservation request. There
is no impact on the RSM state machine by this message.

reserveConfirmed
(rsv.cf)

RSM Asynch The reserveConfirmed message is sent to the RA that
issued the original reserve request to indicate a
successful operation in response to the reserve request.

reserveFailed
(rsv.fl)

RSM Asynch The reserveFailed message is sent to the RA that issued
the original reserve request message if the requested
reservation criteria could not be met.

reserveCommitConfirmed
(rsvcommit.cf)

RSM Asynch The reserveCommitConfirmed message is sent to the
RA that issued the original request as an indication of a
successful operation in response to the reserveCommit
request of a Connection previously in the Reserve Held
state.

reserveCommitFailed
(rsvcommit.fl)

RSM Asynch The reserveCommitFailed message is sent to the RA
that issued the original request as an indication of a
failure of the reserveCommit request.

reserveAbortConfirmed
(rsvabort.cf)

PSM Asynch The reserveAbortConfirmed message is sent to the RA
that issued the original request as an indication of a
successful operation in response to a reserveAbort
request.

provisionConfirmed
(prov.cf)

PSM Asynch The provisionConfirmed message is sent to the RA that
issued the original request as an indication of a
successful operation in response to a provision request.

releaseConfirmed
(release.cf)

PSM Asynch The releaseConfirmed message is sent to the RA that
issued the original request as an indication of a
successful operation in response to a release request.

terminateConfirmed
(term.cf)

LSM Asynch The terminateConfirmed message is sent to the RA that
issued the original request as an indication of a
successful operation in response to a terminate request.

querySummaryConfirmed
()

query Asynch The querySummaryConfirmed message is sent to the
RA that issued the original request as an indication of a

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 10

successful operation in response to a querySummary
request. This response included the summary data
requested.

queryRecursiveConfirmed
()

query Asynch The queryRecursiveConfirmed message is sent to the
RA that issued the original request as an indication of a
successful operation in response to a queryRecursive
request. This response included the recursive data
requested.

querySummarySync
Confirmed
()

query Synch The querySummarySyncConfirmed message is sent to
the RA that issued the original request as an indication
of a successful operation in response to a
querySummarySync request. This response included the
summary data requested.

error error Asynch The error message is sent from a PA to an RA as an
indication of the occurrence of an error condition in
response to an original request from the associated RA.

errorEvent
()

notification Asynch The errorEvent notification is raised when a fault is
detected. The message includes attributes that describe
the exception and includes the identifier of the NSA
generating the exception and the error identifier for each
known fault type.

reserveTimeout
()

notification Asynch The reserveTimeout notification is sent to the RA that
issued the original commit request to notify the RA that a
request timeout has occurred at a PA.

dataPlaneStateChange
(dataPlaneStateChange.nt)

notification Asynch The dataPlaneStateChange notification is sent to the RA
that issued the original reserve request when the data
plane status has changed. Possible data plane status
changes are: activation, deactivation and activation
version change.

messageDeliveryTimeout
()

notification Asynch The messageDeliveryTimeout notification is sent to the
RA that issued the original request message when the
delivery of a request message has timed out.

queryNotificationConfirmed
()

query Asynch The queryNotificationConfirmed message is sent to the
RA that issued the original request as an indication of a
successful operation in response to a queryNotification
request. This response includes the summary data
requested.

queryNotificationSyncConfirme
d
()

query Synch The queryNotificationSyncConfirmed message is sent to
the RA that issued the original request as an indication
of a successful operation in response to a
queryNotificationSync request. This response includes
the summary data requested.

queryResultConfirmed
()

query Asynch The queryResultConfirmed message is sent to the RA
that issued the original request as an indication of a
successful operation in response to a queryResult
request. This response includes the summary data
requested.

queryResultSyncConfirmed
()

query Synch The queryResultSyncConfirmed message is sent to the
RA that issued the original request as an indication of a
successful operation in response to a queryResultSync
request. This response includes the summary data
requested.

Table 3 – PA to RA Connection Service messages

5.2 Optional release/provision/modify functionality
The release/provision/modify functionality is optionally supported in a PA. To ensure correct
transitions of the state machine, all transitions MUST be carried out as defined in the NSI state
machines regardless of whether the release/provision actions are actually performed.

• Release: If a PA does not support the provision/release cycle on an existing reservation,
then the PA MUST spoof a releaseConfirm in response to a release request, i.e. a
response is returned even though there has been no data-plane affecting changes.

• Provision: PA MUST operate the first provision correctly. If a PA does not support the
provision/release cycle on an existing reservation, then the PA MUST spoof a

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 11

provisionConfirm in response to a provision request. I.e a response is returned even
though there has been no data-plane affecting changes.

• Modify. If the modify functionality is not supported by a PA, then a reservedFailed
message MUST be returned with a ‘not implemented’ error when an attempt is made to
modify an existing reservation. When an RA receives a ‘not implemented’ error, this is a
considered a reserve fail event. When the Agg receives a ‘not implemented’ error, this is
forwarded up the tree.

5.3 NSI state machines
The behavior of the NSI CS protocol is modeled in two ways: with state machines and with
behavioral description of the coordinator function. In total there are three state machines, the
Reservation State Machine (RSM), the Provision State Machine (PSM) and the Lifecycle State
Machine (LSM). The state machines explicitly regulate the sequence in which messages are
processed. The CS messages are each assigned to one of the three state machines: RSM, PSM
and LSM.

When the first reserve request for a new Connection is received, the Coordinator MUST
coordinate the creation of the RSM, PSM and LSM state machines for that specific connection.
For details of the coordinator funcitons see section 7.

The RSM and LSM MUST be instantiated as soon as the first Connection request is received.

The PSM MUST be instantiated as soon as the first version of the reservation is committed.

The following symbols and abbreviations are used in the state machine diagrams.

Abbreviation/symbol Meaning
Rsv Reserve
Prov Provision
Rel Release
Nt Notification
Term Terminate
Rq Request
Cf Confirmed
Fl Failed
> Downstream input/output
< Upstream input/output

Table 4 – Abbreviations and symbols used in state machine diagrams

The text boxes show the messages associated with transitions between states. These are color
coded as follows:

Red: an input event that is an NSI message – this may be from either a parent or a child
NSA.

Blue: an output event that is an NSI message – this is directed towards either a parent or
a child NSA.

Appendix A provides a formal statement of the transitions that are allowed in the three state
machines.

5.3.1 Reservation State Machine
The sequence of operations related to RSM messages MUST conform to the Reservation State
Machine shown in Figure 3. The abbreviated forms of the messages and explanations of each
message are provided in Table 2 and Table 3.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 12

An NSI reservation is created using a two-phase commit process. In the first phase (reserve) the
availability of the requested resources is checked; if the resources are available they are held. In
the second phase (commit) the requester has the choice to either commit or abort the reservation
that was held in the first phase.

If a requester fails to commit a held reservation after a certain period of time, the provider times
out the reservation and the held resources are released. This triggers the transition to the
reserveTimeout state within the ultimate Provider Agent, which in turn causes a reserve timeout
notification to be sent upstream towards the requester. If the requester is an Aggregator Agent, it
will transition to the reserveTimeout state upon receipt of the reserve timeout notification, and
continue to forward the notification upstream. This transition to the reserveTimeout state by the
Aggregator Agent allows it to reflect that one or more of its downstream ultimate Provider Agents
have timed out a reservation.

Modification of a reservation is supported in the NSI CS. The reserve request message is used
for both the initial reservation and subsequent modifications. A version number is specified in the
reservation request message. The number is an integer and should be monotonically increasing
with each subsequent modification. The version number is updated after a commit results in a
transition back to the ReserveStart state. A query will return the currently committed reservation
version number, however, if the initial version of the reservation has not yet been committed, the
query will return base reservation information (connectionId, globalReservationId, description,
requesterNSA, and connectionStates) with no versioned reservation criteria. While a reservation
is being modified the <reservationState> reflects the current state of the modification even though
the <criteria> represents the last committed version.

Details of how the version number should be managed can be found in Section 7.1.6.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 13

Figure 3: Reservation State Machine
Modification of start-time, end-time, and service specific parameters are all supported.

5.3.2 Provisioning State Machine
The sequence of operations related to PSM messages MUST conform to the Provision State
Machine shown in Figure 4.

The Provision State Machine transits between the Provisioned and the Released stable states,
through intermediate transition states. An instance of the PSM is created when an initial
reservation is committed, and at that time it starts in the Released state. The PSM transits states
independent of the state of the RSM. Note that the transition to the Provisioned state is
necessary but on its own is not sufficient to activate the data plane. The Connection in the data
plane is active if and only if the PSM is in the Provisioned state AND the start time < current time
< end time. See section 5.5 for details of the provisioning and activation.

Figure 4: Provision State Machine

The PSM is designed to allow a Connection to be repeatedly provisioned and released.

5.3.3 Lifecycle State Machine
The sequence of operations related to LSM messages MUST conform to the Lifecycle State
Machine shown in Figure 5.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 14

Figure 5: Lifecycle State Machine

The LSM processes terminate and terminateConfirmed messages. When an errorEvent of type
ForcedEnd is received/sent, the LSM transitions from the Created to the Failed state. When
current time > end time for the reservation the LSM can be transitioned from Created to the
Passed EndTime state. The LSM can only transition into the Terminated stable state through
the exchange of terminate and terminateConfirmed messages.

5.4 Data Plane Activation
Figure 6 below shows the conditions that MUST be met for data plane activation.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 15

Figure 6: Data Plane activation condition

The Connection can be restored autonomously by the uPA after a failure condition as long as the
PSM is in the Provisioned state and current time is between startTime and endTime.
The activation/deactivation of the Data Plane MUST be notified using the DataPlaneStateChange
notification message. Errors MUST be notified using the generic errorEvent message with the
following events:

• activateFailed: Activation failed at the time when uPA attempted to activate its data
plane.

• deactivateFailed: Deactivation failed at the time when uPA attempted to deactivate its
data plane.

• dataplaneError: On the data plane, the Connection has deactivated unexpectedly. This
error condition may be recoverable.

• forcedEnd: Something unrecoverable has happened in the uPA/NRM.

5.5 Provisioning Sequence
Both automatic and manual provisioning modes MUST be supported. Figure 7 and Figure 8
below show two examples of how message primitives are used to provision and consequently
activate a Connection.

Either automatic or manual activation will occur when the conditions described in Figure 6 are
met.

In the automatic provisioning mode, the provision request message is sent from the RA to the PA
before the startTime, and the data plane Connection is activated at the startTime. If a provision
request message is sent after the startTime, the data plane Connection is activated when the
provisionRequest is received by the uPA - this sequence is referred to as manual provisioning.

If the uRA wishes to activate the data plane of the Connection as soon as possible, the uRA
should leave the startTime blank, which indicates immediate start, and issue a provision message
immediately after the reservation is committed. This behavior can be considered as an on-
demand mode of provisioning. If the endTime is left blank then this is considered to be a request
for a permanent Connection.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 16

Figure 7: Automatic Provisioning and Manual Provisioning

A Connection can be repeatedly provisioned and released by provision and release messages,
as shown in Figure 8.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 17

Figure 8: Release and Provisioning

5.6 Guardbands
There may be a delay between the requested in-service start time and the activation of the data
plane. So that the RA knows that the data-plane has actually changed state, a state change
notification is defined. The dataPlaneStateChange notification is sent to the RA that issued the
original reserve request when the data-plane status has changed. Possible data-plane status
changes are: activation, deactivation and activation version change.

Start Time. The start time is the earliest that the activation can occur. There may be a delay in
completing the activation depending on the time taken by the NRM to perform the activation.
In the situation where the RA wishes to ensure that the activation has completed at a guaranteed
point in time, it is the responsibility of the RA to add a guard band as they see fit to the start time.
The RA is responsible for choosing an appropriate guard time based on their knowledge of the
expected provisioning delay at the target NRM.

End Time. The end time is the earliest that the deactivation can occur. There may be a delay in
completing this action depending on the time taken by the NRM to complete the deactivation.
In the situation where the RA wishes to ensure that the deactivation has either started before or
completed after at a guaranteed point in time, it is the responsibility of the RA to add a guard
band as they see fit to the end time. The RA is responsible for choosing an appropriate guard
time based on their knowledge of the expected deactivation delay at the target NRM.

6. NSI Message Transport and Sync/Async messaging

6.1 Asynchronous Messaging
This section describes the messaging interaction models utilized within an NSI CS
implementation.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 18

Inherent to the NSI architecture is the need to support long duration operations such as complex
reservation requests across multiple domains. This requirement means that a synchronous
protocol solution would not be suitable for NSI. For this reason the NSI CS supports an
asynchronous messaging protocol that allows for indeterminate response times.

The HTTP/SOAP binding as defined in W3C standards is a synchronous request/response
interaction model. To help realize the NSI CS as an asynchronous protocol within the context of
the synchronous HTTP/SOAP binding, NSI defines an asynchronous callback mechanism
permitting unblocking of the CS operation request from the CS confirmed and failed response
messages.

As an alternative to introducing the complex WS-Addressing specification, NSI CS defines a
simple mechanism that permits an RA to provide a replyTo URL within the NSI header of the
operation request message. This URL is a SOAP endpoint that the RA exposes to the PA to
receive confirmed, failed, error, and notification messages. When the PA has completed
processing of the operation request, it will invoke the URL provided in the replyTo field and
deliver the resulting confirmed, failed, or error message to the RA’s SOAP endpoint.

Figure 9 shows the basic asynchronous NSI request/reply model. In this case the NSI CS request
message is issued from an RA to a PA. If the request is successfully delivered to the PA the MTL
layer MUST send an ACK response message immediately after receiving the request to
acknowledge to the RA that the request has been accepted by the Coordinator for processing. If
an error is detected at this stage, a serviceException is returned. The RA will block until either the
request’s response is received, or an exception is returned. This blocking operation is expected
to be extremely short lived as the PA is only acknowledging the acceptance of the request for
processing. The MTL MUST provide the ACK response message to the NSA Coordinator.

For the HTTP/SOAP binding the following generic behavior SHOULD be observed for
asynchronous messaging:

• The HTTP POST request carries the NSI CS operation request with the replyTo header
element set to the RA’s callback SOAP endpoint.

• The HTTP 200 OK response carries either an acknowledgement or a serviceException.
• The HTTP socket on the RA blocks until the response is returned (Standard HTTP

synchronous behaviour).

Sometime later, the PA will have assembled the data requested or determined that the request
cannot be satisfied. At this point the PA will make the asynchronous delivery of the reply
message back to the RA, as show in the lower half of Figure 9. If the request is successfully
delivered to the RA the MTL layer MUST send an ACK response message immediately after
receiving the reply to acknowledge to the PA that the confirmed or failed message has been
accepted by the Coordinator for processing. If an error is detected at this stage, a
serviceException is returned. The PA MUST maintain the repyTo endpoint value specified in the
original operation request until it has delivered a confirmed or failed message back to the RA. The
MTL MUST provide the ACK response message to the NSA Coordinator.

For the HTTP/SOAP binding the following generic behavior SHOULD be observed:

• The HTTP POST request carries the NSI CS reply.
• The HTTP 200 OK response carries an acknowledgement indicating successfully delivery

of the confirmed message, or a serviceException in the case of a processing failure
• The HTTP socket on the PA blocks until the response is returned (Standard HTTP

synchronous behaviour).

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 19

Figure 9: Asynchronous messages and MTL and Coordinator functions.

The asynchronous NSI reserve request has some special aspects:

• Instead of the MTL layer sending the generic ACK response message a specific
reserveResponse message MUST be sent. This message contains the connectionId
which is assigned by the PA and thus the MTL MUST obtain this from the PA NSA.

• In this version of the NSI CS protocol the PA MUST retain the repyTo field supplied in the
reserve request for the duration of the reservation. This repyTo field SHOULD be used
for the notification messages. All other replyTo values can be discarded after the
confirmed or failed has been delivered to the RA.

Although most NSA deployments will support the described protocol interactions, there are
situations where an RA will not be able to participate in the described HTTP/SOAP asynchronous
messaging interaction. An example is where a firewall has been deployed between peering NSA.
See Appendix C for a discussion of this firewall issue.

The next section describes NSI CS extensions to support a synchronous messaging model
required for RAs that are behind a firewall and are not capable of meeting the public accessibility
requirements.

6.2 Synchronous Messaging
Figure 10 shows the operation of a synchronous message; an NSI CS request message is issued
from the RA, transmitted and received by the MTL layers and passed to the PA for processing.
When the PA has collected the required information, or determined that the request cannot be
satisfied, this information is sent back to the RA. The RA blocks until the response is returned,
and there are no ACK messages involved.

For the HTTP/SOAP binding the following generic behavior SHOULD be observed:

• The HTTP POST request carries the NSI CS operation request with the replyTo header
element absent.

• The HTTP 200 OK response carries either the requested data or a serviceException.
• The HTTP socket on the RA blocks until the response is returned (Standard HTTP

synchronous behaviour).

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 20

Figure 10: Synchronous messages and MTL and Coordinator functions.

Most NSI messages operate in the asynchronous mode only, however, some messages also
support a synchronous mode of operation. This removes the need for asynchronous callbacks
for a requester-only NSA. This simple mechanism utilizes the basic CS operation request
messages in combination with synchronous version of the query messaged to provide a
functional polling solution removing the need for asynchronous callbacks. This has been added
specifically to help address the firewall issue described in the appendix.

As indicated in Figure 10 the synchronous messaging model relies on the mechanisms described
below to remove the need for asynchronous callbacks, and permit a firewall safe RA
implementation:

1. The RA MUST inform the PA that it is not interested in receiving asynchronous callbacks
by not specifying a replyTo address in the NSI header of the CS operation request.

2. If the request is successfully delivered to the PA the MTL layer MUST send an ACK
response message immediately after receiving the request to acknowledge to the RA that
the request has been accepted by the Coordinator for processing.

3. Note: The reserve operation returns the PA allocated connectionId for the reservation in
the synchronous reserveResponse message (this is distinct from the reserveConfirmed
and reserveFailed asynchronous messages).

4. The PA will perform the requested operation, but MUST NOT send a
confirmed/failed/error message back to the RA.

5. The RA SHOULD use the querySummarySync operation to synchronously retrieve
reservation information based on the connectionId, monitoring the state machine
transitions to determine progress and result of operation. Alternatively, the
queryResultSync operation can be used to retrieve any operation result messaged
(confirmed, failed, error) generated against the connectionId.

6. Notifications generated against a connectionId are identified in the reservation query
result, and SHOULD be retrieved using the queryNotificationSync operation.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 21

Figure 11: Asynchronous request with synchronous retrieval of the information.

As the MTL defines only basic message transport capabilities, the NSA requires more intelligent
message and process coordination to function. These capabilities are defined in a logical entity
called the coordinator. Even though both the MTL and Coordinator are part of the NSA, the
Coordinator is integral to the NSI Stack, whereas the MTL is functionally distinct and can be
readily substituted.

6.3 Message format and handling

6.3.1 Standard Compliance
The NSI CS protocol is specified using WSDL 1.1 and utilizes the SOAP 1.1 message encoding
as identified by the namespaces:

• soap - "http://schemas.xmlsoap.org/soap/envelope/"
• xsi - "http://www.w3.org/2001/XMLSchema-instance"
• xsd - "http://www.w3.org/2001/XMLSchema"
• soapenc - "http://schemas.xmlsoap.org/soap/encoding/"
• wsdl - "http://schemas.xmlsoap.org/wsdl/"
• soapbind - "http://schemas.xmlsoap.org/wsdl/soap/"

The specific NSI CS operation being invoked is identified by the NSI-CS element carried in the
SOAP message body. In addition, the operation is uniquely identified using the “Soapaction:”
element in the HTTP header as per section 6.1.1 of “Simple Object Access Protocol (SOAP) 1.1”
found at http://www.w3.org/TR/SOAP. This allows for better compatibility between SOAP
implementations even though it is not explicitly required as per WS-I Basic Profile 1.1
http://www.ws-i.org/Profiles/BasicProfile-1.1-2006-04-10.html.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 22

6.3.2 Message checks
Additional error condition handling: Received messages must pass the following set of checks in
order to be considered valid and handed on to the relevant state machine, otherwise a message
transport layer fault will be returned:

• HTTP authentication – if the message does not have valid credentials it will be rejected
with an HTTP 40x message.

• correlationId - needed for any acknowledgment, confirmed, failed, or error message to be
returned to the requesterNSA. MUST be unique within the context of the providerNSA
otherwise the request cannot be accepted. See Section 7.1.2 for a description of
correlationIds.

• replyTo - the confirmed, failed, or error message will be sent back to this location. The
contents of the endpoint do not need to be validated, the PA SOULD check the presence
of data in the replyTo field. The replyTo field may left empty to indicate the need to
synchronous operation.

• Operation Body – if the operation (e.g resv.rq, provision.req) and corresponding
parameters are not present then the message is rejected.

• requesterNSA and providerNSA – MUST be present for processing to proceed. The
providerNSA must resolve to an NSnetwork in topology. Also, the providerNSA MUST be
the NSnetwork that the NSA is managing or the message will be rejected.

• connectionId – this is used as the primary reference attribute for Reservation state
machines and MUST be present. If the message is for the first reserve request then the
connectionId is left empty and SHOULD be assigned by the providerNSA.

• If any of these fields are missing or invalid the NSA will return a message transport fault
containing the serviceException set to an appropriate error message. Typically this will be
MISSING_PARAMETER - "00101", "Invalid or missing parameter" for this generic case
and specify attributes identifying the parameter in question. In some cases lower layer
errors may mean that it is not possible to send a serviceException, in this case a SOAP
exception is appropriate.

If any of the above parameters are malformed or omitted from the request message, the provider
may not have the necessary information to return a failed or error message using the
(asynchronous) callback mechanism. As such, the provider can use a (synchronous) SOAP fault
to indicate a problem. If the requester receiving the SOAP fault is an AG, it should not propagate
the SOAP fault up stream verbatim, but translate it into an appropriate failed or error message.
The example (see Figure 12) below shows how a SOAP fault generated due to a malformed
reserve message is translated by the AG to a reservedFailed message to the uPA.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 23

Figure 12: Example of SOAP fault translation to NSI failed message.

6.3.3 ACK handling
Delays on the transport layer can result in ACK arriving after the confirmed/failed message. The
following guidelines are recommended for handling web-service ACKs:

1. For protocol robustness, the NSA SHOULD accept any confirmed/failed messages even
if these are received out-of-order with respect to the ACK, i.e. before the associate ACK
has been received.

2. The receipt of a confirmed/failed message cancels out the need to receive an ACK. So
the NSA should not only continue to process the confirmed/failed message, but not gate
on or wait for the ACK, i.e. consequent-messages may be sent without waiting on the
receipt of the ACK.

3. As a best practice the NSA SHOULD send the ACK before sending the associated
confirmed/failed message.

4. TCP will take care of ACK retransmission in case of a packet loss.
5. If the message transport layer is unable to transmit packets, the ACKs will eventually

timeout and generate a message transport error that the NSA will need to handle.

7. NSI Process Coordination

7.1 The Coordinator
The Message coordinator forms a normative part of the NSI CS protocol and MUST be
implemented.

The Message coordinator has the following roles:

• To coordinate, track, and aggregate (if necessary) message requests, replies, and
notifications

• To process or forward notifications as necessary
• To service query requests

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 24

7.1.1 Communications
Reliable communications are essential to the reliable operation of the NSI. As the MTL provides
only basic message transport capabilities, it is the responsibility of the Coordinator to keep track
of message states and make decisions accordingly. To do this, the Coordinator MUST maintain
the following information on a per NSI request message basis:

• Whom was the (NSI request) message sent to?
• Was the message received (i.e. ack’ed) or not (i.e. MTL timeout)?
• Which NSA has sent back an NSI reply (e.g. confirmed, failed, error) for the initial NSI

request?

7.1.2 Per Request Information Elements
For each NSI request/reply interaction, the Coordinator maintains several pieces of information
that are associated with those messages. This is particularly important for the Aggregator NSAs
(AG) that MUST keep track of the message status for each of its children in the request workflow.
The information that MUST be retained includes:

• NSA IDs: A list of NSA that the messages were sent to.
• Connection ID: The name that uniquely identifies the connection request/reservation (see

“ogf_nsi_connection_types_v2_0.xsd” for more detail).
• Correlation ID: The label that identifies messages associated to a unique NSI

request/reply interaction. This is used to associate NSI replies to requests, and also to
identify messages for re-delivery (i.e. message retries).

• Message status: This provides the message state for each of the NSI requests sent to the
various NSAs to reflect the current status, such as; MTL sent, MTL receipt
acknowledged, MTL timeout, and Coordinator timeout.

In addition to the detailed information of the status for each child NSA, NSI request (see
“request_segment_list(Conn_ID, NSA)” in Figure 14.), the Coordinator MUST also maintain an
aggregate message status indicating if the messages were delivered successfully to all the
children (see “request_list(Conn_ID)” in Figure 14.).

7.1.3 Correlation Ids and Failure Recovery
In NSI CS, there is no inherent expectation that any interim NSAs (i.e not the uRAs) make a
decision and take action when they receive a message delivery failure notification. Any
Aggregator (AG) that receives the delivery failure notification MUST forward it up the workflow
tree. When an AG forwards a notification event up the tree, it SHOULD retain the information
concerning the original failure, such as nsaId, connectionId, and error information. There may be
cases where local policy prevents this, in which case the information can be removed or altered.

On receiving the message delivery failure notification, the uRA has two choices:

1. Terminate the reservation; this is done by sending down a terminate request through the
workflow tree.

2. Request redelivery of the original message; this is done by resending down the original
message through the workflow tree. Requesting message redelivery is allowed for all
message types.

When the original message is resent down the workflow tree, it will contain the original
correlationId. AGs receiving the duplicate request should only attempt redelivery of the message
to children that it did not receive an acknowledgement for (i.e. MTL timeout) or reply to the
original message (i.e. Coordinator timeout). If the message sent with the original correlationId
does not match the original message (e.g. different message parameters/content), the message
is rejected and an error returned.

The RA MUST leave the connectionId field empty in the initial reservation request.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 25

The workflow in case of resend is shown in Figure 13:

1. NSA-1 (uRA) makes request to NSA-2 (AG) with correlation ID (CorrID) “uRA-1”
2. NSA-2 forward the request to NSA-3 (uPA) with CorrID “AG-1”
3. NSA-2 forward the request to NSA-4 (uPA) with CorrID “AG-2”
4. NSA-3 replies to the request with the corresponding CorrID “AG-1”
5. NSA-2 does not receive a reply from NSA-4, which flags either an MTL timeout (no ACK),

or a Coordiinator timeout (no reply)
6. NSA-2 returns an MTL/Coor Timeout error to NSA-1 with the corresponding CorrID “uRA-

1” of the initial request
7. NSA-1 decides to resend the initial request for redelivery, which contains the original

CorrID “uRA-1” As long as the message transaction remains incomplete all partial
messages SHOULD be retained.

8. NSA-2 resends the message to NSA-4 (the only child that was non-responsive) with an
initial CorrID “AG-2”

9. NSA-4 replies to the request with the corresponding CorrID “AG-2”
10. NSA-2 aggregates the replies from NSA-3 and NSA-4, and sends the aggregated replyto

NSA-1 with the corresponding CorrID “uRA-1”

*NB: If NSA-4 did not receive the initial request from NSA-2 (CorrID = AG-2), NSA-4 will process
the request accordingly and return a reply (corrID = AG-2). However if NSA-4 did send a reply to
the initial request from NSA-2, but this was not received by NSA-2, then, when NSA-4 receives
the “duplicate” request from NSA-2 (CorrID = AG-2), it can simply return the initial reply message
(CorrID = AG-2) and not re-process the duplicate request.

Figure 13: workflow when attempting a message re-send.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 26

7.1.4 Information maintained by the Coordinator
While per request information (see Section 7.1.2 Per Request Information Elements) will only
persist for the duration of the NSI request/reply interaction, the Coordinator MUST also store
information associated with the entire reservation.

Figure 14: Information maintained by Coordinator for each Connection Reservation and

NSI Request

7.1.5 Per Reservation Information Elements
To support the query function in NSI CS, an AG Coordinator MUST track the current state (i.e.
RSM, PSM, LSM) of all its children as well as the condition of the data plane status. This
information is persistent but updated over the lifetime of the reservation (see
“connection_segment_list(Conn_ID, NSA)” in Figure 14).

• NSAs: A list of the nsaId that are part of the connection request workflow tree.
• Connection IDs: The connectionId associated with each NSA in the workflow tree.
• Source and Destination STPs: The sourceSTP and destSTP of each Connection

segment that composes the end-to-end Connection.
• Reservation Parameters: A list of reservation parameters (e.g. startTime, endTime

capacity, etc.) associated with each NSA segment
• If an RA receives a Connection request with a startTime in the past, this should be

treated as ‘now’. The RA should not change the startTime and keep it as part of the
record of the reservation

• RSM States: State of children’s Reservation State Machine and current committed
reservation version number

• PSM States: State of children’s Provision State Machine
• LSM States: State of Children’s Lifecycle State Machine

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 27

• Data plane states: The status of the children’s data plane (i.e. active/not active), the
version of the reservation instantiated in the data plane if it is active (see Sections 7.1.6
and 7.1.7 for more details), and if the version is consistent.

7.1.6 Reservation Versioning Information
To support the modification of reservations, the notion of versioning has been introduced to
identify the instance of a reservation over its lifetime. Versioning MUST be used as follows:

• Version numbers are integer values ≥ 0 (zero)
• Version numbers are assigned by the RA when a reservation request (i.e. NSI_rsv.rq) is

made to a PA
• If a version number is not specified in an NSI_rsv.rq, it is assumed to be 0 (zero)

regardless of whether the request is the initial or a subsequent request.
• An NSI_rsv.rq with a version number ≤ the (highest) current committed reservation

version number will result in a failed request and an appropriate error
• A uPA MUST keep track of

o Version number of currently committed reservation
o Version number of pending modification request (if any)
o Version number of reservation instantiated in the data plane by the NRM

• An Aggregator MUST keep track of
o Version numbers of currently committed reservations in each child segment
o Version number of pending modification request (only one modify can be

outstanding at any time)
o Version numbers of reservations instantiated in the data plane in each child

segment (see Section 7.1.7 Data Plane Status Information)
• If a reservation request attempt fails, or a held initial reservation is aborted and the RSM

is in the ReserveStart state, then no version number will be returned.
• Version numbers of failed (e.g. timed-out) or aborted modifications are not stored, and

therefore can be reused. For example:
1. Successful initial NSI_req.rq(ver = 2) results in Reservation(v2)
2. Successful modify NSI_req.rq(ver = 5) results in Reservation(v5)
3. Failed modify NSI_req.rq(ver = 6) retains Reservation(v5)
4. Subsequent successful modify NSI_req.rq(ver = 6) results in Reservation(v6)

• Versions numbers of failed reservations can be re-used as long as they are numerically
higher than the currently committed reservation number

7.1.7 Data Plane Status Information
To reflect the state of the data plane, a Coordinator MUST maintain three flags:

• Active (boolean): To indicate whether the data plane of that Connection is active (in-
service or out-of-service)
o uPA:

• True => data plane is active
• False => data plane is not active

o AG:
• True => all children’s data planes are active
• False => one or more children’s data plane is not active

• Version (int): The version of the committed reservation instantiated in the data plane. NB:
This field is only valid when “Activate” is true.
o uPA: Version number of the committed reservation
o AG: Largest version number of the committed reservation among the children

• VersionConsistent (boolean): Reflects if the “Version” numbers are consistent
o uPA: This is always True
o AG:

§ True => all children’s “Version” numbers are the same
§ False => all children’s “Version” numbers are not the same

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 28

When there is a change in the data plane status (i.e. uPA is notified by its NRM, or AG notified by
one or more of its children), the Coordinator MUST send up the workflow tree a
DataPlaneStateChange notification with the updated Activate, Version, and VersionConsistent
values.

For the AG, reporting the aggregate data plane state of its children requires some processing.
The following pseudo-code describes this behavior:

if all of ChildrenDataPlaneStatus[1..n].Active are true then
{
 DataPlaneStatus.Active = true
}
else {
 DataPlaneStatus.Active = false
}
DataPlaneStatus.Version = maximum(ChildrenDataPlaneStatus[1..n].Version)
If all ChildrenDataPlaneStatus[1..n].Version are the same, and
 all of ChildrenDataPlaneStatus[1..n].VersionCosistent are true then
{
 DataPlaneStatus.VersionConsistent = true
}
else
{
 DataPlaneStatus.VersionConsistent = false
}

If the new state of an aggregated data plane is the same as the previous aggregated state, the
aggregator does not need to send up a dataPlaneStatus notification message. In case the
aggregated data plane status has changed, the aggregator MUST send up a notification.

The uRA and AG MUST accept dataPlaneStateChange notifications associated with a
reservation even if they arrive before StartTime. The reaon is that in case there is clock timing
issues within network notifications will not be lost.

8. Service Definitions
8.1 Context
In NSI CS version 1.x only unidirectional and bidirectional point-to-point services were offered as
part of the protocol. This limitation meant that new service types could not be added without
changing the NSI CS schema. This limitation has been removed in NSI CS version 2.0.

Service Definitions are introduced as a mechanism that adds flexibility in the protocol by
decoupling the parts of the NSI CS schema used for requesting and provisioning a Connection
(the NSI CS base schema) from the schema that describes the requested service and its
associated parameters (the service specific schema and Service Definition). This decoupling
makes it possible for network providers to define new multi-domain services without modifying the
base NSI CS protocol.

8.2 Service Definitions
The Service Definition instance describes the requestable elements associated with a specific
inter-Network service, such as Connection capacity and endpoints. The Service Definition (SD) is
an XML document that includes:

• Service-specific schema: References to the service-specific schemas associated with the
NSI CS reservation request.

• Service parameters: A specification of parameters from the service specific schema such
as connection startTime, endTime, ingress STP, egress STP, capacity, and any
restrictions on these values.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 29

• The SD also describes attributes of the service that are not specified in the reservation
request but describe features of the service being offered.

• The SD describes service-specific errors and their meanings.

These requestable elements include metadata such as information about their optionality,
modifiability, and the range of allowed values for each.

The SD becomes the definitive source of type (via service-specific schema), and units/range
definitions for the service. If a service-specific parameter is to be included in a Connection
request it MUST also be present in the associated Service Definition. Only parameters that are in
the base schema or the nominated Service Definition can be included in a Connection request.

The SD does not explicitly state which STP labels must be present in a reserveRequest message
for it to be valid for a particular SD. This is necessary since the STP may be opaque (in the case
where there is no label) and it will not be possible to interpret whether the STP refers to port,
VLAN or something else entirely.

8.3 Using Service Definitions
The requesting agent should select an appropriate SD for their service request. The SD should
describe the service that is needed and be available at all of the NSAs participating in the service
– otherwise the request will fail. The Provider Agent interprets the incoming Connection request
by inspecting the serviceType field and uses this to fetch the SD and then interpret the service-
specific elements within the request. The elements of this workflow are described next.

8.3.1 Providers agree on a common multi-domain service
The aim of the Service Definition is to allow a federation of network providers to collaborate to
define their own service. First the providers have to agree on the inter-Network service that they
wish to offer. This implies that the participating providers must agree to honor a minimum level of
service functionality in accordance with this agreement. This will ensure that any provider issuing
a Connection request in the service area can be confident that the request will be delivered as
long as sufficient network capacity is available.

Once the service is agreed, the network providers can either use a pre-defined Service Definition
template or build a new Service Definition.

8.3.2 Building an XML Service Definition instance
In many situations it is expected that one of the pre-defined set of SDs (such as the P2P Ethernet
VLAN Transfer Service) will be suitable for describing a new service. Where a new service is not
fully described by an existing SD, then the providers who have developed the new service will
develop a new SD to describe the details of the service, ensuring that all requestable parameters
are included and fully defined.

The following figure shows diagrammatically how a SD is developed. The SD is built up by
incorporating parameters and attributes from a range of source documents.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 30

Figure 15: Building a Service Definition

The XML SD instance is built up by incorporating the following elements:

• Parameters from the NSI CS schema (e.g. startTime, endTime)
• Parameters from the service-specific schema (describes common service-specific types)
• SLA attributes and technology specific attributes (e.g. monitoring, VLAN framing types)
• Service errors (i.e. service errors specific to the service type)

8.3.3 Using SDs to request a service instance
When creating a Connection request message, the elements included in the message will include
the CS base schema elements and elements from the appropriate SD. In the example shown
below, the specified serviceType uniquely identifies an SD instance document requiring that the
P2P service element (psp2) must be included in the reservation request. This p2ps element is
included as a service specific extension to the existing reservation, with service parameters
populated from the P2PServcieBaseType.

Figure 16: Creating a Connection request using the Service Definition

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 31

8.3.4 Interpreting an incoming request
The serviceType element relays the specific service type being requested in the reservation. This
service type string maps to a specific Service Definition template defined by the network
providers describing the type of service offered, parameters supported in a reservation request
(mandatory and optional), defaults for parameters if not specified (as well as maximums and
minimums), and other attributes relating to the service offering. The NSA in turn uses this
information to determine the specific service parameters carried in the criteria element required to
specify the requested service.

Figure 17: Interpreting a Connection request using the Service Definition

When a reserveRequest arrives the following steps are followed:

1. Extract the serviceType value.
2. Fetch the Service Definition corresponding to the serviceType.
3. Extract the service specific elements from criteria as defined in the SD.
4. Use the Service Definition to validate that these parameters are allowed for this service

and process the service request using both the supplied service parameters and
additional information as needed from the Service Definition document.

8.4 Service Definitions and a Request workflow
The complete workflow for Connection requests is summarized here:

1. The RA enters the parameter values associated with the Connection into the
ConnectionRequest message, adding service-specific parameters to the
ConnectionRequest as specified in the SD. Service-specific parameters MUST match the
parameters in the SD.

2. The serviceType element in the ConnectionRequest message MUST identify the SD to
which the request is directed.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 32

3. The first NSA to receive the ConnectionRequest will parse the request against the
nominated SD instance to validate the request.

4. Once validated, the ConnectionRequest will then be passed to the path computation
element.

5. A successful path computation will result in a Connection being scheduled.
6. If the Connection transits another Network, the new ConnectionRequest will use the

same SD as the one from the uRA (unless adaptation is performed resulting in a new
Connection type).

9. XML Schema Definitions
The NSI CS protocol makes use of an XML schema (XSD) to describe the common message
header and individual Connection Service operation elements and types. The Web Service
Description Language (WSDL) is used to describe the interface or operation bindings, capturing
the request, response, and error (fault) interactions. Finally, the WSDL is used to provide a SOAP
specific transport binding as a reference specification; however, the XML schema definitions can
be utilized to encapsulate the NCI CS protocol into other transport bindings. This section provides
a detailed overview of the NSI CS XML schema definitions. Source for the NSI CS XML schema
can be found in GitHub [18].

The following namespaces are defined as part of the NSI CS 2.0 protocol:

Description Namespace URL
Common types shared between NSI message
header and CS operation definitions.

http://schemas.ogf.org/nsi/2013/12/framework/types

NSI message header definition.

http://schemas.ogf.org/nsi/2013/12/framework/headers

NSI CS operation-specific type definitions. http://schemas.ogf.org/nsi/2013/12/connection/types
NSI CS operation definitions http://schemas.ogf.org/nsi/2013/12connection/interface
PA interface SOAP binding http://schemas.ogf.org/nsi/2013/12/connection/provider
RA interface SOAP binding http://schemas.ogf.org/nsi/2013/12/connection/requester

Table 5 – XML namespaces for NSI CS 2.0

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 33

9.1 NSI CS Versioning
The common way of version SOAP and XSD is by using XML namespaces. Each of the WSDL
and XSD schema files defined as part of the NSI CS protocol are identified through their
designated namespace URL (for example, http://schemas.ogf.org/nsi/2013/12/framework/headers
for the NSI framework header definition). This versioning mechanism is vital for ensuring end-to-
end syntax consistency for message exchange; however, these namespaces do not identify
specific behavioral aspects of the protocol. To solve this NSI CS has introduced a protocol
version field within the NSI header to convey both the syntactic and behavior version of the
protocol. This allows additional versions to be defined that can change behavior aspects without
upgrading the base WSDL or XSD definitions.

Versioning within the NSI suite of protocols utilizes Internet Assigned Numbers Authority (IANA)
MIME Media Types as a standard mechanism for distinguishing between releases of each
protocol. The current NSI CS 2.0 profile utilizes SOAP over HTTP as a transport that has a
standard MIME Media Type of “application/soap+xml”. We have created a custom Media Type for
the NSI CS 2.0 SOAP profile to distinguish this protocol, however, it is only used in the
protocolVersion field of the SOAP header and not the Content-types field of the HTTP header that
remains “application/soap+xml”.

Table 6 below enumerates the MIME Media Types defined for each version of the protocol, and
the specific protocol interface role the NSA supports. These are the string values that will be
populated in the protocolVersion field of the NSI header for each message sent (see section 9.2).

Table 6 – NSI CS protocol version MIME Media Types.

9.2 nsiHeader element

Namespace definition: http://schemas.ogf.org/nsi/2013/12/framework/headers

The nsiHeader element contains attributes common to all NSI CS operations, and therefore, is
sent as part of every NSI CS message exchange. Attributes included in the header provide
protocol versioning, basic message routing for the protocol, and user security infrastructure. For
the SOAP protocol binding, the nsiHeader element is encapsulated in the SOAP header, while
the NSI specific operation is encapsulated in the SOAP body.

Version Interface MIME Media Type
NSI CS version 1.0 Provider “application/vnd.ogf.nsi.cs.v1.provider+soap”
NSI CS version 1.0 Requester “application/vnd.ogf.nsi.cs.v1.requester+soap”
NSI CS version 1.1 Provider “application/vnd.ogf.nsi.cs.v1-1.provider+soap”
NSI CS version 1.1 Requester “application/vnd.ogf.nsi.cs.v1-1.requester+soap”
NSI CS version 2.0 Provider “application/vnd.ogf.nsi.cs.v2.provider+soap”
NSI CS version 2.0 Requester “application/vnd.ogf.nsi.cs.v2.requester+soap”

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 34

Figure 18 – nsiHeader structure.

Parameters
The nsiHeader has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
protocolVersion M A string identifying the specific protocol version carried in this NSI message.

The protocol version is modeled separately from the namespace of the
WSDL and XML schema to capture behavioral changes that cannot be
modeled in schema definition, and to avoid updating of the schema
namespace.

correlationId M An identifier provided by the requester used to correlate to an asynchronous
response from the responder. It is recommended that a Universally Unique
Identifier (UUID) URN as per IETF RFC 4122 [9] be used as a globally
unique value.

requesterNSA M The NSA identifier for the NSA acting in the RA role for the specific NSI
operation.

providerNSA M The NSA identifier for the NSA acting in the PA role for the specific NSI
operation.

replyTo O The RA's SOAP endpoint address to which asynchronous messages
associated with this operation request will be delivered. This is only
populated for the original operation request (reserve, provision, release,
terminate, and the query messages), and not for any additional messaging
associated with the operation. If no endpoint value is provided in an operation
request, then it is assumed the RA is not interested in a response and will
use alternative mechanism to determine the result (i.e. polling using query).

sessionSecurityAttributes O Security attributes associated with the end user's NSI session. This field can
be used to perform authentication, authorization, and policy enforcement of
end user requests. It is only provided in the operation request (reserve,
provision, release, terminate, and the query messages), and not for any
additional messaging associated with the operation.

any element and
anyAttribute

O Provides a flexible mechanism allowing additional elements in the protocol
header for exchange between two-peered NSA. Use of this element field is
beyond the current scope of this NSI specification, but may be used in the

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 35

Table 7 nsiHeader parameters

The following table describes each message and its use of the individual header parameters. The
“Soapaction:” parameter identified in the last column of the table is carried in the HTTP request
attributes and not the NSI specific header.

future to extend the existing protocol without requiring a schema change.
Additionally, the field can be used between peered NSA to provide additional
context not covered in the existing specification, however, this is left up to
specific peering agreements.

 Header parameters

M = Mandatory
O = Optional
N/A = Not Applicable

pr
ot

oc
ol

V
er

si
on

co
rr

el
at

io
nI

d

re
qu

es
te

rN
S

A

pr
ov

id
er

N
S

A

re
pl

yT
o

se
ss

io
nS

ec
ur

ity
A

ttr
ib

ut
es

ot
he

r

S
oa

pa
ct

io
n

 reserve M M M M O O O M
 reserveResponse M M M M N/A N/A O N/A
 reserveConfirmed M M M M N/A O O M
 reserveConfirmedACK M M M M N/A N/A O N/A
 reserveFailed M M M M N/A O O M
 reserveFailedACK M M M M N/A N/A O N/A

 reserveCommit M M M M O O O M
 reserveCommitACK M M M M N/A N/A O N/A
 reserveCommitConfirmed M M M M N/A O O M
 reserveCommitConfirmedACK M M M M N/A N/A O N/A
 reserveCommitFailed M M M M N/A O O M
 reserveCommitFailedACK M M M M N/A N/A O N/A

 reserveAbort M M M M O O O M
 reserveAbortACK M M M M N/A N/A O N/A
 reserveAbortConfirmed M M M M N/A O O M
 reserveAbortConfirmedACK M M M M N/A N/A O N/A

 provision M M M M O O O M
 provisionACK M M M M N/A N/A O N/A
 provisionConfirmed M M M M N/A O O M
 provisionConfirmedACK M M M M N/A N/A O N/A
Messaging
Primitives

release M M M M O O O M
releaseACK M M M M N/A N/A O N/A
releaseConfirmed M M M M N/A O O M
releaseConfirmedACK M M M M N/A N/A O N/A

 terminate M M M M O O O M
 terminateACK M M M M N/A N/A O N/A
 terminateConfirmed M M M M N/A O O M
 terminateConfirmedACK M M M M N/A N/A O N/A

 querySummary M M M M M O O M
 querySummaryACK M M M M N/A N/A O N/A
 querySummaryConfirmed M M M M N/A O O M
 querySummaryConfirmedACK M M M M N/A N/A O N/A

 queryRecursive M M M M M O O M
 queryRecursiveACK M M M M N/A N/A O N/A

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 36

Table 8 – NSI CS message use of header fields

9.2.1 sessionSecurityAttr Element
The sessionSecurityAttr element is defined using a standardized SAML AtttributeStatementType
imported from the SAML namespace urn:oasis:names:tc:SAML:2.0:assertion with an NSI specific
extension to add a string based attribute type and name. This allows for multiple
sessionSecurityAttr elements to be specified in the header, and each one identified for a specific
use (for example, supplying user credentials per NSA domain). The specific use of this element is
out of the scope of this document.

The expected (default) behaviour is that an NSA AG MUST pass any received session security
attributes on to all children, however, deployment specific behaviours may be introduced that
change this default behaviour.

 queryRecursiveConfirmed M M M M N/A O O M
 queryRecursiveConfirmedACK M M M M N/A N/A O N/A

 querySummarySync M M M M N/A O O M
 querySummarySyncConfirmed M M M M N/A N/A O M

 error M M M M N/A O O M
 errorACK M M M M N/A N/A O N/A

 errorEvent M M M M N/A O O M
 errorEventACK M M M M N/A N/A O N/A
 reserveTimeout M M M M N/A O O M
 reserveTimeoutACK M M M M N/A N/A O N/A
 dataPlaneStateChange M M M M N/A O O M
 dataPlaneStateChangeACK M M M M N/A N/A O N/A
 messageDeliveryTimeout M M M M N/A O O M
 messageDeliveryTimeoutACK M M M M N/A N/A O N/A

 queryNotification M M M M M O O M
 queryNotificationACK M M M M N/A N/A O N/A
 queryNotificationConfirmed M M M M N/A O O M
 queryNotificationConfirmedACK M M M M N/A N/A O N/A

 queryNotificationSync M M M M N/A O O M
 queryNotificationSyncConfimed M M M M N/A N/A O M
 queryNotificationSyncFailed N/A N/A N/A N/A N/A N/A N/A N/A

 queryResult M M M M M O O M
 queryResultACK M M M M N/A N/A O N/A
 queryResultConfirmed M M M M N/A O O M
 queryResultConfirmedACK M M M M N/A N/A O N/A

 queryResultSync M M M M N/A O O M
 queryResultSyncConfimed M M M M N/A N/A O M

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 37

Figure 19 – sessionSecurityAttr type.

9.3 Common types

Namespace definition: http://schemas.ogf.org/nsi/2013/12/framework/types

These are the common types shared between NSI message header and CS operation definitions.

9.3.1 ServiceExceptionType
Common service exception used for SOAP faults and operation failed messages.

Figure 20 – ServiceExceptionType type.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 38

Parameters
The ServiceExceptionType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
nsaId M NSA that generated the service exception.
connectionId O The connectionId associated with the reservation impacted by this error.
serviceType O The service type identifying the applicable service definition within the

context of the NSA generating the error.
errorId M Error identifier uniquely identifying each known fault within the protocol.
text M User-friendly message text describing the error.
variables O An optional collection of type/value pairs providing additional information

relating to the error and feedback for possible resolution.
childException O Hierarchical list of service exceptions capturing failures within the request

tree.

Table 9 – ServiceExceptionType parameters.

9.3.2 VariablesType
A type definition providing a set of zero or more type/value variables used for modeling generic
attributes.

Figure 21 – NsaIdType type.

Parameters
The VariablesType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
variable O The variable containing the type/values.

Table 10 – VariablesType parameters.

9.3.3 TypeValuePairType
TypeValuePairType is a simple type and multi-value tuple. Includes simple string type and value,
as well as more advanced extensions if needed. A targetNamespace attribute is included to
provide additional context where needed.

Figure 22 – TypeValuePairType type.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 39

Parameters
The TypeValuePairType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
type M A string representing the name of the type.
namespace O An optional URL to qualify the name space of the capability.
anyAttribute Provides a flexible mechanism allowing additional attributes non-

specified to be provided as needed for peer-to-peer NSA
communications. Use of this attribute field is beyond the current scope
of this NSI specification, but may be used in the future to extend the
existing protocol without requiring a schema change.

value O A string value corresponding to type.
feedback O Provides a mechanism for a ServiceException to provide type specific

feedback corresponding to this variable.
any O Provides a flexible mechanism allowing additional elements to be

provided as an alternative, or in combination with value. Use of this
element field is beyond the current scope of this NSI specification, but
may be used in the future to extend the existing protocol without
requiring a schema change.

Table 11 – TypeValuePairType parameters

9.3.4 TypeValuePairListType
 A simple holder type providing a list definition for the attribute type/values structure.

Figure 23 – TypeValuePairListType type.

Parameters
The TypeValuePairListType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
attribute O An instance of a type/value structure.

Table 12 – TypeValuePairListType parameters

9.3.5 ConnectionIdType
A connectionId is a simple string value that uniquely identifies a reservation segment within the
context of a PA. This value is not globally unique.

Figure 24 – ConnectionIdType type.

9.3.6 DateTimeType
The time zone support of W3C XML Schema is quite controversial and needs some additional
constraints to avoid comparison problems. These patterns can be kept relatively simple since the
syntax of the dateTime is already checked by the schema validator and only simple additional
checks need to be added. This type definition checks that the time part ends with a "Z" or
contains a sign. Values MUST correspond to the following pattern ".+T.+(Z|[+-].+)"

Figure 25 – DateTimeType type.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 40

9.3.7 NsaIdType
NsaIdType is a specific type for a Network Services Agent (NSA) identifier that is populated with
an OGF URN [14], [15] to be used for compatibility with other external systems.

Figure 26 – NsaIdType type.

9.3.8 UuidType
Universally Unique Identifier (UUID) URN as per ITU-T Rec. X.667 [10] | ISO/IEC 9834-8:2005
[11] and IETF RFC 4122 [9]. Values MUST correspond to the following pattern “urn:uuid:[a-fA-F0-
9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12}”.

Figure 27 – UuidType type.

9.4 NSI CS operation-specific type definitions.

Namespace definition: http://schemas.ogf.org/nsi/2013/12/connection/types

These are the NSI CS specific operations element definitions for each message defined in the
protocol.

9.4.1 reserve message elements
The reserve message is sent from an RA to a PA when a new reservation is being requested, or
a modification to an existing reservation is required. The reserveResponse indicates that the PA
has accepted the reservation request for processing and has assigned it the returned
connectionId. The original connectionId will be returned for the reserveResponse of a
modification. A reserveConfirmed or reserveFailed message will be sent asynchronously to the
RA when reserve operation has completed processing.

Type Direction Input Output Fault
Request RA to PA reserve reserveResponse serviceException
Confirmed PA to RA reserveConfirmed reserveConfirmedACK serviceException
Failed PA to RA reserveFailed reserveFailedACK serviceException
Error N/A N/A N/A N/A

Table 13 reserve message elements

9.4.1.1 Request: reserve
The NSI CS reserve message allows an RA to reserve network resources associated with a
service within the Network constrained by the provided service parameters. This reserve
message allows an RA to check the feasibility of a connection reservation, or modification an
existing connection reservation. Any resources associated with the reservation or modification
operation will be allocated and held until a reserveCommit message is received for the specific
connectionId or a reservation timeout occurs (whichever arrives first).

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 41

Figure 28 – reserve request message structure.

Parameters
The reserve message has the following parameters:

Parameter Description
connectionId The PA assigned connectionId for this reservation. This value will be unique

within the context of the PA. Provided in reserve request only when an existing
reservation is being modified. This MAY be populated with a Universally
Unique Identifier (UUID) URN as per ITU-T Rec. X.667 |ISO/IEC 9834-8:2005
and IETF RFC 4122.

globalReservationId An optional global reservation id that can be used to correlate individual related
service reservations through the network. This MUST be populated with a
Universally Unique Identifier (UUID) URN as per ITU-T Rec. X.667 |ISO/IEC
9834-8:2005 and IETF RFC 4122.

description An optional description for the service reservation.
criteria Reservation request criteria including version, start and end time, service type,

and service-specific schema elements.

Table 14 reserve message parameters

Response
If the reserve operation is successful, a reserveResponse message is returned, otherwise a
serviceException is returned. A PA sends this reserveResponse message immediately after
receiving the reservation request to inform the RA of the connectionId allocated to their
reservation request. This connectionId can then be used to query reservation progress.

Figure 29 – reserveResponse message structure.

The reserveResponse message has the following parameters:

Parameter Description
connectionId The PA assigned connectionId for this reservation request. This value will be

unique within the context of the PA.

Table 15 reserveResponse message parameters

9.4.1.2 Confirmation: reserveConfirmed
A PA sends this positive reserveConfirmed response message to the RA that issued the original
reserve request message. Receipt of this message is an indication that the requested reservation
parameters were available and will be held until a reserveCommit message is received for the
reservation or a reservation timeout occurs (whichever arrives first).

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 42

Figure 30 – reserveConfirmed message structure.

Parameters
The reserveConfirmed message has the following parameters:

Parameter Description
connectionId The PA assigned connectionId for this reservation. This value will be unique

within the context of the PA. Provided in reserve request only when an existing
reservation is being modified.

globalReservationId An optional global reservation id that can be used to correlate individual related
service reservations through the network. This MUST be populated with a
Universally Unique Identifier (UUID) URN as per ITU-T Rec. X.667 |ISO/IEC
9834-8:2005 and IETF RFC 4122.

description An optional description for the service reservation.
criteria A set of versioned and confirmed reservation criteria information including start

and end time, service attributes, and requested path for the service.

Table 16 reserveConfirmed message parameters
Response
If the reserveConfirmed operation is successful, a reserveConfirmedACK message is returned,
otherwise a serviceException is returned. An RA sends this reserveConfirmedACK message
immediately after receiving the reserveConfirmed request to acknowledge to the PA the
reserveConfirmed request has been accepted for processing. The reserveConfirmedACK
message is implemented using the generic acknowledgement message.

Figure 31 – reserveConfirmedACK message structure.

The reserveConfirmedACK message has no parameters as all relevant information is carried in
the NSI CS header structure.

9.4.1.3 Failed: reserveFailed
A PA sends this negative reserveFailed response to the RA that issued the original reservation
request message if the requested reservation criteria could not be met. This message is also sent
in response to a reserve request for a modification to an existing schedule if the required
modification is not possible.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 43

Figure 32 – reserveFailed message structure.

Parameters
The reserveFailed message has the following parameters:

Parameter Description
connectionId The PA assigned connectionId for this reservation. This value will be unique

within the context of the PA.
connectionStates Overall connection state for the reservation.
serviceException Specific error condition indicating the reason for the failure.

Table 17 reserveFailed message parameters
Response
If the reserveFailed operation is successful, a reserveFailedACK message is returned, otherwise
a serviceException is returned. An RA sends this reserveFailedACK message immediately after
receiving the reserveFailed request to acknowledge to the PA the reserveFailed request has
been accepted for processing. The reserveFailedACK message is implemented using the generic
acknowledgement message.

Figure 33 – reserveFailedACK message structure.

The reserveFailedACK message has no parameters as all relevant information is carried in the
NSI CS header structure.

9.4.2 reserveCommit message elements
The reserveCommit message is sent from an RA to a PA when a reservation or modification to an
existing reservation is being committed. This reservation MUST currently reside in the Reserve
Held state for this operation to be accepted. The reserveCommitACK indicates that the PA has
accepted the modify request for processing. A reserveCommitConfirmed or reserveCommitFailed
message will be sent asynchronously to the RA when reserve or modify processing has
completed.

Type Direction Input Output Fault
Request RA to PA reserveCommit reserveCommitACK serviceException
Confirmed PA to RA reserveCommitConfirmed reserveCommitConfirmedACK serviceException
Failed PA to RA reserveCommitFailed reserveCommitFailedACK serviceException
Error N/A N/A N/A N/A

Table 18 reserveCommit message elements

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 44

9.4.2.1 Request: reserveCommit
The NSI CS reserveCommit message allows an RA to commit a previously allocated reservation
or modification on a reservation. The reserveCommit request MUST arrive at the Provider Agent
before the reservation timeout occurs.

Figure 34 – reserveCommit request message structure.

Parameters
The reserveCommit message has the following parameters:

Parameter Description
connectionId The PA assigned connectionId for the reservation that is to be committed.

Table 19 reserveCommit message parameters

Response
If the reserveCommit operation is successful, a reserveCommitACK message is returned,
otherwise a serviceException is returned. A PA sends this reserveCommitACK message
immediately after receiving the reserveCommit request to acknowledge to the RA the
reserveCommit request has been accepted for processing. The reserveCommitACK message is
implemented using the generic acknowledgement message.

Figure 35 – reserveCommitACK message structure.

The reserveCommitACK message has no parameters as all relevant information is carried in the
NSI CS header structure.

9.4.2.2 Confirmation: reserveCommitConfirmed
This reserveCommitConfirmed message is sent from a PA to RA as an indication of a successful
reserveCommit request for a reservation previously in a Reserve Held state.

Figure 36 – reserveCommitConfirmed message structure.

Parameters
The reserveCommitConfirmed message has the following parameters:

Parameter Description
connectionId The connection identifier for the reservation that was committed.

Table 20 reserveCommitConfirmed message parameters

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 45

Response
If the reserveCommitConfirmed operation is successful, a reserveCommitConfirmedACK
message is returned, otherwise a serviceException is returned. An RA sends this
reserveCommitConfirmedACK message immediately after receiving the
reserveCommitConfirmed request to acknowledge to the PA the reserveCommitConfirmed
request has been accepted for processing. The reserveCommitConfirmedACK message is
implemented using the generic acknowledgement message.

Figure 37 – reserveAbortConfirmedACK message structure.

The reserveCommitConfirmedACK message has no parameters as all relevant information is
carried in the NSI CS header structure.

9.4.2.3 Failed: reserveCommitFailed
This reserveCommitFailed message is sent from a PA to RA as an indication of a reserve (or
modify) commit failure. This is in response to an original reserveCommit request from the
associated RA.

Figure 38 – reserveCommitFailed message structure.

Parameters
The reserveCommitFailed message takes the following parameters:

Parameter Description
connectionId The PA assigned connectionId for this reservation. This value will be unique

within the context of the PA.
connectionStates Overall connection state for the reservation.
serviceException Specific error condition indicating the reason for the failure.

Table 21 reserveCommitFailed message parameters

Response
If the reserveCommitFailed operation is successful, a reserveCommitFailedACK message is
returned, otherwise a serviceException is returned. An RA sends this reserveCommitFailedACK
message immediately after receiving the reserveCommitFailed request to acknowledge to the PA
the reserveCommitFailed request has been accepted for processing. The
reserveCommitFailedACK message is implemented using the generic acknowledgement
message.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 46

Figure 39 – reserveCommitFailedACK message structure.

The reserveCommitFailedACK message has no parameters as all relevant information is carried
in the NSI CS header structure.

9.4.3 reserveAbort message elements
The reserveAbort message is sent from an RA to a PA when an initial reservation request, or
modification to an existing reservation is to be aborted, and the reservation state machine
returned to the previous version of the reservation. The reserveAbortACK indicates that the PA
has accepted the abort request for processing. A reserveAbortConfirmed message will be sent
asynchronously to the RA when the abort processing has completed. There is no associated
Failed message for this operation.

Type Direction Input Output Fault
Request RA to PA reserveAbort reserveAbortACK serviceException
Confirmed PA to RA reserveAbortConfirmed reserveAbortConfirmedACK serviceException
Failed N/A 9.4.3.1.1.1 N/A 9.4.3.1.1.2 N/A 9.4.3.1.1.3 N/A

Error PA to RA error errorACK serviceException

Table 22 reserveCommitFailed message elements

9.4.3.2 Request: reserveAbort
The NSI CS reserveAbort message allows an RA to abort a previously requested reservation or
modification on a reservation.

Figure 40 – reserveAbort request message structure.

Parameters
The reserveAbort message has the following parameters:

Parameter Description
connectionId The PA assigned connectionId for the reservation or modification that is to be

aborted.

Table 23 reserveAbort message parameters

Response
If the reserveAbort operation is successful, a reserveAbortACK message is returned, otherwise a
serviceException is returned. A PA sends this reserveAbortACK message immediately after
receiving the reserveAbort request to acknowledge to the RA the reserveAbort request has been
accepted for processing. The reserveAbortACK message is implemented using the generic
acknowledgement message.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 47

Figure 41 – reserveAbortACK message structure.

The reserveAbortACK message has no parameters as all relevant information is carried in the
NSI CS header structure.

9.4.3.3 Confirmation: reserveAbortConfirmed
This reserveAbortConfirmed message is sent from a PA to RA as an indication of a successful
reserveAbort request. The reservation in question will have any pending modifications cancelled
and returned to the reservation state existing before the modification.

Figure 42 – reserveAbortConfirmed message structure.

Parameters
The reserveAbortConfirmed message has the following parameters:

Parameter Description
connectionId The connection identifier for the reservation that was aborted.

Table 24 reserveAbortConfirmed message parameters

Response
If the reserveAbortConfirmed operation is successful, a reserveAbortConfirmedACK message is
returned, otherwise a serviceException is returned. An RA sends this reserveAbortConfirmedACK
message immediately after receiving the reserveAbortConfirmed request to acknowledge to the
PA the reserveAbortConfirmed request has been accepted for processing. The
reserveAbortConfirmedACK message is implemented using the generic acknowledgement
message.

Figure 43 – reserveAbortConfirmedACK message structure.

The reserveAbortConfirmedACK message has no parameters as all relevant information is
carried in the NSI CS header structure.

9.4.4 reserveTimeout message elements
The reserveTimeout message is an autonomous message issued from a PA to an RA when a
timeout on an existing reserve request occurs, and the PA has freed any uncommitted resources
associated with the reservation. This type of event is originated from an uPA managing network
resources associated with the reservation, and propagated up the request tree to the originating
uRA. An aggregator NSA (performing both a PA and RA role) will map the received connectionId
into a context understood by its direct parent RA in the request tree, then propagate the event
upwards. The originating connectionId and uPA are provided in separate elements to maintain

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 48

the original context generating the timeout. The timeoutValue and timeStamp are populated
by the originating uPA and propagated up the tree untouched by intermediate NSA.

The reserveTimeoutACK indicates that the RA has accepted the reserveTimeout event for
processing. There is no associated Confirmed or Failed message for this operation.

Type Direction Input Output Fault
Event PA to RA reserveTimeout reserveTimeoutACK serviceException

Table 25 reserveTimeout message elements

9.4.4.1 Request: reserveTimeout
The NSI CS reserveTimeout message allows a PA to communicate to the RA a reserve timeout
condition on an outstanding reserve operation.

Figure 44 – reserveTimeout request message structure.

Parameters
The reserveTimeout message has the following parameters:

Parameter Description
connectionId The PA assigned connectionId that this notification is against.
notificationId A notification identifier that is unique in the context of a connectionId. This is a

linearly increasing identifier that can be used for ordering notifications in the
context of the connectionId.

timeStamp Time the event was generated on the originating NSA.
timeoutValue The timeout value in seconds that expired this reservation.
originatingConnectionId The connectionId that triggered the reserve timeout.
originatingNSA The NSA originating the timeout event.

Table 26 reserveTimeout request parameters

Response
If the reserveTimeout operation is successful, a reserveTimeoutACK message is returned,
otherwise a serviceException is returned. An RA sends this reserveTimeoutACK message
immediately after receiving the reserveTimeout event to acknowledge to the PA the

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 49

reserveTimeout event has been accepted for processing. The reserveTimeoutACK message is
implemented using the generic acknowledgement message.

Figure 45 – reserveTimeoutACK message structure.

The reserveTimeoutACK message has no parameters as all relevant information is carried in the
NSI CS header structure.

9.4.5 provision message elements
The provision message is sent from an RA to a PA when an existing reservation is to be
transitioned into a provisioned state. The provisionACK indicates that the PA has accepted the
provision request for processing. A provisionConfirmed or message will be sent asynchronously
to the RA when provision processing has completed. There is no associated Failed message for
this operation.

Type Direction Input Output Fault
Request RA to PA provision provisionACK serviceException
Confirmed PA to RA provisionConfirmed provisionConfirmedACK serviceException
Failed N/A 9.4.5.1.1.1 N/A 9.4.5.1.1.2 N/A 9.4.5.1.1.3 N/A
Error PA to RA 9.4.5.1.1.4 error 9.4.5.1.1.5 errorACK 9.4.5.1.1.6 serviceException

Table 27 provision message elements

9.4.5.2 Request: provision
The NSI CS provision message allows an RA to transition a previously requested reservation into
a provisioned state. A reservation in a provisioned state will activate associated data plane
resources during the scheduled reservation time.

Figure 46 – provision request message structure.

Parameters
The provision message has the following parameters:

Parameter Description
connectionId The PA assigned connectionId for the reservation to be provisioned.

Table 28 provision message parameters

Response
If the provision operation is successful, a provisionACK message is returned, otherwise a
serviceException is returned. A PA sends this provisionACK message immediately after receiving
the provision request to acknowledge to the RA the provision request has been accepted for
processing. The provisionACK message is implemented using the generic acknowledgement
message.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 50

Figure 47 – provisionACK message structure.

The provisionACK message has no parameters as all relevant information is carried in the NSI
CS header structure.

9.4.5.3 Confirmation: provisionConfirmed
This provisionConfirmed message is sent from a PA to RA as an indication of a successful
provision request. This is in response to an original provision request from the associated RA.

Figure 48 – provisionConfirmed message structure.

Parameters
The provisionConfirmed message has the following parameters:

Parameter Description
connectionId The connection identifier for the reservation that was provisioned.

Table 29 provisionConfirmed message parameters

Response
If the provisionConfirmed operation is successful, a provisionConfirmedACK message is returned,
otherwise a serviceException is returned. An RA sends this provisionConfirmedACK message
immediately after receiving the provisionConfirmed request to acknowledge to the PA the
provisionConfirmed request has been accepted for processing. The provisionConfirmedACK
message is implemented using the generic acknowledgement message.

Figure 49 – provisionConfirmedACK message structure.

The provisionConfirmedACK message has no parameters as all relevant information is carried in
the NSI CS header structure.

9.4.6 release message elements
The release message is sent from an RA to a PA when an existing reservation is to be
transitioned into a Released state. The releaseACK indicates that the PA has accepted the
release request for processing. A releaseConfirmed message will be sent asynchronously to the
RA when release processing has completed. There is no associated failed message for this
operation.

Type Direction Input Output Fault
Request RA to PA release releaseACK serviceException
Confirmed PA to RA releaseConfirmed releaseConfirmedACK serviceException
Failed N/A 9.4.6.1.1.1 N/A 9.4.6.1.1.2 N/A 9.4.6.1.1.3 N/A
Error PA to RA 9.4.6.1.1.4 error 9.4.6.1.1.5 errorACK 9.4.6.1.1.6 serviceException

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 51

Table 30 Release message elements

9.4.6.2 Request: release
The NSI CS release message allows an RA to transition a previously requested reservation into a
released state. A reservation in a released state will deactivate associated data plane resources,
but the reservation is not affected.

Figure 50 – release request message structure.

Parameters
The release message has the following parameters:

Parameter Description
connectionId The PA assigned connectionId for the reservation to be released.

Table 31 Release message parameters

Response
If the release operation is successful, a releaseACK message is returned, otherwise a
serviceException is returned. A PA sends this releaseACK message immediately after receiving
the release request to acknowledge to the RA the release request has been accepted for
processing. The releaseACK message is implemented using the generic acknowledgement
message.

Figure 51 – releaseACK message structure.

The releaseACK message has no parameters as all relevant information is carried in the NSI CS
header structure.

9.4.6.3 Confirmation: releaseConfirmed
This releaseConfirmed message is sent from a PA to RA as an indication of a successful release
request. This is in response to an original release request from the associated RA.

Figure 52 – releaseConfirmed message structure.

Parameters
The releaseConfirmed message has the following parameters:

Parameter Description

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 52

connectionId The connection identifier for the reservation that was released.

Table 32 releaseConfirmed message parameters

Response
If the releaseConfirmed operation is successful, a releaseConfirmedACK message is returned,
otherwise a serviceException is returned. An RA sends this releaseConfirmedACK message
immediately after receiving the releaseConfirmed request to acknowledge to the PA the
releaseConfirmed request has been accepted for processing. The releaseConfirmedACK
message is implemented using the generic acknowledgement message.

Figure 53 – releaseConfirmedACK message structure.

The releaseConfirmedACK message has no parameters as all relevant information is carried in
the NSI CS header structure.

9.4.7 terminate message elements
The terminate message is sent from an RA to a PA when an existing reservation is to be
transitioned into a terminated state and all associated resources in the network are freed. The
terminateACK indicates that the PA has accepted the terminate request for processing. A
terminateConfirmed message will be sent asynchronously to the RA when terminate processing
has completed. There is no associated Failed message for this operation.

Type Direction Input Output Fault
Request RA to PA terminate terminateACK serviceException
Confirmed PA to RA terminateConfirmed terminateConfirmedACK serviceException
Failed N/A N/A N/A N/A
Error PA to RA error errorACK serviceException

Table 33 terminate message elements

9.4.7.1 Request: terminate
The NSI CS terminate message allows an RA to transition a previously requested reservation into
a Terminated state. A reservation in a Terminated state will release all of the associated
resources.

Figure 54 – terminate request message structure.

Parameters
The terminate message has the following parameters:

Parameter Description
connectionId The PA assigned connectionId for the reservation to be terminated.

Table 34 terminate message parameters

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 53

Response
If the terminate operation is successful, a terminateACK message is returned, otherwise a
serviceException is returned. A PA sends this terminateACK message immediately after receiving
the terminate request to acknowledge to the RA the terminate request has been accepted for
processing. The terminateACK message is implemented using the generic acknowledgement
message.

Figure 55 – terminateACK message structure.

The terminateACK message has no parameters as all relevant information is carried in the NSI
CS header structure.

9.4.7.2 Confirmation: terminateConfirmed
This terminateConfirmed message is sent from a PA to RA as an indication of a successful
terminate request. This is in response to an original terminate request from the associated RA.

Figure 56 – terminateConfirmed message structure.

Parameters
The terminateConfirmed message has the following parameters:

Parameter Description
connectionId The connection identifier for the reservation that was terminated.

Table 35 terminateConfirmed message parameters

Response
If the terminateConfirmed operation is successful, a terminateConfirmedACK message is
returned, otherwise a serviceException is returned. An RA sends this terminateConfirmedACK
message immediately after receiving the terminateConfirmed request to acknowledge to the PA
the terminateConfirmed request has been accepted for processing. The terminateConfirmedACK
message is implemented using the generic acknowledgement message.

Figure 57 – terminateConfirmedACK message structure.

The terminateConfirmedACK message has no parameters as all relevant information is carried in
the NSI CS header structure.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 54

9.4.8 error message elements
The error message is sent from a PA to an RA in response to an outstanding operation request
when an error condition encountered, and as a result, the operation cannot be successfully
completed. The correlationId carried in the NSI CS header structure will identify the original
request associated with this error message. The errorACK indicates that the RA has accepted the
error request for processing. There is no associated Confirmed or Failed message for this
operation.

Type Direction Input Output Fault
Request PA to RA error errorACK serviceException

Table 36 error message elements

9.4.8.1 Request: error
The NSI CS error message allows a PA to communicate to the RA an error condition on an
outstanding request operation.

Figure 58 – error request message structure.

Parameters
The error message has the following parameters:

Parameter Description
serviceException Specific error condition and the reason for the failure.

Table 37 error message parameters

Response
If the error operation is successful, an errorACK message is returned, otherwise a
serviceException is returned. An RA sends this errorACK message immediately after receiving
the error request to acknowledge to the PA the error request has been accepted for processing.
The errorACK message is implemented using the generic acknowledgement message.

Figure 59 – errorACK message structure.

The errorACK message has no parameters as all relevant information is carried in the NSI CS
header structure.

9.4.9 errorEvent message elements
The errorEvent message is an autonomous message issued from a PA to an RA when an
existing reservation encounters an autonomous error condition that may impact the reservation.
The three errors currently modeled are:

• The reservation is administratively terminated on an uPA before the reservation's
scheduled end-time.

• An activation or deactivation of data plane resources associated with the reservation has
failed.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 55

• An error has occurred within the data plane that has impacted resources associated with
the reservation.

This type of event originates from an uPA managing network resources associated with the
reservation, and propagated up the request tree to the originating uRA. An aggregator NSA
(performing both a PA and RA role) will map the received connectionId into a context understood
by its direct parent RA in the request tree, then propagate the event upwards. The originating
connectionId and uPA are provided in separate elements to maintain the original context
generating the error. The timeStamp is populated by the originating uPA and propagated up the
tree untouched by intermediate NSA.

The errorEventACK indicates that the RA has accepted the errorEvent event for processing.
There is no associated Confirmed or Failed message for this operation.

Type Direction Input Output Fault
Event PA to RA errorEvent errorEventACK serviceException

Table 38 errorEvent message elements

9.4.9.1 Request: errorEvent
The NSI CS errorEvent message allows a PA to communicate to the RA an error condition on an
existing reservation.

Figure 60 – errorEvent request message structure.

Parameters
The errorEvent message has the following parameters:

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 56

Parameter Description
connectionId The PA assigned connectionId that this notification is against.
notificationId A notification identifier that is unique in the context of a connectionId. This is a

linearly increasing identifier that can be used for ordering notifications in the
context of the connectionId.

timeStamp Time the event was generated on the originating NSA.
event The type of event that generated this notification.
originatingConnectionId The connectionId that triggered the error event.
originatingNSA The NSA originating error event.
additionalInfo Type/value pairs that can provide additional error context as needed.
serviceException Specific error condition - the reason for the generation of the error event.

Table 39 reserveTimeout request parameters

Response
If the errorEvent operation is successful, a errorEventACK message is returned, otherwise a
serviceException is returned. An RA sends this errorEventACK message immediately after
receiving the errorEvent event to acknowledge to the PA the errorEvent event has been accepted
for processing. The errorEventACK message is implemented using the generic acknowledgement
message.

Figure 61 – errorEventACK message structure.

The errorEventACK message has no parameters as all relevant information is carried in the NSI
CS header structure.

9.4.10 dataPlaneStateChange message elements
The dataPlaneStateChange message is an autonomous message issued from a PA to an RA
when an existing reservation encounters a data plane state change. Possible data plane status
changes are:

• Data plane activation;
• Data plane deactivation;
• Data plane activation version change.

This type of event is originated from an uPA managing network resources associated with the
reservation, and propagated up the request tree to the originating uRA. An aggregator NSA
(performing both a PA and RA role) will map the received connectionId into a context understood
by its direct parent RA in the request tree, then propagate the event upwards only if there is a
change in the last reported data plane status.

The dataPlaneStateChangeACK indicates that the RA has accepted the dataPlaneStateChange
event for processing. There is no associated Confirmed or Failed message for this operation.

Type Direction Input Output Fault
Event PA to RA dataPlaneStateChange dataPlaneStateChangeACK serviceException

Table 40 dataPlaneStateChange message elements

9.4.10.1 Request: dataPlaneStateChange
The NSI CS dataPlaneStateChange message allows a PA to communicate to the RA when an
existing reservation encounters a data plane state change.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 57

Figure 62 – dataPlaneStateChange request message structure.

Parameters
The dataPlaneStateChange message has the following parameters:

Parameter Description
connectionId The PA assigned connectionId that experienced the data plane state change
notificationId A notification identifier that is unique in the context of a connectionId. This is a

linearly increasing identifier that can be used for ordering notifications in the
context of the connectionId.

timeStamp Time the event was generated on the originating PA.
dataPlaneStatus Current data plane activation state for the reservation identified by

connectionId.

Table 41 dataPlaneStateChange request parameters

Response
If the dataPlaneStateChange operation is successful, a dataPlaneStateChangeACK message is
returned, otherwise a serviceException is returned. An RA sends this dataPlaneStateChangeACK
message immediately after receiving the dataPlaneStateChange event to acknowledge to the PA
the dataPlaneStateChange event has been accepted for processing. The
dataPlaneStateChangeACK message is implemented using the generic acknowledgement
message.

Figure 63 – dataPlaneStateChangeACK message structure.

The dataPlaneStateChangeACK message has no parameters as all relevant information is
carried in the NSI CS header structure.

9.4.11 messageDeliveryTimeout message elements
The messageDeliveryTimeout message is an autonomous message issued from a PA to an RA
when Message Transport Layer (MTL) delivery or Coordinator timeout has occurred for an
outstanding request message within an NSA. This message is issued from the PA that has
encountered the error up the request tree towards the uRA.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 58

An MTL timeout can be generated as the result of a timeout on receiving an ACK message for a
corresponding send request. A Coordinator timeout can occur when no confirmed or failed reply
has been received to a previous request issued by the Coordinator. In both cases the timers for
these timeout conditions are locally defined.

The messageDeliveryTimeoutACK indicates that the RA has accepted the
messageDeliveryTimeout event for processing. There is no associated Confirmed or Failed
message for this operation.

Type Direction Input Output Fault
Event PA to RA messageDeliveryTimeout messageDeliveryTimeoutACK serviceException

Table 42 messageDeliveryTimeout message elements

9.4.11.1 Request: messageDeliveryTimeout
The NSI CS messageDeliveryTimeout message allows a PA to communicate to the RA when a
Message Transport Layer (MTL) delivery or Coordinator timeout has occurred for an outstanding
request message within an NSA.

Figure 64 – messageDeliveryTimeout request message structure.

Parameters
The messageDeliveryTimeout message has the following parameters:

Parameter Description
connectionId The PA assigned connectionId that experienced the message delivery timeout
notificationId A notification identifier that is unique in the context of a connectionId. This is a

linearly increasing identifier that can be used for ordering notifications in the context
of the connectionId.

timeStamp Time the event was generated on the originating NSA.
correlationId This value indicates the correlationId of the original message that the transport layer

failed to send.

 Table 43 messageDeliveryTimeout request parameters

Response
If the messageDeliveryTimeout operation is successful, a messageDeliveryTimeoutACK
message is returned, otherwise a serviceException is returned. An RA sends this
messageDeliveryTimeoutACK message immediately after receiving the messageDeliveryTimeout
event to acknowledge to the PA the messageDeliveryTimeout event has been accepted for
processing. The messageDeliveryTimeoutACK message is implemented using the generic
acknowledgement message.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 59

Figure 65 – messageDeliveryTimeout message structure.

The messageDeliveryTimeoutACK message has no parameters as all relevant information is
carried in the NSI CS header structure.

9.4.12 querySummary message elements
The querySummary message is sent from an RA to a PA to determine the status of existing
reservations. The querySummaryACK indicates that the PA has accepted the querySummary
request for processing. A querySummaryConfirmed or error message will be sent asynchronously
to the RA when querySummary processing has completed.

Type Direction Input Output Fault
Request RA to PA querySummary querySummaryACK serviceException
Confirmed PA to RA querySummaryConfirmed querySummaryConfirmedACK serviceException
Failed N/A N/A N/A N/A
Error PA to RA error errorACK serviceException

Table 44 querySummary message elements

9.4.12.1 Request: querySummary
The querySummary message provides a mechanism for an RA to query the PA for a set of
connection service reservation instances. This message can be used to monitor the progress of a
reservation.

Elements compose a filter for specifying the reservations to return in response to the
querySummary request. Querying of reservations can be performed based on connectionId or
globalReservationId. Filter items specified are OR'ed to build the match criteria. If no criteria are
specified then all reservations stored in the PA are returned. The PA may restrict visibility to
reservations based on local access control policies.

The ifModifiedSince element was added to the querySummary message with the goal of reducing
the amount of reservation information returned in query retrieval. It accomplishes this by allowing
the user to specify a dateTime value in the request as returned from the last query. The target
NSA uses this dateTime context to exclude reservations that have not changed since the last
query. Note: after a restart do not use ifModifiedSince as this will not return the full history, but
only the diff.

If an NSA receives a querySummary message containing an ifModifiedSince element, then it only
returns those reservations matching the filter elements (connectionId, globalReservationId) if the
reservation has been created, modified, or has undergone a change since the specified
ifModifiedSince time. This includes user-initiated actions such as provision and release, as well
as state changes caused by events such as dataPlaneStateChange notifications (in
dataPlaneStatus).

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 60

Figure 66 – querySummary request message structure.

Parameters
The querySummary message has the following parameters:

Parameter Description
connectionId The PA assigned connectionId for this reservation. Return reservations

containing this connectionId.
globalReservationId An optional global reservation id that can be used to correlate individual related

service reservations through the network. Return reservations containing this
globalReservationId.

ifModifiedSince If an NSA receives a querySummary message containing this element, then
the NSA will only returns those reservations matching the filter elements
(connectionId, globalReservationId) if the reservation has been created,
modified, or has undergone a change since the specified ifModifiedSince time.
This includes user-initiated actions such as provision and release, as well as
state changes caused by events such as dataPlaneStateChange notifications
(in dataPlaneStatus).

Table 45 querySummary message parameters

Response
If the querySummary operation is successful, a querySummaryACK message is returned,
otherwise a serviceException is returned. A PA sends this querySummaryACK message
immediately after receiving the querySummary request to acknowledge to the RA the
querySummary request has been accepted for processing. The querySummaryACK message is
implemented using the generic acknowledgement message.

Figure 67 – querySummaryACK message structure.

The querySummaryACK message has no parameters as all relevant information is carried in the
NSI CS header structure.

9.4.12.2 Confirmation: querySummaryConfirmed
This querySummaryConfirmed message is sent from the PA to RA as an indication of a
successful querySummary operation. This is in response to an original querySummary request
from the associated RA. In the lastModified element of this response the provider NSA includes
the update time of the most recently created/modified/updated reservation on the system. The
lastModified element is included even if the request did not include an ifModifiedSince element,
and if the response does not contain any reservation results. This lastModified value can be used
in the next query for this filter. The lastModified element will only be absent if the NSA does not
support the ifModifiedSince capability.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 61

Figure 68 – querySummaryConfirmed message structure.

Parameters
The querySummaryConfirmed message has the following parameters:

Parameter Description
reservation A set of zero or more connection reservations matching the query criteria. If

there were no matches to the query then no reservation elements will be
present.

lastModified Includes the update time of the most recently created/modified/updated
reservation on the system. The lastModified element is included even if the
request did not include an ifModifiedSince element, and if the response does
not contain any reservation results. This lastModified value can be used in the
next query for this filter. The lastModified element will only be absent if the
NSA does not support the ifModifiedSince capability.

Table 46 querySummaryConfirmed message parameters
A query will return the currently committed reservation version number, however, if the initial
version of the reservation has not yet been committed, the query will return base reservation
information (connectionId, globalReservationId, description, requesterNSA, and
connectionStates) with no versioned reservation criteria.

Response
If the querySummaryConfirmed operation is successful, a querySummaryConfirmedACK
message is returned, otherwise a serviceException is returned. An RA sends this
querySummaryConfirmedACK message immediately after receiving the
querySummaryConfirmed request to acknowledge to the PA the querySummaryConfirmed
request has been accepted for processing. The querySummaryConfirmedACK message is
implemented using the generic acknowledgement message.

Figure 69 – querySummaryConfirmedACK message structure.

The querySummaryConfirmedACK message has no parameters as all relevant information is
carried in the NSI CS header structure.

9.4.12.3 Error
An error message is sent from the PA to RA as an indication of a querySummary operation
failure. This is in response to an original querySummary request from the associated RA. It is
important to note that a querySummary operation that results in no matching reservations does
not result in an error message, but instead a querySummaryConfirmed with an empty list of
reservations. This error message follows that standard error flow defined in section 9.4.8.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 62

9.4.13 querySummarySync message elements
The querySummarySync message is sent from an RA to a PA to determine the status of existing
reservations on the PA. Unlike the querySummary operation, the querySummarySync is
synchronous and will block until the results of the query operation have been collected. A
querySummarySyncConfirmed will be returned in response to the request once the query has
completed. A querySummarySyncFailed message will be sent in response if a processing error
has occurred. These responses will be returned directly in the SOAP response to the
querySummarySync message. Other than the synchronous transport interactions, the
querySummarySync is identical to the querySummary operation.

Type Direction Input Output Fault
Request RA to PA querySummarySync querySummarySyncConfirmed error

Table 47 querySummarySync message elements

9.4.13.1 Request: querySummarySync
The querySummarySync message provides a mechanism for an RA to query the PA for a set of
connection service reservation instances. This message can also be used as a reservation status
polling mechanism.

Elements compose a filter for specifying the reservations to return in response to the
querySummarySync request. Querying of reservations can be performed based on connectionId
or globalReservationId. Filter items specified are OR'ed to build the match criteria. If no criteria
are specified then all reservations stored in the PA are returned. The PA may restrict visibility to
reservations based on local access control policies.

The ifModifiedSince element was added to the querySummarySync message with the goal of
reducing reduce the amount of reservation information returned in query retrieval. It
accomplishes this by allowing the user to specify a dateTime value in the request as returned
from the last query. The target NSA uses this dateTime context to exclude reservations that have
not changed since the last query.

If an NSA receives a querySummarySync message containing an ifModifiedSince element then it
only returns those reservations matching the filter elements (connectionId, globalReservationId) if
the reservation has been created, modified, or has undergone a change since the specified
ifModifiedSince time. This includes user-initiated actions such as provision and release, as well
as state changes caused by events such as dataPlaneStateChange notifications (in
dataPlaneStatus).

Figure 70 – querySummarySync request message structure.

Parameters

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 63

The querySummarySync message has the following parameters:

Parameter Description
connectionId The PA assigned connectionId for this reservation. Return reservations

containing this connectionId.
globalReservationId An optional global reservation id that can be used to correlate individual related

service reservations through the network. Return reservations containing this
globalReservationId.

ifModifiedSince If an NSA receives a querySummarySync message containing this element,
then the NSA will only returns those reservations matching the filter elements
(connectionId, globalReservationId) if the reservation has been created,
modified, or has undergone a change since the specified ifModifiedSince time.
This includes user-initiated actions such as provision and release, as well as
state changes caused by events such as dataPlaneStateChange notifications
(in dataPlaneStatus).

Table 48 querySummarySync message parameters

Response (Confirmed)
If the querySummarySync operation is successful, a querySummarySyncConfirmed message is
returned directly in the (SOAP) reponse; otherwise a standard error message is returned to
indicate an error in processing the query has occurred. In the lastModified element of this
response the provider NSA includes the update time of the most recently
created/modified/updated reservation on the system. The lastModified element is included even if
the request did not include an ifModifiedSince element, and if the response does not contain any
reservation results. This lastModified value can be used in the next query for this filter. The
lastModified element will only be absent if the NSA does not support the ifModifiedSince
capability.

Figure 71 – querySummarySyncConfirmed message structure.

Parameters
The querySummarySyncConfirmed message has the following parameters:

Parameter Description
reservation A set of zero or more connection reservations matching the query criteria. If

there were no matches to the query then no reservation elements will be
present.

lastModified Includes the update time of the most recently created/modified/updated
reservation on the system. The lastModified element is included even if the
request did not include an ifModifiedSince element, and if the response does
not contain any reservation results. This lastModified value can be used in the
next query for this filter. The lastModified element will only be absent if the
NSA does not support the ifModifiedSince capability.

Table 49 querySummarySyncConfirmed message parameters
A query will return the currently committed reservation version number, however, if the initial
version of the reservation has not yet been committed, the query will return base reservation
information (connectionId, globalReservationId, description, requesterNSA, and
connectionStates) with no versioned reservation criteria.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 64

Response (Error)
A standard error message is sent from the PA to RA as an indication of a querySummarySync
operation failure. This is in response to an original querySummarySync request from the
associated RA, and will be returned as a SOAP fault in original request. It is important to note that
a querySummarySync operation that results in no matching reservations does not result in a error
message, but instead a querySummarySyncConfirmed with an empty list. This error message
follows that standard error flow defined in section 9.4.8.

9.4.14 queryRecursive message elements
The queryRecursive message is sent from an RA to a PA to determine the status of existing
reservations. The queryRecursiveACK indicates that the PA has accepted the queryRecursive
request for processing. A queryRecursiveConfirmed or queryRecursiveFailed message will be
sent asynchronously to the RA when queryRecursive processing has completed.

Type Direction Input Output Fault
Request RA to PA queryRecursive queryRecursiveACK serviceException
Confirmed PA to RA queryRecursiveConfirmed queryRecursiveConfirmedACK serviceException
Failed N/A N/A N/A N/A
Error PA to RA error errorACK serviceException

Table 50 queryRecursive message elements

9.4.14.1 Request: queryRecursive
The queryRecursive message provides a mechanism for an RA to query the PA for a set of
connection service reservation instances. The returned results will be a detailed list of reservation
information collected by recursively traversing the reservation tree.

Elements compose a filter for specifying the reservations to return in response to the
queryRecursive request. Querying of reservations can be performed based on connectionId or
globalReservationId. Filter items specified are OR'ed to build the match criteria. If no criteria are
specified then all reservations stored in the PA are returned. The PA may restrict visibility to
reservations based on local access control policies.

Figure 72 – queryRecursive request message structure.

Parameters
The queryRecursive message has the following parameters:

Parameter Description
connectionId The PA assigned connectionId for this reservation. Return reservations

containing this connectionId.
globalReservationId An optional global reservation id that can be used to correlate individual related

service reservations through the network. Return reservations containing this
globalReservationId.

Table 51 queryRecursive message parameters

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 65

Response
If the queryRecursive operation is successful, a queryRecursiveACK message is returned,
otherwise a serviceException is returned. A PA sends this queryRecursiveACK message
immediately after receiving the queryRecursive request to acknowledge to the RA the
queryRecursive request has been accepted for processing. The queryRecursiveACK message is
implemented using the generic acknowledgement message.

Figure 73 – queryRecursiveACK message structure.

The queryRecursiveACK message has no parameters as all relevant information is carried in the
NSI CS header structure.

9.4.14.2 Confirmation: queryRecursiveConfirmed
This queryRecursiveConfirmed message is sent from the PA to RA as an indication of a
successful queryRecursive operation. This is in response to an original queryRecursive request
from the associated RA.

Figure 74 – queryRecursiveConfirmed message structure.

Parameters
The queryRecursiveConfirmed message has the following parameters:

Parameter Description
reservation A set of zero or more connection reservations matching the query criteria. If

there were no matches to the query then no reservation elements will be
present.

Table 52 queryRecursiveConfirmed message parameters
A query will return the currently committed reservation version number, however, if the initial
version of the reservation has not yet been committed, the query will return base reservation
information (connectionId, globalReservationId, description, requesterNSA, and
connectionStates) with no versioned reservation criteria.

Response
If the queryRecursiveConfirmed operation is successful, a queryRecursiveConfirmedACK
message is returned, otherwise a serviceException is returned. An RA sends this
queryRecursiveConfirmedACK message immediately after receiving the
queryRecursiveConfirmed request to acknowledge to the PA the queryRecursiveConfirmed
request has been accepted for processing. The queryRecursiveConfirmedACK message is
implemented using the generic acknowledgement message.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 66

Figure 75 – queryRecursiveConfirmedACK message structure.

The queryRecursiveConfirmedACK message has no parameters as all relevant information is
carried in the NSI CS header structure.

9.4.14.3 Error
An error message is sent from the PA to RA as an indication of a queryRecursive operation
failure. This is in response to an original queryRecursive request from the associated RA. It is
important to note that a queryRecursive operation that results in no matching reservations does
not result in an error message, but instead a queryRecursiveConfirmed with an empty list of
reservations. This error message follows that standard error flow defined in section 9.4.8.

9.4.15 queryNotification message elements
The queryNotification message is sent from an RA to a PA to retrieve notifications messages
against an existing reservation residing on the PA. The returned results will be a list of
notifications for the specified connectionId. The synchronous version may be used by a polling
RA to retrieve the list of notifications messages issued.

The queryNotificationACK indicates that the PA has accepted the queryNotification request for
processing. A queryNotificationConfirmed or generic error message will be sent asynchronously
to the RA when queryNotification processing has completed.

Type Direction Input Output Fault
Request RA to PA queryNotification queryNotificationACK serviceException
Confirmed PA to RA queryNotificationConfirmed queryNotificationConfirmedACK serviceException
Failed N/A N/A N/A N/A
Error PA to RA error errorACK serviceException

Table 53 queryNotification message elements

9.4.15.1 Request: queryNotification
The queryNotification message provides a mechanism for an RA to query the PA for a list of
notification messages against a connectionId. This operation can be used to recover lost
notification messages, or get a historical list of notifications for analysis.

Elements compose a filter for specifying the notifications to return in response to the query
operation. The filter query provides an inclusive range of notification identifiers based on
connectionId.

Figure 76 – queryNotification request message structure.

Parameters

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 67

The queryNotification message has the following parameters:

Parameter Description
connectionId Notifications for this connectionId.
startNotificationId The start of the range of notificationIds to return. If not present then the query

should start from oldest notificationId available.
endNotificationId The end of the range of notificationIds to return. If not present then the query

should end with the newest notificationId available.

Table 54 queryNotification message parameters
Response
If the queryNotification operation is successful, a queryNotificationACK message is returned,
otherwise a serviceException is returned. A PA sends this queryNotificationACK message
immediately after receiving the queryNotification request to acknowledge to the RA the
queryNotification request has been accepted for processing. The queryNotificationACK message
is implemented using the generic acknowledgement message.

Figure 77 – queryNotificationACK message structure.

The queryNotificationACK message has no parameters as all relevant information is carried in the
NSI CS header structure.

9.4.15.2 Confirmation: queryNotificationConfirmed
This queryNotificationConfirmed message is sent from the PA to RA as an indication of a
successful queryNotification operation. This is in response to an original queryNotification request
from the associated RA and contains a list of notification messages matching the query criteria.

Figure 78 – queryNotificationConfirmed message structure.

Parameters
The queryNotificationConfirmed message has the following parameters:

Parameter Description
errorEvent A set of zero or more error event notifications.
reserveTimeout A set of zero or more reserve timeout notification.
dataPlaneStateChange A data plane state change notification.
messageDeliveryTimeout A set of zero or more message delivery timeout notification.

Table 55 queryNotificationConfirmed message parameters

Response

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 68

If the queryNotificationConfirmed operation is successful, a queryNotificationConfirmedACK
message is returned, otherwise a serviceException is returned. An RA sends this
queryNotificationConfirmedACK message immediately after receiving the
queryNotificationConfirmed request to acknowledge to the PA the queryNotificationConfirmed
request has been accepted for processing. The queryNotificationConfirmedACK message is
implemented using the generic acknowledgement message.

Figure 79 – queryNotificationConfirmedACK message structure.

The queryNotificationConfirmedACK message has no parameters as all relevant information is
carried in the NSI CS header structure.

9.4.15.3 Error
An error message is sent from the PA to RA as an indication of a queryNotification operation
failure. This is in response to an original queryNotification request from the associated RA. It is
important to note that a queryNotification operation that results in no matching reservations does
not result in an error message, but instead a queryNotificationConfirmed with an empty list of
reservations. This error message follows that standard error flow defined in section 9.4.8.

9.4.16 queryNotificationSync message elements
The queryNotificationSync message is sent from an RA to a PA to retriever a list of notification
messages associated with a connectionId on the PA. Unlike the queryNotification operation, the
queryNotificationSync is synchronous and will block until the results of the query operation have
been collected. A queryNotificationSyncConfirmed will be returned in response to the request
once the query has completed. A standard error message will be sent in response if a processing
error has occurred. These responses will be returned directly in the SOAP response to the
queryNotificationSync message. Other than the synchronous transport interactions, the
queryNotificationSync is identical to the queryNotification operation.

Type Direction Input Output Fault
Request RA to PA queryNotificationSync queryNotificationSyncConfirmed error

Table 56 queryNotificationSync message elements

9.4.16.1 Request: queryNotificationSync
The queryNotificationSync message provides a mechanism for an RA to query the PA for a list of
notification messages against a connectionId. This operation can be used to recover lost
notification messages, or get a historical list of notifications for analysis.

Elements compose a filter for specifying the notifications to return in response to the query
operation. The filter query provides an inclusive range of notification identifiers based on
connectionId.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 69

Figure 80 – queryNotificationSync request message structure.

Parameters
The queryNotificationSync message has the following parameters:

Parameter Description
connectionId Notifications for this connectionId.
startNotificationId The start of the range of notificationIds to return. If not present then the query

should start from oldest notificationId available.
endNotificationId The end of the range of notificationIds to return. If not present then the query

should end with the newest notificationId available.

Table 57 queryNotificationSync message parameters

Response (Confirmed)
If the queryNotificationSync operation is successful, a queryNotificationSyncConfirmed message
is returned directly in the SOAP response; otherwise a standard error message is returned to
indicate an error in processing the query has occurred.

Figure 81 – queryNotificationSyncConfirmed message structure.

Parameters
The queryNotificationSyncConfirmed message has the following parameters:

Parameter Description
errorEvent A set of zero or more error event notifications.
reserveTimeout A set of zero or more reserve timeout notification.
dataPlaneStateChange A data plane state change notification.
messageDeliveryTimeout A set of zero or more message delivery timeout notification.

Table 58 queryNotificationSyncConfirmed message parameters
Response (Error)

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 70

A standard error message structure is sent from the PA to RA as an indication of a
queryNotificationSync operation failure. This is in response to an original queryNotificationSync
request from the associated RA, and will be returned as a SOAP fault in original request. It is
important to note that a queryNotificationSync operation that results in no matching notification
messages does not result in a error message, but instead a queryNotificationSyncConfirmed with
an empty list.

9.4.17 queryResult message elements
The queryResult message is sent from an RA to a PA to retrieve operation result messages
(confirmed, failed, and error) against an existing reservation residing on the PA. The returned
results will be a list of confirmed, failed, and error messages for the specified connectionId.

The queryResultACK indicates that the PA has accepted the queryResult request for processing.
A queryResultConfirmed or generic error message will be sent asynchronously to the RA when
queryResult processing has completed.

Type Direction Input Output Fault
Request RA to PA queryResult queryResultACK serviceException
Confirmed PA to RA queryResultConfirmed queryResultConfirmedACK serviceException
Failed N/A N/A N/A N/A
Error PA to RA error errorACK serviceException

Table 59 queryResult message elements

9.4.17.1 Request: queryResult
The queryResult message provides a mechanism for an RA to query the PA for a list of operation
result messages (confirmed, failed, and error) against a connectionId. An RA can recover lost
result messages using this operation.

Elements compose a filter for specifying the results to return in response to the query operation.
The filter query provides an inclusive range of result identifiers based on connectionId. The result
identifier is a sequentially increasing value maintained by the PA for each confirmed, failed, or
error message generated by the PA in the context of a single connectionId. This identifier is not
returned in the individual confirmed, failed, or error messages as with notification, however, it is
tracked against a reservation and returned in the reservation query for utilization by polling
clients.

Figure 82 – queryResult request message structure.

Parameters
The queryResult message has the following parameters:

Parameter Description
connectionId Return results for this connectionId.
startResultId The start of the range of resultIds to return. If not present then the query should

start from oldest resultId available.
endResultId The end of the range of resultIds to return. If not present then the query should

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 71

end with the newest resultId available.

Table 60 queryResult message parameters
Response
If the queryResult operation is successful, a queryResultACK message is returned, otherwise a
serviceException is returned. A PA sends this queryResultACK message immediately after
receiving the queryResult request to acknowledge to the RA the queryResult request has been
accepted for processing. The queryResultACK message is implemented using the generic
acknowledgement message.

Figure 83 – queryResultACK message structure.

The queryResultACK message has no parameters as all relevant information is carried in the NSI
CS header structure.

9.4.17.2 Confirmation: queryResultConfirmed
This queryResultConfirmed message is sent from the PA to RA as an indication of a successful
queryResult operation. This is in response to an original queryResult request from the associated
RA and contains a list of confirmed, failed, and error messages matching the query criteria.

Figure 84 – queryResultConfirmed message structure.

Parameters
The queryResultConfirmed message has the following parameters:

Parameter Description
result Zero or more result elements based on the results matching the specified

query.

Table 61 queryResultConfirmed message parameters.

Each result returned in the queryResultConfirmed message structure will containing a single
operation result of the type QueryResultResponseType as shown in Figure 85.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 72

Figure 85 – QueryResultResponseType structure.

Parameters
The QueryResultResponseType message has the following parameters:

Parameter Description
resultId A result identifier that is unique in the context of a connectionId. This is a

linearly increasing identifier that can be used for sequencing results in the order
in which they were generated in the context of the connectionId.

correlationId The correlationId corresponding to the operation result as would have been
returned in the NSI header element when this result was returned to the RA.

timeStamp The time this result was generated.
Choice of:

reserveConfirmed
reserveFailed

reserveCommitConfirmed
reserveCommitFailed

reserveAbortConfirmed
provisionConfirmed

 releaseConfirmed
terminateConfirmed

 error

Reserve operation confirmation.
Reserve operation failure.
Reserve commit operation confirmation.
Reserve commit operation failure.
Reserve abort operation confirmation.
Provision operation confirmation.
Release operation confirmation.
Terminate confirmation.
Error response message.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 73

Table 62 QueryResultResponseType message parameters

Response
If the queryResultConfirmed operation is successful, a queryResultConfirmedACK message is
returned, otherwise a serviceException is returned. An RA sends this queryResultConfirmedACK
message immediately after receiving the queryResultConfirmed request to acknowledge to the
PA the queryResultConfirmed request has been accepted for processing. The
queryResultConfirmedACK message is implemented using the generic acknowledgement
message.

Figure 86 – queryResultConfirmedACK message structure.

The queryResultConfirmedACK message has no parameters as all relevant information is carried
in the NSI CS header structure.

9.4.17.3 Error
An error message is sent from the PA to RA as an indication of a queryResult operation failure.
This is in response to an original queryResult request from the associated RA. It is important to
note that a queryResult operation that results in no matching reservations does not result in an
error message, but instead a queryResultConfirmed with an empty list of reservations. This error
message follows that standard error flow defined in section 9.4.8.

9.4.18 queryResultSync message elements
The queryResultSync message is sent from an RA to a PA to retriever a list of confirmed, failed,
and error messages associated with a connectionId on the PA. Unlike the queryResult operation,
the queryResultSync is synchronous and will block until the results of the query operation have
been collected. A queryResultSyncConfirmed will be returned in response to the request once the
query has completed. A generic error message will be sent in response if a processing error has
occurred. These responses will be returned directly in the SOAP response to the
queryResultSync message. Other than the synchronous transport interactions, the
queryResultSync is identical to the queryResult operation.

Type Direction Input Output Fault
Request RA to PA queryResultSync queryResultSyncConfirmed error

Table 63 queryResultSync message elements

9.4.18.1 Request: queryResultSync
The queryResultSync message provides a mechanism for an RA to query the PA for a list of
confirmed, failed, and error messages against a connectionId. An RA can recover lost result
messages using this operation, or a polling RA can use it to retrieve a list of result messages for
operations issued.

Elements compose a filter for specifying the results to return in response to the query operation.
The filter query provides an inclusive range of result identifiers based on connectionId.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 74

Figure 87 – queryResultSync request message structure.

Parameters
The queryResultSync message has the following parameters:

Parameter Description
connectionId Return results for this connectionId.
startResultId The start of the range of resultIds to return. If not present then the query should

start from oldest resultId available.
endResultId The end of the range of resultIds to return. If not present then the query should

end with the newest resultId available.

Table 64 queryResultSync message parameters.

Response (Confirmed)
If the queryResultSync operation is successful, a queryResultSyncConfirmed message is
returned; otherwise a standard error message is returned to indicate an error in processing the
query has occurred.

Figure 88 – queryResultSyncConfirmed message structure.

Parameters
The queryResultConfirmed message has the following parameters:

Parameter Description
result Zero or more result elements based on the results matching the specified

query.

Table 65 queryResultSyncConfirmed message parameters.

Each result returned in the queryResultSyncConfirmed message structure will containing a single
operation result of the type QueryResultResponseType as shown in Figure 85.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 75

Figure 89 – QueryResultResponseType structure.

Parameters
The queryNotificationConfirmed message has the following parameters:

Parameter Description
resultId A result identifier that is unique in the context of a connectionId. This is a linearly

increasing identifier that can be used for sequencing results in the order in
which they were generated in the context of the connectionId.

correlationId The correlationId corresponding to the operation result as would have been
returned in the NSI header element when this result was returned to the RA.

timeStamp The time this result was generated.
Choice of:

reserveConfirmed
reserveFailed

reserveCommitConfirmed
reserveCommitFailed

reserveAbortConfirmed
provisionConfirmed

 releaseConfirmed
terminateConfirmed

 error

Reserve operation confirmation.
Reserve operation failure.
Reserve commit operation confirmation.
Reserve commit operation failure.
Reserve abort operation confirmation.
Provision operation confirmation.
Release operation confirmation.
Terminate confirmation.
Error response message.

Table 66 queryResultConfirmed message parameters

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 76

Response (Error)
A standard error message structure is sent from the PA to RA as an indication of a
queryResultSync operation failure. This is in response to an original queryResultSync request
from the associated RA, and will be returned as a SOAP fault in original request. It is important to
note that a queryResultSync operation that results in no matching result messages does not
result in an error message, but instead a queryResultSyncConfirmed with an empty list.

9.5 NSI CS specific types

Namespace definition: http://schemas.ogf.org/nsi/2013/12/connection/types

This section describes the connection services types used for the CS operation definitions.

9.5.1 Complex Types

These complex type definitions are utilized by the CS operations and are structures containing
other elements and/or attributes. Types are listed in alphabetical order.

9.5.1.1 ChildRecursiveListType
A holder element providing an envelope that will contain the list of child NSA and associated
detailed connection information. Utilized by the QueryRecursiveResultCriteriaType to provide a
nested list structure of detailed reservation information.

Figure 90 – ChildRecursiveListType.

Parameters
The ChildRecursiveListType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
child O Detailed path information for a child NSA. Each child element is ordered and

contains a connection segment in the overall path.

Table 67 ChildRecursiveListType message parameters

9.5.1.2 ChildRecursiveType
This type is used to model a connection reservation's detailed path information. The structure is
recursive so it is possible to model both an ordered list of connection segments, as well as the
hierarchical connection segments created on child NSA in either a tree and chain configuration.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 77

Figure 91 – ChildRecursiveType.

Parameters
The ChildRecursiveType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
order M Specification of ordered path elements.
connectionId M The connection identifier associated with the reservation and path segment.
providerNSA M The provider NSA holding the connection information associated with this instance

of data.
connectionStates M This reservation's segments connection states.
criteria M A set of versioned reservation criteria information.

Table 68 ChildRecursiveType message parameters.

9.5.1.3 ChildSummaryListType
A holder element containing a list of child NSA and their associated connection information.
Utilized by the QuerySummaryResultCriteriaType to provide a nested list structure of summary
reservation information.

Figure 92 – ChildSummaryListType.

Parameters
The ChildSummaryListType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
child O Summary path information for a child NSA. Each child element is ordered and

contains a connection segment in the overall path.

Table 69 ChildSummaryListType message parameters.

9.5.1.4 ChildSummaryType
This type is used to model a connection reservation's summary path information. The structure
provides the next level of connection information but not state.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 78

Figure 93 – ChildSummaryType.

Parameters
The ChildSummaryType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
order M Specification of ordered path elements.
connectionId M The connection identifier associated with the reservation and path segment.
providerNSA M The provider NSA holding the connection information associated with this instance

of data.
serviceType M The specific service type of this reservation. This service type string maps into the

list of supported service definitions defined by the network providers. In turn, the
service type specifies the specific service elements carried in an instance of this
type (through the ANY definition) that is associated with the requested service. This
element is mandatory.

##other O Provides a flexible mechanism allowing additional elements to be provided such as
the service specific attributes specified by serviceType. Additional use of this
element field is beyond  the current scope of this NSI specification, but may be
used in  the future to extend the existing protocol without requiring a schema
change.

Table 70 ChildSummaryType message parameters.

9.5.1.5 ConnectionStatesType
A holder element containing the state machines associated with a connection reservation.

Figure 94 – ConnectionStatesType.

Parameters
The ConnectionStatesType has the following parameters (M = Mandatory, O = Optional):

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 79

Parameter M/O Description
reservationState M Models the current connection reservation state.
provisionState O Models the current connection provisioning state.
lifecycleState M Models the current connection lifecycle state.
dataPlaneStatus M Models the current connection data plane activation state.

Table 71 ConnectionStatesType message parameters

9.5.1.6 DataPlaneStateChangeRequestType
Type definition for the data plane state change notification message.

This notification message sent up from a PA when a data plane status has changed. Possible
data plane status changes are: activation, deactivation and activation version change.

Figure 95 – DataPlaneStateChangeRequestType.

Parameters
The DataPlaneStateChangeRequestType has the following parameters (M = Mandatory, O =
Optional):

Parameter M/O Description
connectionId M The reservation experiencing the data plane state change.
notificationId M A notification identifier that is unique in the context of a connectionId. This is a

linearly increasing identifier that can be used for ordering notifications in the
context of the connectionId.

timeStamp M Time the event was generated on the originating NSA.
dataPlaneStatus M Current data plane activation state for the reservation identified by connectionId.

Table 72 DataPlaneStateChangeRequestType message parameters

9.5.1.7 DataPlaneStatusType
Models the current connection activation state within the data plane.

Figure 96 – DataPlaneStatusType.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 80

Parameters
The DataPlaneStatusType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
active M True if the dataplane is active. For an aggregator, this flag is true when data plane

is activated in all participating children.
version M Version of the connection reservation this entry is modeling.
versionConsistent M Always true for uPA. For an aggregator, if version numbers of all children are the

same. This flag is true. This field is valid when Active is true.

Table 73 DataPlaneStatusType message parameters

9.5.1.8 ErrorEventType
Type definition for an autonomous message issued from a PA to an RA when an existing
reservation encounters an autonomous error condition such as being administratively terminated
before the reservation's scheduled end-time.

Figure 97 – ErrorEventType.

Parameters
The ErrorEventType has the following parameters (M = Mandatory, O = Optional):

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 81

Parameter M/O Description
connectionId M The PA assigned connectionId for this reservation. This value will be unique

within the context of the PA.
notificationId M A notification identifier that is unique in the context of a connectionId. This is a

linearly increasing identifier that can be used for ordering notifications in the
context of the connectionId.

timeStamp M Time the event was generated on the originating NSA.
event M The type of event that generated this notification.
originatingConnectionId M The connectionId that triggered the error event.
originatingNSA M The NSA originating the error event.
additionalInfo O Type/value pairs that can provide additional error context as needed.
serviceException O Specific error condition - the reason for the generation of the error event.

Table 74 ErrorEventType message parameters

9.5.1.9 GenericAcknowledgmentType
A common acknowledgment message type definition. The correlationId has been moved to the
header in CS version 2 so this is now an empty response.

Figure 98 – GenericAcknowledgmentType.

Notes on acknowledgment:
Depending on NSA implementation and thread timing an acknowledgment to a request operation
may be returned after a confirmed/failed for the request has been returned to the RA. For protocol
robustness, the RA should be able to accept confirmed/failed before acknowledgment.

9.5.1.10 GenericConfirmedType
This is a generic type definition for a Confirmed messages in response to a successful processing
of a previous Request message such as provision, release, and terminate.

Figure 99 – GenericConfirmedType.

Parameters
The GenericConfirmedType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
connectionId M The PA assigned connectionId for this reservation request. This value will be unique

within the context of the PA.

Table 75 GenericConfirmedType message parameters

9.5.1.11 GenericErrorType
A generic "Error" message type sent in response to a previous protocol "Request" message. An
error message is generated when an error condition occurs that does not result in a state
machine transition. This type is used in response to all request types that can return an error.

The correlationId carried in the NSI header will identify the original request associated with this
error message.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 82

Figure 100 – GenericErrorType.

Parameters
The GenericErrorType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
serviceException M Specific error condition indicating the reason for the failure.

Table 76 GenericErrorType message parameters

9.5.1.12 GenericFailedType
A generic failed message type sent as request in response to a failure to process a previous
protocol request message. This is used in response to all request types that can return an error.

Figure 101 – GenericFailedType.

Parameters
The GenericFailedType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
connectionId M The PA assigned connectionId for this reservation request. This value will be unique

within the context of the PA.
connectionStates M Overall connection state for the reservation.
serviceException M Specific error condition - the reason for the failure.

Table 77 GenericFailedType message parameters

9.5.1.13 GenericRequestType
This is a generic type definition for request messages such as provision, release, and terminate
that only need a connectionId as a request parameter.

Figure 102 – GenericRequestType.

Parameters
The GenericRequestType has the following parameters (M = Mandatory, O = Optional):

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 83

Parameter M/O Description
connectionId M The PA assigned connectionId for this reservation request. This value will be unique

within the context of the PA.

Table 78 GenericRequestType message parameters

9.5.1.14 MessageDeliveryTimeoutRequestType
A notification message type definition for the Message Transport Layer (MTL) delivery timeout of
a request message. In the event of an MTL timed out or Coordinator timeout, the Coordinator will
generate this message delivery failure notification and send it up the workflow tree (towards the
uRA).

An MTL timeout can be generated as the result of a timeout on receiving an ACK message for a
corresponding send request. A Coordinator timeout can occur when no confirmed or failed reply
has been received to a previous request issued by the Coordinator. In both cases the local timers
for these timeout conditions are locally defined.

Figure 103 – MessageDeliveryTimeoutRequestType.

Parameters
The MessageDeliveryTimeoutRequestType has the following parameters (M = Mandatory, O =
Optional):

Parameter M/O Description
connectionId M The reservation experiencing the data plane state change.
notificationId M A notification identifier that is unique in the context of a connectionId. This is a

linearly increasing identifier that can be used for ordering notifications in the context
of the connectionId.

timeStamp M Time the event was generated on the originating NSA.
correlationId M This value indicates the correlationId of the original message that the transport layer

failed to send.

Table 79 MessageDeliveryTimeoutRequestType message parameters.

9.5.1.15 NotificationBaseType
A base type definition for an autonomous message issued from a PA to an RA.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 84

Figure 104 – NotificationBaseType.

Parameters
The NotificationBaseType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
connectionId M The reservation experiencing the data plane state change.
notificationId M A notification identifier that is unique in the context of a connectionId. This is a

linearly increasing identifier that can be used for ordering notifications in the context
of the connectionId.

timeStamp M Time the event was generated on the originating NSA.

Table 80 NotificationBaseType message parameters.

9.5.1.16 QueryNotificationConfirmedType
A query notification confirmation containing a list of notification messages matching the specified
query criteria.

Figure 105 – QueryNotificationConfirmedType.

Parameters
The QueryNotificationConfirmedType is an optional choice of zero or more of the following
parameters (M = Mandatory, O = Optional):

Parameter M/O Description
errorEvent O Specific error condition - the reason for the failure.
reserveTimeout O Reserve timeout notification.
dataPlaneStateChange O A data plane state change notification.
messageDeliveryTimeout O Message delivery timeout notification.

Table 81 QueryNotificationConfirmedType message parameters

9.5.1.17 QueryNotificationType
Type definition for the QueryNotification message providing a mechanism for a Requester NSA to
query a Provider NSA for a set of notifications against a specific connectionId.

Elements compose a filter for specifying the notifications to return in response to the query

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 85

operation. The filter query provides an inclusive range of notification identifiers based on
connectionId.

Figure 106 – QueryNotificationType.

Parameters
The QueryNotificationType is has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
connectionId M Notifications for this connectionId.
startNotificationId O The start of the range of notificationIds to return. If not present then the query

should start from oldest notificationId available.
endNotificationId O The end of the range of notificationIds to return. If not present then the query

should end with the newest notificationId available.

Table 82 QueryNotificationType message parameters

9.5.1.18 QueryRecursiveConfirmedType
This is the type definition for the queryRecursiveConfirmed message. An NSA sends this positive
queryRecursiveRequest response to the NSA that issued the original request message. There
can be zero or more results retuned in this confirmed message depending on the query
parameters supplied in the request.

Figure 107 – QueryRecursiveConfirmedType.

Parameters
The QueryRecursiveConfirmedType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
reservation O Resulting recursive set of connection reservations matching the query criteria. If

there were no matches to the query then no reservation elements will be present.

Table 83 QueryRecursiveConfirmedType message parameters

9.5.1.19 QueryRecursiveResultCriteriaType
Type definition for the query recursive result containing versioned reservation information and
associated child connection identifiers.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 86

Figure 108 – QueryRecursiveResultCriteriaType.

Parameters
The QueryRecursiveResultCriteriaType has the following parameters (M = Mandatory, O =
Optional):

Parameter M/O Description
version M Version of the reservation instance.
schedule M Time parameters specifying the life of the service.
serviceType M The specific service type of this reservation. This service type string maps

into the list of supported service definitions defined by the network providers.
In turn, the service type specifies the specific service elements carried in an
instance of this type (through the ANY definition) associated with the
requested service.

children O If this connection reservation is aggregating child connections then this
element contains detailed information about the child connection segment.
The level of detail include is left up to the individual NSA and their
authorization policies.

any ##other O Provides a flexible mechanism allowing additional elements  to be provided
such as the service-specific parameters specified by serviceType. Additional
use of this element field is beyond the current scope of this NSI specification,
but may be used in the future to extend the existing protocol without requiring
a schema change. 

Table 84 QueryRecursiveResultCriteriaType message parameters

9.5.1.20 QueryRecursiveResultType
This type contains the common reservation elements and detailed path data for recursive query
results.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 87

Figure 109 – QueryRecursiveResultType.

Parameters
The QueryRecursiveResultType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
connectionId M The PA assigned connectionId for this reservation. This value will be unique within

the context of the PA.
globalReservationId O An optional global reservation id that can be used to correlate individual related

service reservations through the network. This MUST be populated with a
Universally Unique Identifier (UUID) URN as per ITU-T Rec. X.667 | ISO/IEC 9834-
8:2005 and IETF RFC 4122.

description O An optional description for the service reservation.
criteria O A set of versioned reservation criteria information.
requesterNSA M The RA associated with the reservation.
connectionStates M The reservation's overall connection states.
notificationId O A notification identifier that is unique in the context of a connectionId. This is a

linearly increasing identifier that can be used for ordering notifications in the
context of the connectionId. This parameter is present when there is an error
notification against this reservation.

Table 85 QueryRecursiveResultType message parameters.

9.5.1.21 QueryResultConfirmedType
Type definition for the QueryResultConfirmedType providing a mechanism for a Requester NSA
to get a list of Confirmed, Failed, or Error results against a specific connectionId.

Figure 110 – QueryResultConfirmedType.

Parameters
The queryResultConfirmedType structure has the following parameters (M = Mandatory, O =
Optional):

Parameter M/O Description
result O Zero or more result elements based on the results matching the specified query.

Table 86 QueryResultConfirmedType message parameters.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 88

9.5.1.22 QueryResultResponseType
A QueryResultResponseType type containing a single operation result matching the specified
query criteria.

Figure 111 – QueryResultResponseType structure.

Parameters
The QueryResultResponseType structure has the following parameters (M = Mandatory, O =
Optional):

Parameter M/O Description
resultId M A result identifier that is unique in the context of a connectionId. This is

a linearly increasing identifier that can be used for sequencing results
in the order in which they were generated in the context of the
connectionId.

correlationId M The correlationId corresponding to the operation result as would have
been returned in the NSI header element when this result was returned
to the RA.

timeStamp M The time this result was generated.
Choice of:

reserveConfirmed
reserveFailed

reserveCommitConfirmed
reserveCommitFailed

M
Reserve operation confirmation.
Reserve operation failure.
Reserve commit operation confirmation.
Reserve commit operation failure.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 89

reserveAbortConfirmed
provisionConfirmed

 releaseConfirmed
terminateConfirmed

 error

Reserve abort operation confirmation.
Provision operation confirmation.
Release operation confirmation.
Terminate confirmation.
Error response message.

Table 87 QueryResultResponseType message parameters

9.5.1.23 QueryResultType
The queryResultType message provides a mechanism for a Requester NSA to query a Provider
NSA for a set of Confirmed, Failed, or Errors results against a specific connectionId.

Figure 112 – QueryResultType.

Parameters
The QueryResultType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
connectionId M Retrieve results for this connectionId.
startResultId O The start of the range of result Ids to return. If not present, then the query should

start from oldest result available.
endResultId O The end of the range of result Ids to return. If not present then the query should end

with the newest result available.

Table 88 QueryResultType message parameters.

9.5.1.24 QuerySummaryConfirmedType
This is the type definition for the querySummaryConfirmed message (both synchronous and
asynchronous versions). An NSA sends this positive querySummaryRequest response to the
NSA that issued the original request message. There can be zero or more results retuned in this
confirmed message depending on the number of matching reservation results.

Figure 113 – QuerySummaryConfirmedType.

Parameters
The QuerySummaryConfirmedType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
reservation O Resulting recursive set of connection reservations matching the query criteria. If

there were no matches to the query then no reservation elements will be present.
lastModified O Includes the update time of the most recently created/modified/updated reservation

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 90

on the system. The lastModified element is included even if the request did not
include an ifModifiedSince element, and if the response does not contain any
reservation results. This lastModified value can be used in the next query for this
filter. The lastModified element will only be absent if the NSA does not support the
ifModifiedSince capability.

Table 89 QuerySummaryConfirmedType message parameters.

9.5.1.25 QuerySummaryResultCriteriaType
Type definition for the query summary result containing versioned reservation information and
associated child connection identifiers.

 Figure 114 – QuerySummaryResultCriteriaType.

Parameters
The QuerySummaryResultCriteriaType has the following parameters (M = Mandatory, O =
Optional):

Parameter M/O Description
version M Version of the reservation instance.
schedule M Time parameters specifying the life of the service.
serviceType M The specific service type of this reservation. This service type string maps into

the list of supported service definitions defined by the network providers. In
turn, the service type specifies the specific service elements carried in an
instance of this type (through the ANY definition) associated with the
requested service.

children O If this connection reservation is aggregating child connections then this
element contains summary information about the child connection segment.

any ##other O Provides a flexible mechanism allowing additional elements to be provided
such as the service-specific parameters specified by serviceType. Additional
use of this element field is beyond the current scope of this NSI specification,
but may be used in the future to extend the existing protocol without requiring
a schema change. 

Table 90 QuerySummaryResultCriteriaType message parameters.

9.5.1.26 QuerySummaryResultType
Type containing the set of reservation parameters associated with a summary query result.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 91

Figure 115 – QuerySummaryResultType.

Parameters
The QuerySummaryResultType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
connectionId M The PA assigned connectionId for this reservation. This value will be unique within

the context of the PA.
globalReservationId O An optional global reservation id that can be used to correlate individual related

service reservations through the network. This MUST be populated with a
Universally Unique Identifier (UUID) URN as per ITU-T Rec. X.667 | ISO/IEC 9834-
8:2005 and IETF RFC 4122.

description O An optional description for the service reservation.
criteria O A set of versioned reservation criteria information.
requesterNSA M The RA associated with the reservation.
connectionStates M The reservation's overall connection states.
notificationId O A notification identifier that is unique in the context of a connectionId. This is a

linearly increasing identifier that can be used for ordering notifications in the
context of the connectionId.

resultId O If present will hold the result identifier of the most recent confirmed, failed, or error
result against this reservation. The resultId can be used in the queryResult
operation to retrieve the associated operation results.

Table 91 QuerySummaryResultType message parameters

9.5.1.27 QueryType
Type definition for the querySummary message providing a mechanism for either RA to query the
PA for a set of Connection service reservation instances. This message can also be used as a
status polling mechanism.

Elements compose a filter for specifying the reservations to return in response to the
queryRequest. Supports the querying of reservations based on connectionId or
globalReservationId. Filter items specified are OR'ed to build the match criteria. If no criteria are
specified then all reservations stored in the PA are returned. The PA may restrict visibility to
reservations based on local access control policies.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 92

Figure 116 – QueryType.

Parameters
The QueryType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
connectionId O Return reservations containing this connectionId.
globalReservationId O Return reservations containing this globalReservationId.

9.5.1.28 ifModifiedSince
O If an NSA receives a querySummary or querySummarySync message containing

this element, then the NSA will only return those reservations matching the filter
elements (connectionId, globalReservationId) if the reservation has been created,
modified, or has undergone a change since the specified ifModifiedSince time.
This includes user-initiated actions such as provision and release, as well as state
changes caused by events such as dataPlaneStateChange notifications (in
dataPlaneStatus).

Table 92 QueryType message parameters

9.5.1.29 ReservationConfirmCriteriaType
A type definition for the reservation confirmation information used by PA to return reservation
information to an RA. Includes the reservation version id to track version of the reservation
criteria.

Figure 117 – ReservationConfirmCriteriaType.

Parameters
The ReservationConfirmCriteriaType has the following parameters (M = Mandatory, O =
Optional):

Parameter M/O Description
version M Version of the reservation instance.
schedule M Time parameters specifying the life of the service.
serviceType M The specific service type of this reservation. This service type string maps into the

list of supported service definitions defined by the network providers. In turn, the

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 93

service type specifies the specific service elements carried in an instance of this type
(through the ANY definition) that are associated with the requested service.

any ##other O Provides a flexible mechanism allowing additional elements to be provided such as
the service-specific attributes specified  by serviceType. Additional use of this
element field is beyond  the current scope of this NSI specification, but may be used
in the future to extend the existing protocol without requiring a schema change. 

Table 93 ReservationConfirmCriteriaType message parameters

9.5.1.30 ReservationRequestCriteriaType
Type definition for a reservation and modification request criteria. Only those values requiring
change are specified in the modify request. The version value specified in a reservation or modify
request MUST follow versioning rules as defined in section 7.1.6.

Figure 118 – ReservationRequestCriteriaType.

Parameters
The ReservationRequestCriteriaType has the following parameters (M = Mandatory, O =
Optional):

Parameter M/O Description
version M The version number assigned by the RA to this reservation instance. If not

specified in the initial reservation request, the new reservation will default to one
for the first version; however, an initial request can specify any positive integer
except zero. Each further reservation request on an existing reservation (a modify
operation), will be assigned a linear increasing number, either specified by the RA,
or assigned by the PA if not specified.

schedule O Time parameters specifying the life of the service. If not present then the service to
start immediately and run for an infinite time.

serviceType O Specific service type being requested in the reservation. This service type string
maps into the list of supported service definitions defined by the network providers,
and in turn, to the specific service elements carried in this element (through the
ANY definition) required to specify the requested service. The service type is
mandatory in the original reserve request, and optional in a reserve issued to
modify an existing reservation.

any ##other O Provides a flexible mechanism allowing additional elements to be provided such as
the service-specific attributes specified by serviceType. Additional use of this
element field is beyond the current scope of this NSI specification, but may be
used in the future to extend the existing protocol without requiring a schema
change.

Table 94 ReservationRequestCriteriaType message parameters

9.5.1.31 ReserveConfirmedType
Type definition for the reserveConfirmed message. A PA sends this positive reserve request
response to the RA that issued the original request message.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 94

Figure 119 – ReserveConfirmedType.

Parameters
The ReserveConfirmedType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
connectionId M The PA assigned connectionId for this reservation. This value will be unique within

the context of the PA.
globalReservationId O An optional global reservation id that can be used to correlate individual related

service reservations through the network. This MUST be populated with a
Universally Unique Identifier (UUID) URN as per ITU-T Rec. X.667 | ISO/IEC 9834-
8:2005 and IETF RFC 4122.

description O An optional description for the service reservation.
criteria M Versioned reservation criteria information.

Table 95 ReserveConfirmedType message parameters

9.5.1.32 ReserveResponseType
Type definition for the reserveResponse message. A PA sends this reserveResponse message
immediately after receiving the reserve request to inform the RA of the connectionId allocated to
their reserve request. This connectionId can then be used to query reservation progress.

Figure 120 – ReserveResponseType.

Parameters
The ReserveResponseType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
connectionId M The PA assigned connectionId for this reservation. This value will be unique within

the context of the PA.

Table 96 ReserveResponseType message parameters

9.5.1.33 ReserveTimeoutRequestType
This is the type definition for the reserve timeout notification message. This is an autonomous
message issued from a PA to an RA when a timeout on an existing reserve request occurs and
uncommitted resources have been freed. The type of event originates from a uPA, and is
propagated up the request tree to the uRA. The aggregator NSA will map the received

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 95

connectionId into a context understood by the next parent NSA in the request tree, then
propagate the event upwards. The originating connectionId and NSA are provided in separate
elements to maintain the original context generating the timeout. The timeoutValue and
timeStamp are populated by the originating NSA and propagated up the tree untouched.

Figure 121 – ReserveTimeoutRequestType.

Parameters
The ReserveTimeoutRequestType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
connectionId M The reservation experiencing the data plane state change.
notificationId M A notification identifier that is unique in the context of a connectionId. This is

a linearly increasing identifier that can be used for ordering notifications in
the context of the connectionId.

timeStamp M Time the event was generated on the originating NSA.
timeoutValue M The timeout value in seconds that expired this reservation.
originatingConnectionId M The connectionId that triggered the reserve timeout.
originatingNSA M The NSA originating the timeout event.

Table 97 ReserveTimeoutRequestType message parameters

9.5.1.34 ReserveType
This is the type definition that models the reserve message that allows an RA to reserve network
resources for a Connection between two STP's constrained by a certain service parameters. This
operation allows an RA to check the feasibility of Connection reservation or a modification to an
existing reservation. Any resources associated with the reservation or modification will be
allocated and held until commit is received or timeout occurs.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 96

Figure 122 – ReserveType.

Parameters
The ReserveType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
connectionId O The PA assigned connectionId for this reservation. This value will be unique within

the context of the PA. Provided in reserve request only when an existing
reservation is being modified.

globalReservationId O An optional global reservation id that can be used to correlate individual related
service reservations through the network. This MUST be populated with a
Universally Unique Identifier (UUID) URN as per ITU-T Rec. X.667 | ISO/IEC 9834-
8:2005 and IETF RFC 4122.

description O An optional description for the service reservation.
criteria M Reservation request criteria including start and end time, service attributes, and

requested path for the service.

Table 98 ReserveType message parameters

9.5.1.35 ScheduleType
This type definition models the reservation schedule start and end time parameters.

Figure 123 – ScheduleType.

Parameters
The ScheduleType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
startTime O

nillable
The start time of the reservation.

A start time of "now" is represented by a nil value in the startTime element. For
backwards compatibility an absent startTime element in the inital reserve
message also represents a start time of "now".

An absent startTime element in a modification operation indicates there is no
change to startTime. A startTime element with a nil value within a modify request
represents a modification of startTime to "now".

If a reserve request has a startTime in the past it should be considered as a start
time of "now".

endTime O
nillable

The end time of the reservation.

An "indefinite" end time is represented by a nil value in the endTime element.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 97

For backwards compatibility an absent endTime element in the inital reserve
message also represents an "indefinite" end time.

An absent endTime element in a modification operation indicates there is no
change to endTime. An endTime element with a nil value within a modify request
represents a modification of endTime to "indefinite".

If a reserve request has a endTime in the past it should be considered as an
invalid reservation request.

Table 99 ScheduleType message parameters

The following schedule element shows an example where both a startTime and endTime
have been specified.

<schedule>
 <startTime>2016-03-29T14:09:00.000-07:00</startTime>
 <endTime>2016-03-29T14:24:00.000-07:00</endTime>
</schedule>

This schedule element shows an example of a “nil” startTime element indicatating a
reservation start time of “now”.

<schedule>
 <startTime xsi:nil="true" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" />
 <endTime>2016-03-29T14:24:00.000-07:00</endTime>
</schedule>

For backwards compatibility in the initial reservation request, the following should be
considered equivalent to the previous start time of “now” example:

<schedule>
 <endTime>2016-03-29T14:24:00.000-07:00</endTime>
</schedule>

This schedule element shows an example of a “nil” endTime element indicating an
“indefinite” reservation end time.

<schedule>
 <startTime>2016-03-29T14:09:00.000-07:00</startTime>
 <endTime xsi:nil="true" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" />
</schedule>

For backwards compatibility in the initial reservation request, the following should be
considered equivalent to the previous “indefinite” end time example:

<schedule>
 <startTime>2016-03-29T14:09:00.000-07:00</startTime>
</schedule>

9.5.2 Simple Types
These simple type definitions are utilized by the CS complex type definitions. Types are listed in
alphabetical order.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 98

9.5.2.1 EventEnumType
Notification event message types. Possible values are:

• activateFailed – Indicates that the data plane activation related to a reservation has
failed, and therefore, there is no data plane connectivity for the reporting uPA.

• deactivateFailed – Indicates that deactivation of the data plane has failed, and as a
result, data plane connectivity may still be in place.

• dataplaneError – Indicates that an error has occurred in the data plane and a loss of
connectivity may be the result.

• forcedEnd – Indicates that the reservation was administratively terminated by a PA
within the network.

Figure 124 – EventEnumType.

9.5.2.2 GlobalReservationIdType
A globalReservationId is a type representing a globally unique identifier for a reservation. This will
be populated with a OGF URN (reference artifact 6478 "Procedure for Registration of
Subnamespace Identifiers in the URN:OGF Hierarchy") to be used for compatibility with other
external systems.

Figure 125 – GlobalReservationIdType.

9.5.2.3 LifecycleStateEnumType
Connection lifecycle state values for the reservation lifecycle state machine. The lifecycle state
machine is instantiated when a reservation is committed. Possible state values are:

• Created – A steady state for the lifecycle state machine and the initial state after a
reservation has been committed.

• Failed – A steady state for the lifecycle state machine that is reached if a forcedEnd error
is received from a uPA.

• PassedEndTime - The reservation has exceeded scheduled end time.
• Terminating - A transient state modeling the act of terminating the reservation.
• Terminated - A steady state for the lifecycle state machine that is reached when the

reservation is terminated by the uRA.

Figure 126 – LifecycleStateEnumType.

9.5.2.4 NotificationIdType
A specific type for a notificationId that is an identifier unique in the context of a connectionId.

Figure 127 – NotificationIdType.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 99

9.5.2.5 ProvisionStateEnumType
Connection provisioning state values for modeling the connection services provision state
machine.

The Provision State Machine (PSM) is a simple state machine that transits between the
Provisioned and the Released state. An instance of the PSM for a reservation is created in the
Released state when the first reserve request is received, however, a provision request cannot be
processed until the first version of the reservation has been successful committed. If a provision
request is received before the first version of a reservation has been created, then it must be
rejected with an error.

The PSM transits states independent of the state of the Reservation State Machine. Note that
staying at the Provisioned state is necessary but not sufficient to activate the data plane. The
data plane is active if the PSM is in “Provisioned” state AND current_time is between startTime
and endTime.

Possible state values are:

• Released – A steady state for the provision state machine in which data plane resources
for this reservation are in a released state, resulting in an inactive data plane.

• Provisioning - A transient state modeling the act of provisioning the reservation’s
associated data plane resources.

• Provisioned - A steady state for the provision state machine in which data plane
resources for this reservation are in a provisioned state. This state does not imply that
data plane resources are active, but it does indicate that a uPA can active the data plane
resources if current_time is between startTime and endTime.

• Releasing - A transient state modeling the act of releasing the reservation’s associated
data plane resources.

Figure 128 – ProvisionStateEnumType.

9.5.2.6 ReservationStateEnumType
Connection reservation state values for the connection services reservation state machine.
Possible state values are:

• ReserveStart – A steady state for the reservation state machine in which a reservation is
created and committed. In the case of the first reservation request this state represents
the initial reservation shell has been committed to database.

• ReserveChecking – A transient state modeling the act of checking the feasibility of a
new reservation request, or a request to modify an existing reservation.

• ReserveFailed – A steady state for the reservation state machine in which the initial
reservation or a subsequent modification request has failed.

• ReserveAborting - A transient state modeling the act of aborting a pending reservation
modify request.

• ReserveHeld - A steady state for the reservation state machine in which the initial
reservation or a subsequent modification request has successfully had the request
resources reserved, but has not yet been committed.

• ReserveCommitting - A transient state modeling the act of committing a held set of
reservation resources.

• ReserveTimeout - A steady state for the reservation state machine in which the held
resources have been locally timed out on a uPA, resulting in a transition from the
ReserveHeld to ReserveTimeout state.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 100

Figure 129 – ReservationStateEnumType.

9.5.2.7 ResultIdType
A specific type for a resultId that is an identifier unique in the context of a connectionId.

Figure 130 – ResultIdType.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 101

10. Security

This section describes how NSI CS protocol achieves secure communication and provides
authentication data across requests. Security is achieved using Transport Layer Security (TLS)
between NSAs and SAML attributes to convey information regarding request authentication.

10.1 Transport Layer Security

TLS is used to ensure secure communication between NSAs. TLS also supports X.509
certificates for authentication. Trust between NSAs is pairwise and MUST be established out-of-
band. It is possible to have unidirectional trust between NSAs, i.e. reservations can only be
created in one direction, as this is simply a policy special case. Transitive trust between NSAs
cannot be assumed, i.e., NSAs A & B trust each other, and B & C trust each other, but this does
not imply trust between A & C. However a request from A may end up using resources from C if
passed through B. In the current security framework, B (if its policies permit) can proxy A’s
request to C. From C’s point of view, it receives the request from B, and authenticates and
authorizes the request using B’s credentials. This document does not describe security policies,
as these will always be site-specific. Note that due to the requirement for direct NSA-to-NSA
communications (i.e. NSAs cannot forward communications via a third party NSA), message-level
signing provides little value and is not used.

TLS provides message integrity, confidentiality and authentication via the X.509 certificates, and
protects against replay attacks. Authorization is done at the NSAs application level. TLS version
1.0 MUST be supported. NSAs MAY use SSLv3 and TLS versions higher than 1.0 where
possible.

10.2 SAML Assertions

As TLS by design only provides transport-level security, an additional mechanism for conveying
request authentication is required. For this, SAML assertions are used. NSAs can include SAML
assertions in the CS message header, which providers MAY use to authorize the request. SAML
attributes can describe information such as user, group, originating NSA, or even OAuth tokens.
What and how to describe with SAML headers is outside the scope of this document, but will be
described in a best current practices (BCP) document. The intent of such a document is to
provide a baseline of what to support, but attributes can be created as needed and can be unique
to NSA peerings.

11. Appendix A: State Machine Transition Tables
This appendix describes the transitions that are allowed in the NSI CS state machines. These
tables should be read in conjunction with the state machines described in section 5.3.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 102

Table 100 RSM transition table

Table 101 PSM transition table

>rsv.rq >rsvabort.rq >rsvcommit.rq <rsv.cf <rsv.fl <rsvabort.cf <rsvcommit.cf <rsvcommit.fl (ReserveTimeout)

Reserve
Checking

Reserve
Start

Reserve
Start

Reserve
Start

Reserve
Start

Reserve
Start

Reserve
Start

Reserve
Start

Reserve
Start

>rsv.rq <rsvabort.na <rsvcommit.na

Reserve
Checking

Reserve
Checking

Reserve
Checking

Reserve
Held

Reserve
Failed

Reserve
Checking

Reserve
Checking

Reserve
Checking

Reserve
Checking

<rsv.na <rsvabort.na <rsvcommit.na <rsv.cf <rsv.fl
Reserve
Held

Reserve
Aborting

Reserve
Commiting

Reserve
Held

Reserve
Held

Reserve
Held

Reserve
Held

Reserve
Held

Reserve
Timeout

<rsv.na >rsvabort.rq >rsvcommit.rq <rsvtimeout.nt
Reserve
Committing

Reserve
Committing

Reserve
Committing

Reserve
Committing

Reserve
Committing

Reserve
Committing

Reserve
Start

Reserve
Start

Reserve
Committing

<rsv.na <rsvabort.na <rsvcommit.na <rsvcommit.cf <rsvcommit.fl

Reserve
Failed

Reserve
Aborting

Reserve
Failed

Reserve
Failed

Reserve
Failed

Reserve
Failed

Reserve
Failed

Reserve
Failed

Reserve
Failed

<rsv.na >rsvabort.rq <rsvcommit.na
Reserve
Aborting

Reserve
Aborting

Reserve
Aborting

Reserve
Aborting

Reserve
Aborting

Reserve
Start

Reserve
Aborting

Reserve
Aborting

Reserve
Aborting

<rsv.na <rsvabort.na <rsvcommit.na <rsvabort.cf

Reserve
Timeout

Reserve
Aborting

Reserve
Start

Reserve
Timeout

Reserve
Timeout

Reserve
Timeout

Reserve
Timeout

Reserve
Timeout

Reserve
Timeout

<rsv.na >rsvabort.rq <rsvcommit.fl

Illeagal request. Reply with "not applicable".
Non expected input. Should be an error

Reserve
Start

Reserve
Committing

Output message
Next State

Input message/Event

Reserve
Timeout

Reserve
Checking

Reserve
Held

Reserve
Failed

Reserve
Aborting

Current
State

>prov.rq >rel.rq <prov.cf <rel.cf
Provisioning Released Released Released
>prov.rq <rel.na
Provisioning Provisioning Provisioned Provisioning
<prov.na <rel.na <prov.cf
Provisioned Releasing Provisioned Provisioned
<rsv.na >rel.rq
Releasing Releasing Releasing Released
<prov.na <rel.na <rel.cf

Illeagal request. Reply with "not applicable".
Non expected input. Should be an error

Input message
Current

State
Next State

Output message

Released

Provisioning

Provisioned

Releasing

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 103

Table 102 LSM transition table

A service exception MUST be immediately returned when an invalid message is detected. For
example:

• In the case where a .na message is specified in these tables Service exception 201
‘invalid message’ is returned.

• Undefined connectionId in the request will return a service exception 203.

An error response message is sent when the incoming message is valid but there are processing
issues that need to be notified (e.g. a problem has been encountered during provisioning).

12. Appendix B: Error Messages and Best Practices

12.1 Error Messages

A formal set of error codes is defined for the NSI CS protocol. The error codes SHOULD be used
to ensure common error messages between NSI implementations. Error codes are defined in the
NSI document Error codes for NSI Connection Service [17].

Service exceptions can be sent in either the SOAP fault reply to the original request, a failed reply
message, or an error reply message.

12.2 NTP servers
The server running the NSA SHOULD use NTP version 4 [8]. This will reduce the risk of clock
skew between the NSAs.

12.3 Timeouts
In order to identify communication failures, both the MTL and Coordinator have defined timeouts
to detect breakdowns in certain aspects of the communication channel. The characteristics of
these timeouts are outlined below for informational purposes:
• MTL Timeout

o Symptoms
§ No acknowledgement of message receipt after a pre-determined time period

after the message was sent.

Lifecycle State Machine (LSM)

>term.rq <term.cf <forcedEnd
Terminating Created Failed
>term.rq <forcedEnd
Failed Terminated Failed
<term.na <term.cf <forcedEnd
Terminating Terminated Terminating
<term.na <term.cf <forcedEnd
Terminated Terminated Terminated
<term.na <forcedEnd

Illeagal request. Reply with "not applicable".
Non expected input. Should be an error

Created

Terminating

Terminated

Input message
Current

State
Next State

Output message

Failed

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 104

o Causes
§ Failure in end-to-end communication between NSAs.

• Coordinator Timeout

o Symptoms
§ No NSI reply after a pre-determined time period after the NSI request was

sent.
o Causes

§ Failure in the MTL such that the NSI reply (from the PA) could not be
delivered to the RA (the RA).

§ The NSA processing the request (e.g. PA) was unable to reply due to
incapacitation.

§ The NSA processing the request (AG) was blocked waiting for NSI replies
from downstream NSAs. (This scenario can be resolved by adjusting the
Coordinator timeout value of the requester.)

As both the MTL and Coordinator timeouts are distinct and can be set exclusively, it is important
to understand the interplay between the MTL and Coordinator timeouts in order to mitigate
artificial “failures”. The RA may choose to send queries to check the status of a request rather
than terminating at timeout.

In the event of an MTL or Coordinator timeout, the Coordinator MUST generate a message
delivery failure notification and send it up the workflow tree (towards the uRA).

Timeouts MAY be configurable on a per operation basis and it is suggested that they are set to 2
minutes as a default. Requester side timeouts: It is up to the individual provider to choose
appropriate NSA timeouts for their network. As a guide the timeout should be set to 2 minutes for
reservations to a provider-only NSA, and longer for hierarchical requests to aggregator NSAs
depending on the number of levels of recursion.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 105

Figure 131: Potential MH/MTL timeout sequences

13. Appendix C: Firewall Handling

Firewalls are commonly disruptive of application level protocols (such as FTP), with specific
protocol solutions such as uPnP defined to help applications properly traverse a firewall. The NSI
CS HTTP/SOAP binding has similar firewall issues. It is important to maintain appropriate firewall
and application configurations for the NSI protocol to function correctly. However, it is recognized
there will be situations where an NSA administrator may not be able to influence firewall
configurations and therefore need an alternative solution.

Figure 132 shows an example of the common firewall issue that is encountered when deploying
an NSA behind a firewall within a private address space. This flow proceeds as follows:

• The RA composes an NSI reserve request message populating the replyTo field with its
SOAP endpoint using private IP address for asynchronous response.

• The RA behind the firewall issues HTTP reserve request to PA on the public network.
• The firewall NATs the HTTP request and passes on to the PA but does not NAT the

private IP address in replyTo since this is embedded in the SOAP message.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 106

• The PA is unable to reach the private IP address to deliver the reserveConfirmed
message.

Figure 132 – RA behind a firewall with private IP address.

Similar issues can occur when the RA is assigned a public IP address but is behind a firewall not
configured to forward HTTP traffic to the callback endpoint. Figure 133 shows an example of this
specific issue. This flow proceeds as follows:

• The RA composes an NSI reserve request message populating the replyTo field with its
SOAP endpoint using public IP address for asynchronous response.

• The RA behind the firewall issues the HTTP reserve request to the PA on the public
network.

• The firewall passes the request on to PA but requires no NATing of addresses.
• The PA cannot reach the public IP address of the RA to deliver the reserveConfirmed

message as the firewall is blocking incoming HTTP connections.

Figure 133 – RA behind a firewall with public IP address.

It should also be noted that if these NSAs are in a true peer-to-peer configuration both supporting
the requester and provider roles, then communications between the two NSAs needs to be
possible for either NSA to issue requests or return asynchronous confirmations. This also needs
to be possible if both NSAs are behind firewall devices.

There are a number of solutions to help address these firewall issues. The most obvious is proper
firewall configuration for the specific NSA deployment. For an NSA with public IP addresses
assigned but behind a firewall, access control lists can be set in combination with port filtering to
allow communication between these peer NSAs. This will allow the NSA-specific HTTP traffic to
be passed between servers and therefore to achieve proper NSI asynchronous protocol behavior.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 107

 Figure 134 – Peer NSA behind a firewall with public IP addresses.

A slightly more complicated NSA deployment occurs when one or both of the peer NSAs are
assigned private IP addresses and are behind a firewall. In this situation the NSA will need to use
the IP address of the firewall providing HTTP port forwarding or a full HTTP proxy as its public
identity. Access control lists can be set for peer NSA in combination with NAT and port forwarding
to allow the RA to be mapped through to the PA’s HTTP server port within the DMZ. However,
the key configuration change is that an RA behind the firewall will need to provide the public-
facing IP address and port of the firewall/proxy within the replyTo field of the NSI operation
request. This will allow the PA to correctly map the SOAP endpoint for the asynchronous
response back to the firewall/proxy that will tunnel the message through to the target RA.

Figure 135 – Peer NSA behind a firewall with private IP addresses.

To summarize, a PA needs to have a publically accessible interface to receive request messages
from an RA, and an RA needs to also have a publically accessible interface to receive response
messages (confirm, failed, or event) from the PA when using the asynchronous messaging
interface.

In NSI CS a simple set of synchronous operations have been added to allow an RA isolated
behind a firewall to interact with a PA supporting a publically accessible interface. These
synchronous operations will block until the confirmed, failed, or error message is available and
return it in the results of the synchronous request (where the current asynchronous operations
return an ACK).

The existing reserve, reserveCommit, reserveAbort, provision, release, and terminate operation
sets have been modified to accept requests without a replyTo parameter within the NSI CS
header. These operations will behave normally, except a confirmed/failed response will not be
sent back to the RA. This behavior is triggered by the lack of a replyTo parameter. It is the
responsibility of an RA to determine the result of these operations through changes to state
machines associated with the reservation via the firewall safe querySummarySync operation.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 108

Results of a previously issued operation can be determined by polling state machines associated
with the reservation.

NS CS version 2.0 also introduced additional modeling of event notifications and operation results
against reservations to help support a synchronous polling RA. A notification identifier and result
identifier has been added to the reservation query information to indicate a notification/result has
been received against that reservation. Without the ability to receive asynchronous
notifications/results, these synchronous polling RA can use the new firewall safe
queryNotificationSync operation to retrieve a list of notifications against the reservation, or the
queryResultSync operation to retrieve a list of operation results against the reservation.

To summarize, with the optional replyTo parameter, the introduction of notification modeling
within a reservation, and the firewall safe querySummarySync , queryNotificationSync, and
queryResultSync operations, it is possible to build a fully functional firewall-safe RA.

14. Appendix D: Formal Statement of Coordinator

The following is an attempt to describe the behavior of the Coordinator in relation to the
processing of requests and interactions with the various state machines in the NSA. Due to the
slight difference in behavior between an AG and a uPA, these are described separately.

14.1 Aggregator NSA
14.1.1 Processing of NSI Requests
The following outlines the messages received by the AG’s Coordinator from external NSAs (e.g.
parent or child NSAs), and the corresponding interactions between the Coordinator and various
internal state machine functions.

NSI_rsv.rq(Conn_ID, Corr_ID, Ver) /* from parent NSA */
 if (new Conn_ID) then
 {
 create state machine RSM(Conn_ID) /* initial state = ReserveStart */
 create state machine LSM(Conn_ID) /* initial state = Created */
 create state machine PSM(Conn_ID) /* initial state = Released */
 do pathfinding -> create entry for all children in
 connection_segment_list(Conn_ID, Child_NSA)
 }
 send rsv.rq(Corr_ID, Ver) to RSM(Conn_ID)

NSI_rsvcommit.rq(Conn_ID, Corr_ID, Ver) /* from parent NSA */
 send rsvcommit.rq(Corr_ID, Ver) to RSM(Conn_ID)

NSI_rsvabort.rq(Conn_ID, Corr_ID, Ver) /* from parent NSA */
 send rsvabort.rq(Corr_ID, Ver) to RSM(Conn_ID)

NSI_prov.rq(Conn_ID, Corr_ID) /* from parent NSA */
 send prov.rq(Corr_ID) to PSM(Conn_ID)

NSI_rel.rq(Conn_ID, Corr_ID) /* from parent NSA */
 send rel.rq(Corr_ID) to PSM(Conn_ID)

NSI_term.rq /* from parent NSA */
 send term.rq(Corr_ID) to LSM(Conn_ID)
 send term.rq to RSM(Conn_ID), PSM(Conn_ID) /* if RSM and PSM exist */

NSI_rsv.cf(Conn_ID, Corr_ID) /* from child NSA */
 set request_segment_list(Conn_ID, Child_NSA, Corr_ID).Status = replied
 if all children in request_segment_list(Conn_ID, Child_NSA,
 Corr_ID).Status == replied then
 {
 send rsv.cf(Corr_ID, Ver) to RSM(Conn_ID)
 }

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 109

NSI_rsv.fl(Conn_ID, Corr_ID) /* from child NSA */
 set request_list(Conn_ID, Corr_ID).Status = fail
 if all children in request_segment_list(Conn_ID, Child_NSA,
 Corr_ID).Status == (replied or fail) then
 {
 send rsv.fl(Corr_ID, Ver) to RSM(Conn_ID)
 }

NSI_rsvcommit.cf(Conn_ID, Corr_ID, Ver) /* from child NSA */
 set request_segment_list(Conn_ID, Child_NSA, Corr_ID).Status = replied
 if all children in request_segment_list(Conn_ID, Child_NSA,
 Corr_ID).Status == replied then
 {
 send rsvcommit.cf(Corr_ID, Ver) to RSM(Conn_ID)
 }

NSI_rsvcommit.fl(Conn_ID, Corr_ID, Ver) /* from child NSA */
 set request_segment_list(Conn_ID, Child_NSA, Corr_ID).Status = replied
 if all children in request_segment_list(Conn_ID, Child_NSA,
 Corr_ID).Status == replied then
 {
 send rsvcommit.fl(Corr_ID, Ver) to RSM(Conn_ID)
 }

NSI_rsvabort.cf(Conn_ID, Corr_ID, Ver) /* from child NSA */
 set request_segment_list(Conn_ID, Child_NSA, Corr_ID).Status = replied
 if all children in request_segment_list(Conn_ID, Child_NSA,
 Corr_ID).Status == replied then
 {
 send rsvabort.cf(Corr_ID, Ver) to RSM(Conn_ID)
 }

NSI_prov.cf(Conn_ID, Corr_ID) /* from child NSA */
 set request_segment_list(Conn_ID, Child_NSA, Corr_ID).Status = replied
 if all children in request_segment_list(Conn_ID, Child_NSA,
 Corr_ID).Status == replied then
 {
 send prov.cf(Corr_ID) to PSM(Conn_ID)
 }

NSI_rel.cf(Conn_ID, Corr_ID) /* from child NSA */
 set request_segment_list(Conn_ID, Child_NSA, Corr_ID).Status = replied
 if all children in request_segment_list(Conn_ID, Child_NSA,
 Corr_ID).Status == replied then
 {
 send rel.cf(Corr_ID) to PSM(Conn_ID)
 }

NSI_term.cf(Conn_ID, Corr_ID) /* from child NSA */
 set request_segment_list(Conn_ID, Child_NSA, Corr_ID).Status = replied
 if all children in request_segment_list(Conn_ID, Child_NSA,
 Corr_ID).Status == replied then
 {
 clean up everything related to Conn_ID
 send term.cf(Corr_ID) to LSM(Conn_ID)
 }

14.1.2 Requests from State Machines
The following outlines the messages received by the AG’s Coordinator from internal state
machine functions, and the corresponding actions and messages to external NSAs (e.g. parent or
child NSAs).

rsv.rq(Corr_ID, Ver) /* from RSM(Conn_ID) */
 create entry for all children in request_segment_list(Conn_ID, Child_NSA, Corr_ID)
 send NSI_rsv.rq(Conn_ID, Corr_ID, Ver) to children in
 connection_segment_list(Conn_ID, Child_NSA)

rsvcommit.rq(Corr_ID, Ver) /* from RSM(Conn_ID) */
 create entry for all children in request_segment_list(Conn_ID, Child_NSA, Corr_ID)
 send NSI_rsvcommit.rq(Conn_ID, Corr_ID, Ver) to children in

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 110

 connection_segment_list(Conn_ID, Child_NSA)

rsvabort.rq(Corr_ID, Ver) /* from RSM(Conn_ID) */
 create entry for all children in request_segment_list(Conn_ID, Child_NSA, Corr_ID)
 send NSI_rsvabort.rq(Conn_ID, Corr_ID, Ver) to children in
 connection_segment_list(Conn_ID, Child_NSA)

rsv.cf(Corr_ID, Ver) /* from RSM(Conn_ID) */
 send NSI_rsv.cf(Conn_ID, Corr_ID, Ver) to the parent

rsv.fl(Corr_ID) /* from RSM(Conn_ID) */
 send NSI_rsv.fl(Conn_ID, Corr_ID, Ver) to the parent

rsvcommit.cf(Corr_ID, Ver) /* from RSM(Conn_ID) */
 send NSI_rsvcommit.cf(Conn_ID, Corr_ID, Ver) to the parent

rsvcommit.fl(Corr_ID, Ver) /* from RSM(Conn_ID) */
 send NSI_rsvcommit.fl(Conn_ID, Corr_ID, Ver) to the parent

rsvabort.cf(Corr_ID, Ver) /* from RSM(Conn_ID) */
 send NSI_rsvabort.cf(Conn_ID, Corr_ID, Ver) to the parent

prov.rq(Corr_ID) /* from PSM(Conn_ID) */
 create entry for all children in request_segment_list(Conn_ID, Child_NSA, Corr_ID)
 send NSI_prov.rq(Conn_ID, Corr_ID) to children in
 connection_segment_list(Conn_ID, Child_NSA)

rel.rq(Corr_ID) /* from PSM(Conn_ID) */
 create entry for all children in request_segment_list(Conn_ID, Child_NSA, Corr_ID)
 send NSI_prov.rq(Conn_ID, Corr_ID) to children in
 connection_segment_list(Conn_ID, Child_NSA)

prov.cf(Corr_ID) /* from PSM(Conn_ID) */
 send NSI_prov.cf(Conn_ID, Corr_ID) to the parent

rel.cf(Corr_ID) /* from PSM(Conn_ID) */
 send NSI_rel.cf(Conn_ID, Corr_ID) to the parent

term.rq(Corr_ID) /* from LSM(Conn_ID) */
 create entry for all children in request_segment_list(Conn_ID, Child_NSA, Corr_ID)
 send NSI_term.rq(Conn_ID, Corr_ID) to children in
 connection_segment_list(Conn_ID, Child_NSA)

term.cf(Corr_ID) /* from LSM(Conn_ID) */
 send NSI_term.cf(Conn_ID, Corr_ID) to the parent

14.2 Ultimate PA
14.2.1 Processing of NSI Requests
The following outlines the messages received by the uPA’s Coordinator from external NSAs (e.g.
parent NSAs), and the corresponding interactions between the Coordinator and various internal
state machine functions.

NSI_rsv.rq(Conn_ID, Corr_ID) /* from parent NSA */
 if (new Conn_ID) then
 {
 create state machines RSM(Conn_ID), PSM(Conn_ID), LSM(Conn_ID)
 }
 send rsv.rq(Corr_ID, Ver) to RSM(Conn_ID)
 create the reservation(Conn_ID, Ver) /* to NRM */
 if reservation created then
 {
 send rsv.cf(Corr_ID, Ver) to RSM(Conn_ID)
 }
 else
 {
 send rsv.fl(Corr_ID, Ver) to RSM(Conn_ID)
 }

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 111

NSI_rsvcommit.rq(Conn_ID, Corr_ID, Ver) /* from parent NSA */
 send rsvcommit.rq(Corr_ID, Ver) to RSM(Conn_ID)
 commit the reservation(Conn_ID, Ver) /* to NRM */
 if commit successful then
 {
 send rsvcommit.cf(Corr_ID, Ver) to RSM(Conn_ID)
 }
 else
 {
 send rsvcommit.fl(Corr_ID, Ver) to RSM(Conn_ID)
 }

NSI_rsvabort.rq(Conn_ID, Corr_ID, Ver) /* from parent NSA */
 send rsvabort.rq(Corr_ID, Ver) to RSM(Conn_ID)
 abort the reservation(Conn_ID, Ver) /* to NRM */
 send rsvabort.cf(Corr_ID, Ver) to RSM(Conn_ID)

NSI_prov.rq(Conn_ID, Corr_ID) /* from parent NSA */
 send prov.rq(Corr_ID) to PSM(Conn_ID)
 set prov_flag(Conn_ID)
 send prov.cf(Corr_ID) to PSM(Conn_ID)
 if in_period_flag is set then
 {
 activate data plane according to the latest reservation /* to NRM */
 }

NSI_rel.rq(Conn_ID, Corr_ID) /* from parent NSA */
 send rel.rq(Corr_ID) to PSM(Conn_ID)
 reset prov_flag(Conn_ID)
 deactivate data plane /* to NRM */
 send rel.cf(Corr_ID) to PSM(Conn_ID)

NSI_term.rq(Conn_ID, Corr_ID) /* from parent NSA */
 send term.rq(Corr_ID) to LSM(Conn_ID)
 send term.rq to RSM(Conn_ID), PSM(Conn_ID), ASM(Conn_ID)
 /* if RSM, PSM and ASM exist */
 clean up everything related to Conn_ID /* to NRM */
 send term.cf(Corr_ID)

14.2.2 Requests from State Machines
The following outlines the messages received by the uPA’s Coordinator from internal state
machine functions, and the corresponding actions and messages to external NSAs (e.g. parent
NSAs).

rsv.rq(Corr_ID, Ver) /* from RSM(Conn_ID) */
 ignore

rsvcommit.rq(Corr_ID, Ver) /* from RSM(Conn_ID) */
 ignore

rsvabort.rq(Corr_ID, Ver) /* from RSM(Conn_ID) */
 ignore

rsv.cf(Corr_ID) /* from RSM(Conn_ID) */
 set REPLIED(Corr_ID)
 send NSI_rsv.cf(Conn_ID, Corr_ID, Ver) to the parent

rsv.fl(Corr_ID) /* from RSM(Conn_ID) */
 set REPLIED(Corr_ID)
 send NSI_rsv.fl(Conn_ID, Corr_ID) to the parent

rsvcommit.cf(Corr_ID, Ver) /* from RSM(Conn_ID) */
 set REPLIED(Corr_ID)
 send NSI_rsvcommit.cf(Conn_ID, Corr_ID, Ver) to the parent

rsvcommit.fl(Corr_ID, Ver) /* from RSM(Conn_ID) */
 set REPLIED(Corr_ID)

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 112

 send NSI_rsvcommit.fl(Conn_ID, Corr_ID, Ver) to the parent

rsvabort.cf(Corr_ID, Ver) /* from RSM(Conn_ID) */
 set REPLIED(Corr_ID)
 send NSI_rsvabort.cf(Conn_ID, Corr_ID, Ver) to the parent

prov.rq(Corr_ID) /* from PSM(Conn_ID) */
 ignore

rel.rq(Corr_ID) /* from PSM(Conn_ID) */
 ignore

prov.cf(Corr_ID) /* from PSM(Conn_ID) */
 send NSI_prov.cf(Conn_ID, Corr_ID) to the parent

rel.cf(Corr_ID) /* from PSM(Conn_ID) */
 send NSI_rel.cf(Conn_ID, Corr_ID) to the parent

term.rq(Corr_ID) /* from LSM(Conn_ID) */
 ignore

term.cf(Corr_ID) /* from LSM(Conn_ID) */
 send NSI_term.cf(Conn_ID, Corr_ID) to the parent

15. Appendix E: Service Definion Schemas
One of the primary objectives of NSI CS is to remove the dependencies of data plane Service
Definition from the core NSI CS protocol. This decoupling allows the existing NSI CS protocol to
remain stable while permitting changes to the services offered by a network provider without
impacting the existing protocol. This section documents the decoupled Point-to-Point Service
Schema.

15.1 Restructuring criteria element

In NSI CS 2.0 the Point-to-Point service-specific capacity, path, and serviceAttributes elements
are removed from the criteria element, used for example in the reserve message elements.
These Point-to-Point service-specific elements are repackaged into a separate service-specific
schema definition, which is allocated a dedicated namespace for use when referencing the
contained elements. The criteria element was extended to include an ANY child element allowing
generic inclusion of external service schemas. In addition to the Service Definition decoupling, the
CS uses an element called serviceType, which is described in the next section. These criteria are
shown in Section 9.5.1.30.

15.2 The serviceType element

The serviceType element names the specific service type requested in the reservation. This
service type string maps to a specific Service Definition template defined by the network
providers describing the type of service offered, parameters supported in a reservation request
(mandatory and optional), defaults for parameters if not specified (as well as maximums and
minimums), and other attributes relating to the service offering. The NSA in turn uses this
information to determine the specific service parameters carried in the criteria element as part of
the reservation request.

The Service Definition template is an important component in the solution, linking the opaque
information carried in the NSI CS protocol to the concrete parameters needed to satisfy a specific
service request.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 113

15.3 Service-specific errors

The NSI CS protocol commonly utilizes the ServiceExceptionType structure to convey error
information associated with SOAP faults, failed messages, and error messages. The structure is
extremely flexible and able to handle both simple high-level error information, as well as detailed
errors down to the individual attribute value causing a problem. The current
ServiceExceptionType is defined in Section 9.3.1.

The NSI CS protocol uses a hierarchal error code structure to group related error codes together
under a common parent error code value. A service-specific parent error code
SERVICE_ERROR(00700) has been defined for use by individual Service Definitions. As new
services are offered, and existing ones modified, these service-specific errors can be modified as
needed with no impact on the core NSI CS protocol.

Context for these service-specific errors is provided by the serviceType element included in the
ServiceExceptionType structure returned when an NSA generates a service-specific error. This
serviceType element maps into the service definition used for the service request1 on this failed
segment and, in turn, to a detailed description of the service-specific error.

15.4 Point-to-point Ethernet Service Definition schema

All service capabilities of earlier versions of the NSI CS have been captured in the service-
specific schema for NSI CS. Service parameters must be encapsulated in an XML element for
inclusion in the criteria element of a reservation request. In addition, any modifiable parameters of
the reservation must also be defined as XML elements for inclusion in the criteria element of a
modification request.

Namespace definition: http://schemas.ogf.org/nsi/2013/12/services/point2point

15.4.1 Service Elements

15.4.1.1 p2ps
This point-to-point service element is used within the criteria element to specify a generic point-to-
point service request in the NSI CS protocol. It provides functional equivalent to the point-to-point
service integrated in earlier versions of NS CS, and can be used for point-to-point Ethernet
service offerings.

1 The serviceType is included since the original serviceType specified in the reserve request may have been re-mapped
into a different serviceType when sent to a child NSA.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 114

Figure 136 – p2ps service element.

Parameters
The p2ps service element has the following parameters:

Parameter Description
capacity Capacity of the service. Units for the capacity parameter are defined in the

associated service definition.
directionality The (uni or bi) directionality of the service.
symmetricPath An indication that both directions of a bidirectional circuit must follow the same

path. Only applicable when directionality is "Bidirectional". If not specified then
value is assumed to be false.

sourceSTP Source STP identifier of the service.
destSTP Destination STP identifier of the service.
ero A hop-by-hop ordered list of STPs from sourceSTP to destSTP representing a

path that the connection must follow. This list does not include sourceSTP or
destSTP.

parameter A flexible non-specific parameters definition allowing for specification of
parameters in the Service Definition that are not defined directly in the service-
specific schema.

##other For future expansion and extensibility.

Table 103 p2ps service element parameters

15.4.1.2 capacity
The capacity element is defined for a modification of the capacity of an existing service. The unit
of capacity is specified in the Service Definition associated with the requested service.

Figure 137 – capacity service element.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 115

15.4.1.3 parameter
The parameter element, as a member of the p2ps service element, is used to add additional
service parameters not explicitly defined in the schema, but specified in the Service Definition.
The parameter element is specified individually within the criteria element when a modification to
one of these Service Definition defined parameters is required in an existing reservation.

Figure 138 – parameter service element.

15.4.2 Complex Types
These complex type definitions are utilized by the service-specific schema element definitions.

15.4.2.1 P2PServiceBaseType
The P2PServiceBaseType is a structure for a generic point-to-point Service Definition. At the
moment this type supports a unidirectional or bidirectional service.

Figure 139 – P2PServiceBaseType.

Parameters
The P2PServiceBaseType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
capacity M Capacity of the service. Units for the capacity parameter are defined in the

associated service definition.
directionality M The (uni- or bi-) directionality of the service.
symmetricPath O An indication that both directions of a bidirectional circuit must follow the same

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 116

path. Only applicable when directionality is "Bidirectional". If not specified then
value is assumed to be false.

sourceSTP M Source STP identifier of the service.
destSTP M Destination STP identifier of the service.
ero O A hop-by-hop ordered list of STP from sourceSTP to destSTP representing a

path that the connection must follow. This list does not include sourceSTP or
destSTP.

parameter O A flexible non-specific parameters definition allowing for specification of
parameters in the Service Definition that are not defined directly in the service
specific schema.

##other O For future expansion and extensibility.

Table 104 - P2PServiceBaseType parameters.

15.5 Generic Service Types
These are generic service type definitions that can be used to build service-specific schema.
These definitions are currently used by the point-to-point service definitions.

Namespace definition: http://schemas.ogf.org/nsi/2013/12/services/types

15.5.1 Complex Types
These complex type definitions are utilized by the service-specific schema complex type
definitions.

15.5.1.1 OrderedStpType
A Service Termination Point (STP) that can be ordered in a list for use in ero Object definition.

Figure 140 – OrderedStpType.

Parameters
The OrderedStpType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
order M Order attribute is provided only when the STP is part of an orderedSTPList.
stp M The Service Termination Point (STP).

Table 105 - OrderedStpType parameters.

15.5.1.2 StpListType
This type is a simple ordered list type of Service Termination Points (STPs). The list order is
determined by the integer order attribute in the orderedSTP element.

Figure 141 – StpListType.

Parameters
The StpListType has the following parameters (M = Mandatory, O = Optional):

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 117

Parameter M/O Description
orderedSTP O A list of STP ordered 0..n by their integer order attribute.

Table 106 - StpListType message parameters

15.5.1.3 TypeValueType
A type definition for a type and value tuple used to represent simple parameter values.

Figure 142 – TypeValueType.

Parameters
The TypeValueType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
type M A string representing the name of the type.
value O The string value of this instance.

Table 107 - TypeValueType parameters.

15.5.1.4 ClusionType
This type definition is used to model pathfinding inclusions/exclusions in a point-to-point service
request. The possible types and values specified in an inclusion or exclusion will be defined in
the service specific Service Definition.

Inclusions provide pathfinders with a specific set of resources to use in path computation.
Different from an ERO in that an ERO provides a specific path through the network, while
inclusions specifies the starting set of resources to be used in pathfinding (not all of the resources
need be used).

Exclusions provide a mechanism allowing an RA to specify a set of resources that must be
excluded when computing a path.

If an inclusion(s) is present it is used to build the initial routing graph, otherwise when absent the
complete set of resources are used.

If exclusion(s) is present then the specified exclusion(s) are pruned from the graph.

Any ERO is applied during path finding using the resulting graph.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 118

Figure 143 – ClusionType.

Parameters
The ClusionType has the following parameters (M = Mandatory, O = Optional):

Parameter M/O Description
type M Order attribute is provided only when the STP is part of an orderedSTPList.
lt O The Service Termination Point (STP).
lte O Less than equal to conditional element.
gt O Greater than conditional element.
gte O Greater than equal to conditional eement.
eq O Equal conditional element.

Table 108 - ClusionType parameters.
The following examples show use of the inclusion and exclusion mechanism within the p2ps
element. In Figure 144 the p2ps reservation request uses the “stpId” inclusion element to include
four networks in pathfinding, while using the exclusion element to exclude a range of stpId within
the ESnet network.

 <p2p:p2ps>
 <capacity>10000</capacity>
 <directionality>Bidirectional</directionality>
 <symmetricPath>true</symmetricPath>
 <sourceSTP>urn:ogf:network:kddilabs.jp:2013:topology:bi-ps?vlan=1780-1782</sourceSTP>
 <destSTP>urn:ogf:network:uvalight.net:2013:topology:ps?vlan=1780-1782</destSTP>
 <inclusion type="http://schemas.ogf.org/nsi/2013/12/services/point2point#stpId">
 <eq xsi:type="types:StpIdType">urn:ogf:network:es.net:2013:</eq>
 <eq xsi:type="types:StpIdType">urn:ogf:network:icair.org:2013:topology</eq>
 <eq xsi:type="types:StpIdType">urn:ogf:network:manlan.internet2.edu:2013:</eq>
 <eq xsi:type="types:StpIdType">urn:ogf:network:netherlight.net:2013:production7</eq>
 </inclusion>
 <exclusion type="http://schemas.ogf.org/nsi/2013/12/services/point2point#stpId">
 <eq xsi:type="types:StpIdType">urn:ogf:network:es.net:2013::amst-cr5:3_1_1:+?vlan=1001-1009</eq>
 </exclusion>
 </p2p:p2ps>

Figure 144 – Inclusion/exclusion example #1.
Notice that in this previous example the type attribute utilizes a unique URI to identify the type of
parameter represented in the inclusion and exclusion elements.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 119

In Figure 145 the p2ps reservation request uses the “stpId” exclusion element to remove ESnet
resources from pathfinding, removes all SDP with a capacity less that 10,000 mb/s, and excludes
a specific set of resources with the listed SLRG values.

 <p2p:p2ps>
 <capacity>10000</capacity>
 <directionality>Bidirectional</directionality>
 <symmetricPath>true</symmetricPath>
 <sourceSTP>urn:ogf:network:kddilabs.jp:2013:topology:bi-ps?vlan=1780-1782</sourceSTP>
 <destSTP>urn:ogf:network:uvalight.net:2013:topology:ps?vlan=1780-1782</destSTP>
 <exclusion type="http://schemas.ogf.org/nsi/2013/12/services/point2point#stpId">
 <eq xsi:type="types:StpIdType">urn:ogf:network:es.net:2013:</eq>
 </exclusion>
 <exclusion type="http://services.ogf.org/nsi/2013/12/definitions/EVTS.A-GOLE#sdpCapacity">
 <lt xsi:type="xsd:long">10000</lt>
 </exclusion>
 <exclusion type="http://services.ogf.org/nsi/2013/12/definitions/EVTS.A-GOLE#slrg">
 <eq xsi:type="xsd:long">400</eq>
 <eq xsi:type="xsd:long">501</eq>
 <eq xsi:type="xsd:long">670</eq>
 </exclusion>
 </p2p:p2ps>

Figure 145 – Inclusion/exclusion example #2.
In this previous example there are two parameter types in included in the exclusion elements that
have been defined in the Automated GOLE EVTS Service Definition as can be seen by their URI.
The sematics of these parameters and their associated values can be determined from the
Service Definition.

In Figure 146 the p2ps reservation request uses the “stpId” inclusion element to include in
resources from the four specified networks, and then uses the exclusion element to exclude any
SDP not equal to 10,000 mb/s from pathfinding.

 <p2p:p2ps>
 <capacity>10000</capacity>
 <directionality>Bidirectional</directionality>
 <symmetricPath>true</symmetricPath>
 <sourceSTP>urn:ogf:network:kddilabs.jp:2013:topology:bi-ps?vlan=1780-1782</sourceSTP>
 <destSTP>urn:ogf:network:uvalight.net:2013:topology:ps?vlan=1780-1782</destSTP>
 <inclusion type="http://schemas.ogf.org/nsi/2013/12/services/point2point#stpId">
 <eq xsi:type="types:StpIdType">urn:ogf:network:es.net:2013:</eq>
 <eq xsi:type="types:StpIdType">urn:ogf:network:icair.org:2013:topology</eq>
 <eq xsi:type="types:StpIdType">urn:ogf:network:manlan.internet2.edu:2013:</eq>
 <eq xsi:type="types:StpIdType">urn:ogf:network:netherlight.net:2013:production7</eq>
 </inclusion>
 <exclusion type="http://services.ogf.org/nsi/2013/12/definitions/EVTS.A-GOLE#sdpCapacity">
 <lt xsi:type="xsd:long">10000</lt>
 <gt xsi:type="xsd:long">10000</gt>
 </exclusion>
 </p2p:p2ps>

Figure 146 – Inclusion/exclusion example #3.
15.5.2 Simple Types
These simple type definitions are utilized by the service-specific schema complex type definitions.

15.5.2.1 StpIdType
This is the Service Termination Point (STP) identifier type used in a service request for identifying
endpoints in path selection.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 120

Figure 147 – StpIdType.

15.5.2.2 DirectionalityType
This type is used to indicate the directionality of the requested data service. Possible values are
Bidirectional for a bidirectional data service, and Unidirectional for a unidirectional data service.

Figure 148 – DirectionalityType.

15.6 Reservation request
Here is an example reserve request message for a bidirectional point-to-point service. There are
a few things to note:

The nsiHeader element contains:

• The requester’s correlationId that will be used for all messaging relating to this reserve
request.

• The requesting NSA identifier in the requesterNSA element and response protocol
endpoint within the replyTo element.

• The target provider NSA identifier in the providerNSA element.

The reserve operation element contains:

• A requester provided globalReservationId element that must be unique in the context of
the NSI control plane.

• A requester provided description element containing a simple text description of the
reservation.

• A criteria element containing the details of the requested reservation:
o A requester provided (but optional) non-zero reservation version number. If

omitted the provider will assign a version number to the initial version of the
reservation.

o A schedule element specifying the start and end time of the reservation.
o The serviceType element is added to identify the desired service requested and

the specific service elements carried in criteria. In this example, the “EVTS.A-
GOLE” URL identifies a service definition for the Automated GOLE’s point-to-
point Ethernet VLAN Transfer Service. This EVTS service definition requires
inclusion of the p2ps element.

o The p2p namespace is defined in the reserve element using a unique URL
defining the service XSD document. All types needed for this point-to-point
service are in this XSD document or documents referenced from this schema.

o The p2ps element is included in the criteria element after the serviceType
element and includes all service-specific parameters.

o In this example underspecified STP were provided with label ranges leaving it up
to the provider to resolve specific STP instances from the label range.

o In addition, an ero member is provided specifying an STP that MUST be included
in the final service path.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:headers="http://schemas.ogf.org/nsi/2013/12/framework/headers"
 xmlns:p2p="http://schemas.ogf.org/nsi/2013/12/services/point2point"

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 121

 xmlns:nsi="http://schemas.ogf.org/nsi/2013/12/connection/types">
 <soapenv:Header>
 <headers:nsiHeader>
 <protocolVersion>application/vnd.ogf.nsi.cs.v2.provider+soap</protocolVersion>
 <correlationId>urn:uuid:390be79e-5b49-4688-9280-e49b139595e2</correlationId>
 <requesterNSA>urn:ogf:network:es.net:2013:nsa:nsi-requester</requesterNSA>
 <providerNSA>urn:ogf:network:es.net:2013:nsa:nsi-aggr-west</providerNSA>
 <replyTo>https://nsi-aggr-west.es.net/requester/reply</replyTo>
 </headers:nsiHeader>
 </soapenv:Header>
 <soapenv:Body>
 <nsi:reserve>
 <globalReservationId>urn:uuid:83fe4f36-5b38-41b6-bc46-a362a06a54ee</globalReservationId>
 <description>My example reservation using NSI CS 2.1.</description>
 <criteria version="1">
 <schedule>
 <startTime>2015-08-15T09:30:10Z</startTime>
 <endTime>2015-08-15T10:30:10Z</endTime>
 </schedule>
 <serviceType>http://services.ogf.org/nsi/2013/12/descriptions/EVTS.A-GOLE</serviceType>
 <p2p:p2ps>
 <capacity>10000</capacity>
 <directionality>Bidirectional</directionality>
 <symmetricPath>true</symmetricPath>
 <sourceSTP>urn:ogf:network:kddilabs.jp:2013:topology:bi-ps?vlan=1780-1782</sourceSTP>
 <destSTP>urn:ogf:network:uvalight.net:2013:topology:ps?vlan=1780-1782</destSTP>
 <ero>
 <orderedSTP order="0">
 <stp>urn:ogf:network:icair.org:2013:topology:netherlight?vlan=1782</stp>
 </orderedSTP>
 </ero>
 <parameter type="mtu">9500</parameter>
 </p2p:p2ps>
 </criteria>
 </nsi:reserve>
 </soapenv:Body>
</soapenv:Envelope>

Figure 149 – Example reserve request message.
Once the provider NSA has validated the reserve request it will return a reserveResponse SOAP
message in the synchronous HTTP 200 OK response. The reserveResponse message will
contain the provider allocated connectionId for this reservation request. The connectionId can be
used to reference the reservation in all other NSI messaging.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:headers="http://schemas.ogf.org/nsi/2013/12/framework/headers"
 xmlns:p2p="http://schemas.ogf.org/nsi/2013/12/services/point2point"
 xmlns:nsi="http://schemas.ogf.org/nsi/2013/12/connection/types">
 <soapenv:Header>
 <headers:nsiHeader>
 <protocolVersion>application/vnd.ogf.nsi.cs.v2.provider+soap</protocolVersion>
 <correlationId>urn:uuid:390be79e-5b49-4688-9280-e49b139595e2</correlationId>
 <requesterNSA>urn:ogf:network:es.net:2013:nsa:nsi-requester</requesterNSA>
 <providerNSA>urn:ogf:network:es.net:2013:nsa:nsi-aggr-west</providerNSA>
 </headers:nsiHeader>
 </soapenv:Header>
 <soapenv:Body>
 <nsi:reserveResponse>
 <connectionId>urn:uuid:4b4a71d0-3c71-47cf-a646-beacb14a4c72</connectionId>
 </nsi:reserveResponse>
 </soapenv:Body>
</soapenv:Envelope>

Figure 150 – Example reserveResponse message.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 122

If the reservation is successful, the provider will send a reserveConfirmed request message to the
requester’s protocol endpoint specified in the replyTo element of the reserve request message.
The following is an example of a successful reservation for a bidirectional service. There are a
few things to note:

The nsiHeader element contains:

• The requester’s correlationId corresponding to the original reserve request.
• The requesterNSA element contains the NSA identifier of the original requesting NSA.
• The provider NSA identifier in the providerNSA element representing the source for the

reserveConfirmed message.
• No replyTo element is required since an ACK or ServiceException message will be

returned in the synchronous HTTP response depending if the reserveConfirmed was
successfully accepted or rejected by the requester NSA.

The reserveConfirmed operation element contains:

• A provider assigned connectionId unique in the context of the provider NSA. This will be
the same connectionId as returned in the reserveResponse message.

• The remaining parameters will reflect what was commited as specified in the reserve
request.

• Within the criteria element of the reserveConfirmed there are three key differences from
the original request:

o The provider will have assigned a version number to the reservation if one was
not specifieid in the initial reserve message.

o The sourceSTP and destSTP elements will contain fully qualified STP values if
underspecified values had be provided in the initial reserve message.

o An ero element must contain at least as much detail as the original ero element
specified in the reserve request. It is up to provider NSA involved in the
reservation as to whether more detailed ero information is provided. Internal
STP may also be present in an ero element if the provider NSA is willing to share
the additional details.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:headers="http://schemas.ogf.org/nsi/2013/12/framework/headers"
 xmlns:p2p="http://schemas.ogf.org/nsi/2013/12/services/point2point"
 xmlns:nsi="http://schemas.ogf.org/nsi/2013/12/connection/types">
 <soapenv:Header>
 <headers:nsiHeader>
 <protocolVersion>application/vnd.ogf.nsi.cs.v2.provider+soap</protocolVersion>
 <correlationId>urn:uuid:390be79e-5b49-4688-9280-e49b139595e2</correlationId>
 <requesterNSA>urn:ogf:network:es.net:2013:nsa:nsi-requester</requesterNSA>
 <providerNSA>urn:ogf:network:es.net:2013:nsa:nsi-aggr-west</providerNSA>
 </headers:nsiHeader>
 </soapenv:Header>
 <soapenv:Body>
 <nsi:reserveConfirmed>
 <connectionId>urn:uuid:4b4a71d0-3c71-47cf-a646-beacb14a4c72</connectionId>
 <globalReservationId>urn:uuid:83fe4f36-5b38-41b6-bc46-a362a06a54ee</globalReservationId>
 <description>My example reservation using NSI CS 2.1.</description>
 <criteria version="1">
 <schedule>
 <startTime>2015-08-15T09:30:10Z</startTime>
 <endTime>2015-08-15T10:30:10Z</endTime>
 </schedule>
 <serviceType>http://services.ogf.org/nsi/2013/12/descriptions/EVTS.A-GOLE</serviceType>
 <p2p:p2ps>
 <capacity>10000</capacity>
 <directionality>Bidirectional</directionality>
 <symmetricPath>true</symmetricPath>
 <sourceSTP>urn:ogf:network:kddilabs.jp:2013:topology:bi-ps?vlan=1782</sourceSTP>
 <destSTP>urn:ogf:network:uvalight.net:2013:topology:ps?vlan=1780</destSTP>

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 123

 <ero>
 <orderedSTP order="0">
 <stp>urn:ogf:network:kddilabs.jp:2013:topology:bi-kddilabs-jgn-x?vlan=1782</stp>
 </orderedSTP>
 <orderedSTP order="1">
 <stp>urn:ogf:network:jgn-x.jp:2013:topology:bi-jgn-x-kddilabs?vlan=1782</stp>
 </orderedSTP>
 <orderedSTP order="2">
 <stp>urn:ogf:network:jgn-x.jp:2013:topology:bi-jgn-x-startap?vlan=1782</stp>
 </orderedSTP>
 <orderedSTP order="3">
 <stp>urn:ogf:network:icair.org:2013:topology:jgn-x?vlan=1782</stp>
 </orderedSTP>
 <orderedSTP order="4">
 <stp>urn:ogf:network:icair.org:2013:topology:netherlight?vlan=1782</stp>
 </orderedSTP>
 <orderedSTP order="5">
 <stp>urn:ogf:network:netherlight.net:2013:production7:starlight-1?vlan=1782</stp>
 </orderedSTP>
 <orderedSTP order="6">
 <stp>urn:ogf:network:netherlight.net:2013:production7:internal1</stp>
 </orderedSTP>
 <orderedSTP order="7">
 <stp>urn:ogf:network:netherlight.net:2013:production7:internal2</stp>
 </orderedSTP>
 <orderedSTP order="8">
 <stp>urn:ogf:network:netherlight.net:2013:production7:uva-3?vlan=1780</stp>
 </orderedSTP>
 <orderedSTP order="9">
 <stp>urn:ogf:network:uvalight.net:2013:topology:netherlight?vlan=1780</stp>
 </orderedSTP>
 </ero>
 <parameter type="mtu">9500</parameter>
 </p2p:p2ps>
 </criteria>
 </nsi:reserveConfirmed>
 </soapenv:Body>
</soapenv:Envelope>

Figure 151 – Example reserveConfirmed message.

The format of a reserve message is common to both the tree and chain control plane topologies
within NSI. In a chain control plane topology, the request is forwarded sequentially to each NSA
along the path. In the case of chain, the control plane path is congruent with the transport plane
path being chosen. In a tree workflow however, an AG may compute the end-to-end path and
divide the initial request into distinct segment requests for each domain. In performing the end-
to-end path computation, the AG may unknowingly select a VLAN already in use between domain
borders (i.e. SDPs) for the segment request. This request ultimately will result in a reserveFailed
message indicating that the VLAN has already been taken.

To provide the AG with educated feedback so that subsequent requests will have a higher
chance of success, the reserveFailed message can include an optional feedback element within
the ServiceException indicating what resources are available.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 124

Figure 152: Example VLAN selection collision in Tree Connection workflow.

Below is an example reserveFailed request message for a bidirectional point-to-point service. In
this scenario the reservation failure was generated due to insufficient capacity within the network.
A feedback element is included in the falied reservation variable to identify the capacity that is
available for the reservation (2500 mb/s). There are a few things to note:

The reserveFailed message element contains:

• The connectionId associated with the failure.
• The connectionStates element holding the current states for the impacted connection.
• The serviceException element indicating the cause of the reservation failure:

o In this case the reservation failure was generated due to errorId 00705 -
CAPACITY_UNAVAILABLE.

o The error occurred in the network managed by nsaId
“urn:ogf:network:icair.org:2013:nsa” on STP
“urn:ogf:network:icair.org:2013:topology:netherlight?vlan=1782”.

o The feedback element associated with the failure is contained in the variable
element representing capacity. In this case, a requested capacity of 10000 mb/s
was not available, but feedback indicates 2500 mb/s is available.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:headers="http://schemas.ogf.org/nsi/2013/12/framework/headers"
 xmlns:p2p="http://schemas.ogf.org/nsi/2013/12/services/point2point"
 xmlns:nsi="http://schemas.ogf.org/nsi/2013/12/connection/types"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Header>
 <headers:nsiHeader>
 <protocolVersion>application/vnd.ogf.nsi.cs.v2.provider+soap</protocolVersion>
 <correlationId>urn:uuid:390be79e-5b49-4688-9280-e49b139595e2</correlationId>
 <requesterNSA>urn:ogf:network:es.net:2013:nsa:nsi-requester</requesterNSA>
 <providerNSA>urn:ogf:network:es.net:2013:nsa:nsi-aggr-west</providerNSA>
 </headers:nsiHeader>
 </soapenv:Header>
 <soapenv:Body>
 <nsi:reserveFailed>
 <connectionId>urn:uuid:4b4a71d0-3c71-47cf-a646-beacb14a4c72</connectionId>
 <connectionStates>
 <reservationState>ReserveFailed</reservationState>
 <provisionState>Released</provisionState>
 <lifecycleState>Created</lifecycleState>
 <dataPlaneStatus>

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 125

 <active>false</active>
 <version>0</version>
 <versionConsistent>false</versionConsistent>
 </dataPlaneStatus>
 </connectionStates>
 <serviceException>
 <nsaId>urn:ogf:network:icair.org:2013:nsa</nsaId>
 <connectionId>urn:uuid:92d54ff8-dec2-4be8-ae9e-3c0244f2c82b</connectionId>
 <serviceType>http://services.ogf.org/nsi/2013/12/descriptions/EVTS.A-GOLE</serviceType>
 <errorId>00705</errorId>
 <text>CAPACITY_UNAVAILABLE: Insufficient capacity available for reservation (10000 mb/s).</text>
 <variables>
 <variable namespace="http://schemas.ogf.org/nsi/2013/12/services/point2point" type="capacity">
 <value>10000</value>
 <feedback xsi:type="xsd:long">2500</feedback>
 </variable>
 <variable namespace="http://schemas.ogf.org/nsi/2013/12/services/point2point" type="destSTP">
 <value>urn:ogf:network:icair.org:2013:topology:netherlight?vlan=1782</value>
 </variable>
 </variables>
 </serviceException>
 </nsi:reserveFailed>
 </soapenv:Body>
</soapenv:Envelope>

Figure 153 - Example reserveFailed message with feedback.

Below is another example of a reserveFailed message. This message indicates that the selected
VLAN is aready in use, and proposes range of available VLANs.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:headers="http://schemas.ogf.org/nsi/2013/12/framework/headers"
 xmlns:p2p="http://schemas.ogf.org/nsi/2013/12/services/point2point"
 xmlns:nsi="http://schemas.ogf.org/nsi/2013/12/connection/types"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soapenv:Header>
 <headers:nsiHeader>
 <protocolVersion>application/vnd.ogf.nsi.cs.v2.provider+soap</protocolVersion>
 <correlationId>urn:uuid:390be79e-5b49-4688-9280-e49b139595e2</correlationId>
 <requesterNSA>urn:ogf:network:es.net:2013:nsa:nsi-requester</requesterNSA>
 <providerNSA>urn:ogf:network:es.net:2013:nsa:nsi-aggr-west</providerNSA>
 </headers:nsiHeader>
 </soapenv:Header>
 <soapenv:Body>
 <nsi:reserveFailed>
 <connectionId>urn:uuid:4b4a71d0-3c71-47cf-a646-beacb14a4c72</connectionId>
 <connectionStates>
 <reservationState>ReserveFailed</reservationState>
 <provisionState>Released</provisionState>
 <lifecycleState>Created</lifecycleState>
 <dataPlaneStatus>
 <active>false</active>
 <version>0</version>
 <versionConsistent>false</versionConsistent>
 </dataPlaneStatus>
 </connectionStates>
 <serviceException>
 <nsaId>urn:ogf:network:icair.org:2013:nsa</nsaId>
 <connectionId>urn:uuid:92d54ff8-dec2-4be8-ae9e-3c0244f2c82b</connectionId>
 <serviceType>http://services.ogf.org/nsi/2013/12/descriptions/EVTS.A-GOLE</serviceType>
 <errorId>00704</errorId>
 <text>STP_UNAVALABLE: Specified STP already in use
(urn:ogf:network:icair.org:2013:topology:netherlight?vlan=1782).</text>
 <variables>

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 126

 <variable namespace="http://schemas.ogf.org/nsi/2013/12/services/point2point" type="destSTP">
 <value>urn:ogf:network:icair.org:2013:topology:netherlight?vlan=1782</value>
 <feedback xsi:type="xsd:anyURI">urn:ogf:network:icair.org:2013:topology:netherlight?vlan=1785-
1790</feedback>
 </variable>
 </variables>
 </serviceException>
 </nsi:reserveFailed>
 </soapenv:Body>
</soapenv:Envelope>

Figure 154 - Example reserveFailed message with feedback.

15.7 Reservation modification

For a base point-to-point Service Definition we support the modification of schedule (start or end
time), as well as the capacity of the service. The schedule element is within the core criteria
element, and remains as is, supporting a change in the startTime and/or endTime accordingly.
For the external service schema, only the elements to be modified are included in the request.
These will be defined as separate elements within their schema definition for inclusion as
modifiable items.

If a modification request contains modifiable elements that are the same as the currently reserved
values, the modification request should proceed through the reserve state machine lifecycle as if
changed values were successfully applied.

Below is an example reserve modification request message where we are requesting a
modification to the capacity parameter of the reservation. There are a few things to note:

For a modification the reserve operation element contains:

• The connectionId for the reservation to modify.
• The criteria element with the version attribute incrememented higher than the current

active reservation version.
• The point-to-point schema element that is being modified. In this case the capacity

element is specified.
• Notice the serviceType element is not required since the reservation is already bound by

the original serviceType specified in the reserve request.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:headers="http://schemas.ogf.org/nsi/2013/12/framework/headers"
 xmlns:p2p="http://schemas.ogf.org/nsi/2013/12/services/point2point"
 xmlns:nsi="http://schemas.ogf.org/nsi/2013/12/connection/types">
 <soapenv:Header>
 <headers:nsiHeader>
 <protocolVersion>application/vnd.ogf.nsi.cs.v2.provider+soap</protocolVersion>
 <correlationId>urn:uuid:6bdbc45f-3810-4bd3-a195-59a197db0217</correlationId>
 <requesterNSA>urn:ogf:network:es.net:2013:nsa:nsi-requester</requesterNSA>
 <providerNSA>urn:ogf:network:es.net:2013:nsa:nsi-aggr-west</providerNSA>
 <replyTo>https://nsi-aggr-west.es.net/requester/reply</replyTo>
 </headers:nsiHeader>
 </soapenv:Header>
 <soapenv:Body>
 <nsi:reserve>
 <connectionId>urn:uuid:4b4a71d0-3c71-47cf-a646-beacb14a4c72</connectionId>
 <criteria version="2">
 <p2p:capacity>500</p2p:capacity>
 </criteria>
 </nsi:reserve>
 </soapenv:Body>
</soapenv:Envelope>

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 127

Figure 155 - Example capacity modification message.

A successful reserveConfirmed for this modification would return all the original reservation
information with a changed capacity element of “500” and a new version attribute of “2”.

This next example shows a modification to the existing schedule requesting a change of
startTime to “now”.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:headers="http://schemas.ogf.org/nsi/2013/12/framework/headers"
 xmlns:p2p="http://schemas.ogf.org/nsi/2013/12/services/point2point"
 xmlns:nsi="http://schemas.ogf.org/nsi/2013/12/connection/types"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Header>
 <headers:nsiHeader>
 <protocolVersion>application/vnd.ogf.nsi.cs.v2.provider+soap</protocolVersion>
 <correlationId>urn:uuid:390be79e-5b49-4688-9280-e49b139595e2</correlationId>
 <requesterNSA>urn:ogf:network:es.net:2013:nsa:nsi-requester</requesterNSA>
 <providerNSA>urn:ogf:network:es.net:2013:nsa:nsi-aggr-west</providerNSA>
 <replyTo>https://nsi-aggr-west.es.net/requester/reply</replyTo>
 </headers:nsiHeader>
 </soapenv:Header>
 <soapenv:Body>
 <nsi:reserve>
 <connectionId>urn:uuid:4b4a71d0-3c71-47cf-a646-beacb14a4c72</connectionId>
 <criteria version="3">
 <schedule>
 <startTime xsi:nil="true" />
 </schedule>
 </criteria>
 </nsi:reserve>
 </soapenv:Body>
</soapenv:Envelope>

Figure 156 - Example startTime modification message.

16. Appendix F: Using the Explicit Routing Object in practice
[GFD.212] provides a high level definition of the ERO, including the XSD schema used to
communicate the ERO within the point-to-point service element, however, it does not discuss
some of the more practical aspects of specifying the ERO and interpretation rules for pathfinders.
The following sections will discuss these aspects in more detail.

16.1 The P2PS element
When specifying an ERO within the p2ps element, the source and destination STP identifiers are
contained within the sourceSTP and destSTP elements respectively. They are not repeated in
the ero element even though they are considered bookends to the explicit path. For example, a
p2ps element specifying a connection from:

source STP urn:ogf:network:kddilabs.jp:2013:topology:bi-ps?vlan=1782
to destination STP urn:ogf:network:uvalight.net:2013:topology:ps?vlan=1782
via intermediate STP urn:ogf:network:icair.org:2013:topology:netherlight?vlan=1782

Would appear as follows in the NSI reservation request:

<p2ps>
 <capacity>100</capacity>
 <directionality>Bidirectional</directionality>
 <symmetricPath>true</symmetricPath>
 <sourceSTP>urn:ogf:network:kddilabs.jp:2013:topology:bi-ps?vlan=1782</sourceSTP>

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 128

 <destSTP>urn:ogf:network:uvalight.net:2013:topology:ps?vlan=1782</destSTP>
 <ero>
 <orderedSTP order="0">
 <stp>urn:ogf:network:icair.org:2013:topology:netherlight?vlan=1782</stp>
 </orderedSTP>
 </ero>
</p2ps>

This would be classified as a loose ERO (not strict) since it does not specify a full hop-by-hop
path from source to destination. Figure 157 below visualizes the result of this request as a
possible path on the Automated GOLE topology.

Figure 157 – Loose ERO request with single STP.

A pathfinder could theoretically compute the following detailed path segments based on the
reservation request and current Automated GOLE topology:

<p2ps>
 <capacity>100</capacity>
 <directionality>Bidirectional</directionality>
 <symmetricPath>true</symmetricPath>
 <sourceSTP>urn:ogf:network:kddilabs.jp:2013:topology:bi-ps?vlan=1782</sourceSTP>
 <destSTP>urn:ogf:network:kddilabs.jp:2013:topology:bi-kddilabs-jgn-x?vlan=1782</destSTP>
</p2ps>

<p2ps>
 <capacity>100</capacity>
 <directionality>Bidirectional</directionality>
 <symmetricPath>true</symmetricPath>
 <sourceSTP>urn:ogf:network:jgn-x.jp:2013:topology:bi-jgn-x-kddilabs?vlan=1782</sourceSTP>
 <destSTP>urn:ogf:network:jgn-x.jp:2013:topology:bi-jgn-x-startap?vlan=1782</destSTP>
</p2ps>

<p2ps>
 <capacity>100</capacity>
 <directionality>Bidirectional</directionality>
 <symmetricPath>true</symmetricPath>
 <sourceSTP>urn:ogf:network:icair.org:2013:topology:jgn-x?vlan=1782</sourceSTP>
 <destSTP>urn:ogf:network:icair.org:2013:topology:netherlight?vlan=1782</destSTP>
</p2ps>

<p2ps>
 <capacity>100</capacity>
 <directionality>Bidirectional</directionality>
 <symmetricPath>true</symmetricPath>
 <sourceSTP>urn:ogf:network:netherlight.net:2013:production7:starlight-1?vlan=1782</sourceSTP>
 <destSTP>urn:ogf:network:netherlight.net:2013:production7:uva-3?vlan=1782</destSTP>
</p2ps>

<p2ps>
 <capacity>100</capacity>
 <directionality>Bidirectional</directionality>
 <symmetricPath>true</symmetricPath>

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 129

 <sourceSTP>urn:ogf:network:uvalight.net:2013:topology:netherlight?vlan=1782</sourceSTP>
 <destSTP>urn:ogf:network:uvalight.net:2013:topology:ps?vlan=1782</destSTP>
</p2ps>

Notice that there is no ero element in the resulting connection segments. This is due to the fact
that an edge STP was specified in the original ero that was resolved to a destSTP parameter in a
connection segment, and therefore, need not be repeated.

A strict ERO specifies one STP from each SDP from source to destination without any gaps. It is
not required to list both of the STPs of single SDP since a single STP uniquely identifies the pair
via the SDP pairing. The following figure shows an example set of STPs on the previous path
that would be required to consider it a strict ERO.

Figure 158 – Strict ERO request.

The following p2ps element contains an ERO representing the path described in Figure 158:

<p2ps>
 <capacity>100</capacity>
 <directionality>Bidirectional</directionality>
 <symmetricPath>true</symmetricPath>
 <sourceSTP>urn:ogf:network:kddilabs.jp:2013:topology:bi-ps?vlan=1782</sourceSTP>
 <destSTP>urn:ogf:network:uvalight.net:2013:topology:ps?vlan=1782</destSTP>
 <ero>
 <orderedSTP order="0">
 <stp>urn:ogf:network:kddilabs.jp:2013:topology:bi-kddilabs-jgn-x?vlan=1782</stp>
 </orderedSTP>
 <orderedSTP order="1">
 <stp>urn:ogf:network:jgn-x.jp:2013:topology:bi-jgn-x-startap?vlan=1782</stp>
 </orderedSTP>
 <orderedSTP order="2">
 <stp>urn:ogf:network:icair.org:2013:topology:netherlight?vlan=1782</stp>
 </orderedSTP>
 <orderedSTP order="3">
 <stp>urn:ogf:network:netherlight.net:2013:production7:uva-3?vlan=1782</stp>
 </orderedSTP>
 </ero>
</p2ps>

Programmatically there is no way for a requester agent to specify whether an ERO is strict or
loose, so it is up to implementation rules within a pathfinder to make this determination. We
define additional rules in section 16.5 which, with the above definitions, help a pathfinder enforce
a strict ERO based on the STP specified in a reservation’s ero element.

16.2 Ordering of ERO elements
As described in [GFD.212] the ero element contains an ordered list of STP identifiers with an
order attribute associated with each orderedSTP element. This order attribute MUST be

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 130

populated with sequentially increasing integers starting from 0. The following example illustrates
this:

<ero>
 <orderedSTP order="0">
 <stp>urn:ogf:network:kddilabs.jp:2013:topology:bi-kddilabs-jgn-x?vlan=1782</stp>
 </orderedSTP>
 <orderedSTP order="1">
 <stp>urn:ogf:network:jgn-x.jp:2013:topology:bi-jgn-x-startap?vlan=1782</stp>
 </orderedSTP>
 <orderedSTP order="2">
 <stp>urn:ogf:network:icair.org:2013:topology:netherlight?vlan=1782</stp>
 </orderedSTP>
 <orderedSTP order="3">
 <stp>urn:ogf:network:netherlight.net:2013:production7:uva-3?vlan=1782</stp>
 </orderedSTP>
</ero>

16.3 Support for internal STP
NSI pathfinders MUST be able to accept EROs that include one or more internal STP. An internal
STP is defined as an STP that is internal to a Network, i.e it is not an STP involved in inter-
network connections and is therefore not part of an SDP. Internal STP are typically not described
in NSI topology so cannot be resolved by the pathfinder, and therefore, cannot be utilized to
make inter-network routing decisions. An internal STP specified in the initial reservation request
MUST be passed on to its associated uPA. The uPA is then able to utilize any internal STPs in
intra-network routing decisions.

Internal STP specified in an ero element MUST follow the standard STP format. This will allow a
pathfinder to determine which Network the internal STP belongs to.

In the following example we see a reserve request for a Connection on single Network with the
ero element containing two internal STP identifiers. This can be sent as is to the uPA associated
with urn:ogf:network:kddilabs.jp:2013:topology for processing.

<p2ps>
 <capacity>100</capacity>
 <directionality>Bidirectional</directionality>
 <symmetricPath>true</symmetricPath>
 <sourceSTP>urn:ogf:network:kddilabs.jp:2013:topology:bi-ps?vlan=1782</sourceSTP>
 <destSTP>urn:ogf:network:kddilabs.jp:2013:topology:bi-kddilabs-jgn-x?vlan=1782</destSTP>
 <ero>
 <orderedSTP order="0">
 <stp>urn:ogf:network:kddilabs.jp:2013:topology:internalA</stp>
 </orderedSTP>
 <orderedSTP order="1">
 <stp>urn:ogf:network:kddilabs.jp:2013:topology:internalB</stp>
 </orderedSTP>
 </ero>
</p2ps>

In this example, internal STPs are bound by both a source and destination STP within the same
Network. It is recommended when specifying internal STPs you bound them by two valid edge
STP for that network. This will guide the pathfinder to make proper routing decisions without
having context of the internal STP, otherwise, an edge STP might be chosen that is suboptimal
for the specified internal STP.

In the following example, the same two internal STPs are included in a reserve request and are
bounded by jsut one advertised edge STP. This is acceptable if the pathfinder is free to choose
any egress STP independent of the internal STP specified in the request.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 131

<p2ps>
 <capacity>100</capacity>
 <directionality>Bidirectional</directionality>
 <symmetricPath>true</symmetricPath>
 <sourceSTP>urn:ogf:network:kddilabs.jp:2013:topology:bi-ps?vlan=1782</sourceSTP>
 <destSTP>urn:ogf:network:uvalight.net:2013:topology:ps?vlan=1782</destSTP>
 <ero>
 <orderedSTP order="0">
 <stp>urn:ogf:network:kddilabs.jp:2013:topology:internalA</stp>
 </orderedSTP>
 <orderedSTP order="1">
 <stp>urn:ogf:network:kddilabs.jp:2013:topology:internalB</stp>
 </orderedSTP>
 </ero>
</p2ps>

This example shows a completely unbound internal STP. This has the effect of forcing the
pathfinder to choose a path that includes the Network
urn:ogf:network:netherlight.net:2013:production7, but with no context, the pathfinder may
select two edge STP that are not optimal for the internal STP. This option is supported, but it is
recommended that an intermediate Network have bounded edge STP to give an optimal path for
the specified internal STP.

<p2ps>
 <capacity>100</capacity>
 <directionality>Bidirectional</directionality>
 <symmetricPath>true</symmetricPath>
 <sourceSTP>urn:ogf:network:kddilabs.jp:2013:topology:bi-ps?vlan=1782</sourceSTP>
 <destSTP>urn:ogf:network:uvalight.net:2013:topology:ps?vlan=1782</destSTP>
 <ero>
 <orderedSTP order="0">
 <stp>urn:ogf:network:netherlight.net:2013:production7:internalA</stp>
 </orderedSTP>
 </ero>
<p2ps>

16.4 Underspecified STP
Underspecified STP MAY also be used in the ero element to guide path computation when the
exact label utilized is not important. The example below contains an underspecified STP using a
label in the range 1780-1790 for source, destination and ero STPs.

<p2ps>
 <capacity>100</capacity>
 <directionality>Bidirectional</directionality>
 <symmetricPath>true</symmetricPath>
 <sourceSTP>urn:ogf:network:kddilabs.jp:2013:topology:bi-ps?vlan=1780-1790</sourceSTP>
 <destSTP>urn:ogf:network:uvalight.net:2013:topology:ps?vlan=1780-1790</destSTP>
 <ero>
 <orderedSTP order="0">
 <stp>urn:ogf:network:icair.org:2013:topology:netherlight?vlan=1780-1790</stp>
 </orderedSTP>
 </ero>
</p2ps>

If source routing and TREE signaling were used to compute a path in this previous example,
intermediate STP MUST be resolved to a specific label instance (i.e. SDP) by the pathfinder,
while the original source and destination STP can remain underspecified. Below is an example of
resolved segments.

<p2ps>
 <capacity>100</capacity>
 <directionality>Bidirectional</directionality>

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 132

 <symmetricPath>true</symmetricPath>
 <sourceSTP>urn:ogf:network:kddilabs.jp:2013:topology:bi-ps?vlan=1780-1790</sourceSTP>
 <destSTP>urn:ogf:network:kddilabs.jp:2013:topology:bi-kddilabs-jgn-x?vlan=1787</destSTP>
</p2ps>

<p2ps>
 <capacity>100</capacity>
 <directionality>Bidirectional</directionality>
 <symmetricPath>true</symmetricPath>
 <sourceSTP>urn:ogf:network:jgn-x.jp:2013:topology:bi-jgn-x-kddilabs?vlan=1787</sourceSTP>
 <destSTP>urn:ogf:network:jgn-x.jp:2013:topology:bi-jgn-x-startap?vlan=1787</destSTP>
</p2ps>

<p2ps>
 <capacity>100</capacity>
 <directionality>Bidirectional</directionality>
 <symmetricPath>true</symmetricPath>
 <sourceSTP>urn:ogf:network:icair.org:2013:topology:jgn-x?vlan=1787</sourceSTP>
 <destSTP>urn:ogf:network:icair.org:2013:topology:netherlight?vlan=1787</destSTP>
</p2ps>

<p2ps>
 <capacity>100</capacity>
 <directionality>Bidirectional</directionality>
 <symmetricPath>true</symmetricPath>
 <sourceSTP>urn:ogf:network:netherlight.net:2013:production7:starlight-1?vlan=1787</sourceSTP>
 <destSTP>urn:ogf:network:netherlight.net:2013:production7:uva-3?vlan=1784</destSTP>
</p2ps>

<p2ps>
 <capacity>100</capacity>
 <directionality>Bidirectional</directionality>
 <symmetricPath>true</symmetricPath>
 <sourceSTP>urn:ogf:network:uvalight.net:2013:topology:netherlight?vlan=1784</sourceSTP>
 <destSTP>urn:ogf:network:uvalight.net:2013:topology:ps?vlan=1780-1790</destSTP>
</p2ps>

Notice that in the previous example, the pathfinder performed label swapping in the
urn:ogf:network:netherlight.net:2013:production7 Network, resulting in an ingress STP with a
different label than the egress STP. This can be done only if both STPs are members of the
same Service Domain, which is the case in this Network.

In this example, an intermediate STP is specified in the ero element, however, it only contains the
Network portion of the STP identifier. This is acceptable in an ero and MUST be interpreted as a
request to include the specified Network in the path. The pathfinder is free to choose any edge
STP on the specified Network that can help satisfy the request.

<p2ps>
 <capacity>100</capacity>
 <directionality>Bidirectional</directionality>
 <symmetricPath>true</symmetricPath>
 <sourceSTP>urn:ogf:network:kddilabs.jp:2013:topology:bi-ps?vlan=1782</sourceSTP>
 <destSTP>urn:ogf:network:uvalight.net:2013:topology:ps?vlan=1782</destSTP>
 <ero>
 <orderedSTP order="0">
 <stp>urn:ogf:network:icair.org:2013:topology</stp>
 </orderedSTP>
 </ero>
</p2ps>

16.5 Avoiding unnecessary loops
Due to the existence of Networks that do not support label swapping, it is possible that a request
for Connection between two edge STP with differing labels on the same Network may result in

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 133

pathfinders trying to route the connection out of the Network to swap labels, and then return to
the initial Network to complete the connection. Such requested STPs are not within the same
Service Domain (SD), and therefore, cannot be directly connected by the network. Figure 159
shows this loop case for a request on the existing Automated GOLE topology. Based on the NML
topology description for the iCAIR domain (label swapping not supported), a pathfinder
determines that the source and destination STP of the reserve request are not within the same
Service Domain, but can be connected by routing the path through the Netherlight domain.
Netherlight would then perform label swapping on the Connection; thereby interconnecting the
two iCAIR Service Domains with the differing labels. Pathfinders SHOULD avoid these
unnecessary loops, excluding any external Connections as options when the two STP cannot be
directly connected within the same network.

Figure 159 – Unnecessary Connection loops.

16.6 ERO in reserveConfirmed
A list of fully qualified STP(s) SHOULD be returned in the in the reserveConfirmed message for
all edge STP involved in a reservation. While this is optional, it is recommended to support
monitoring.

Internal STP(s) can be passed back in a reserveConfirmed message’s ero element in addition to
the usual edge STPs.

It is acceptable for the reserveConfirmed message’s ero element to be populated with a partial list
of STP(s) in the; the provider can choose to arbitrarily hide any STPs as desired.

From the example given in Section 16.1, the following reserveConfirmed message could be
generated in response to the original reservation request.

<reserveConfirmed>
 <connectionId>urn:uuid:92d54ff8-dec2-4be8-ae9e-3c0244f2c82b</connectionId>
 <globalReservationId>urn:uuid:79057819-b810-4dd1-a764-c1665d01f474</globalReservationId>
 <description></description>
 <criteria version="1">
 <schedule>
 <startTime>2015-07-05T10:22:00.000-07:00</startTime>
 <endTime>2015-10-05T10:37:00.000-07:00</endTime>
 </schedule>
 <serviceType></serviceType>

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 134

 <p2ps>
 <capacity>100</capacity>
 <directionality>Bidirectional</directionality>
 <symmetricPath>true</symmetricPath>
 <sourceSTP>urn:ogf:network:kddilabs.jp:2013:topology:bi-ps?vlan=1782</sourceSTP>
 <destSTP>urn:ogf:network:uvalight.net:2013:topology:ps?vlan=1782</destSTP>
 <ero>
 <orderedSTP order="0">
 <stp>urn:ogf:network:kddilabs.jp:2013:topology:bi-kddilabs-jgn-x?vlan=1782</stp>
 </orderedSTP>
 <orderedSTP order="1">
 <stp>urn:ogf:network:jgn-x.jp:2013:topology:bi-jgn-x-kddilabs?vlan=1782</stp>
 </orderedSTP>
 <orderedSTP order="2">
 <stp>urn:ogf:network:jgn-x.jp:2013:topology:bi-jgn-x-startap?vlan=1782</stp>
 </orderedSTP>
 <orderedSTP order="3">
 <stp>urn:ogf:network:icair.org:2013:topology:jgn-x?vlan=1782</stp>
 </orderedSTP>
 <orderedSTP order="4">
 <stp>urn:ogf:network:icair.org:2013:topology:netherlight?vlan=1782</stp>
 </orderedSTP>
 <orderedSTP order="5">
 <stp>urn:ogf:network:netherlight.net:2013:production7:starlight-1?vlan=1782</stp>
 </orderedSTP>
 <orderedSTP order="6">
 <stp>urn:ogf:network:netherlight.net:2013:production7:internal1</stp>
 </orderedSTP>
 <orderedSTP order="7">
 <stp>urn:ogf:network:netherlight.net:2013:production7:internal2</stp>
 </orderedSTP>
 <orderedSTP order="8">
 <stp>urn:ogf:network:netherlight.net:2013:production7:uva-3?vlan=1782</stp>
 </orderedSTP>
 <orderedSTP order="9">
 <stp>urn:ogf:network:uvalight.net:2013:topology:netherlight?vlan=1782</stp>
 </orderedSTP>
 </ero>
 </p2ps>
 </criteria>
</reserveConfirmed>

In this example, the ero element is build containing all edge STP computed for the full path. In
addition, we can see urn:ogf:network:netherlight.net:2013:production7 has provided two
internal STP identifiers that were not in the original reserve request, but were provided for
additional detail.

16.7 Error Handling
If the pathfinder cannot satisfy an ERO then the reservation request fails and a serviceException
is returned identifying the components of the ERO that caused the failure.

Text errorId variables Notes
UNKNOWN_NETWORK 00405 stp If the networkId of an STP specified in the

ERO is not known.
NO_PATH_FOUND 00403 The general error for a case when a path

cannot be found. If a more specific error is
known then that error should be returned.

LABEL_SWAPPING_NOT_SUPPORTED 00703 stp If the ERO is requesting label swapping
between two STP within a network that does
not support it.

STP_UNAVALABLE 00704 stp If an STP specified in the ERO is not
available for the specified reservation

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 135

criteria.
DIRECTIONALITY_MISMATCH 00706 stp If a unidirectional STP was specified in a

bidirectional reservation request, or a
bidirectional STP was specified in a
unidirectional reservation request.

INVALID_ERO_FORMAT 00707 Format of ERO is invalid. An invalid ordering
or other structural issues could cause this.

INVALID_ERO_MEMBER 00708 stp Invalid ERO stp member detected. This
could be caused by a null member, an
intermediate STP not associated with an
SDP, etc.

UNKNOWN_LABEL_TYPE 00709 stp Specified STP in the ERO contains an
unknown label type.

INVALID_LABEL_FORMAT 00710 stp Specified STP in the ERO contains an
invalid label format.

Table 109 – serviceException error values.
As an example, a requester agent issues a reserve request to the ESnet Aggregator NSA
identified by nsaId urn:ogf:network:es.net:2013:nsa:nsi-aggr-west. The ero element contains
an intermediate edge stp element that is resolvable within NSI topology, but is not associated with
an inter-domain SDP. The Aggregator NSA should detect this error during the pathfinding phase
and generate a reserveFailed response with the following serviceException element:

<serviceException>
 <nsaId>urn:ogf:network:es.net:2013:nsa:nsi-aggr-west</nsaId>
 <connectionId>urn:uuid:92d54ff8-dec2-4be8-ae9e-3c0244f2c82b</connectionId>
 <serviceType>http://services.ogf.org/nsi/2013/12/descriptions/EVTS.A-GOLE</serviceType>
 <errorId>00708</errorId>
 <text>INVALID_ERO_MEMBER: Invalid ERO member detected
(urn:ogf:network:grnet.gr:2013:topology:CLIENT_port_16).</text>
 <variables>
 <variable namespace="http://schemas.ogf.org/nsi/2013/12/services/point2point#p2ps" type="stp">
 <value>urn:ogf:network:grnet.gr:2013:topology:CLIENT_port_16</value>
 </variable>
 </variables>
</serviceException>

17. Contributors
Chin Guok, ESnet
Jeroen van der Ham, University of Amsterdam
Radek Krzywania, PSNC
Tomohiro Kudoh, University of Tokyo
John MacAuley, ESnet
Takahiro Miyamoto, KDDI R&D Laboratories
Inder Monga, ESnet
Guy Roberts, DANTE
Jerry Sobieski, NORDUnet
Henrik Thostrup Jensen, NORDUnet

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 136

18. Glossary

Activate When provisioning of a Connection has been completed the Connection is considered to

be Active. A dataPlaneStateChange notification is sent to the RA with “active” set to
“true” informing them that the Connection is Active.

Aggregator (AG) The Aggregator is an NSA that has more than one child NSA, and has the responsibility
of aggregating the responses from each child NSA.

Connection A Connection is an NSI construct that identifies the physical instance of a circuit in the
data plane. A Connection has a set of properties (for instance, Connection identifier,
ingress and egress STPs, capacity, or start time). Connections can be either
unidirectional or bidirectional.

Connection Service (CS) The NSI Connection Service is a service that allows an RA to request and manage a
Connection from a PA.

Connection Service Protocol The Connection Service Protocol is the protocol that describes the messages and
associated attributes that are exchanged between RA and PA.

Control and Management
Planes

The Control Plane and/or Management Plane are not defined in this document, but
follow common usage.

Coordinator The Coordinator function has the role of providing intelligent message and process
coordination, this includes tracking and aggregating messages, replies and notifications
and the servicing of query requests.

Data Plane The Data Plane refers to the infrastructure that carries the physical instance of the
Connection, e.g. the Ethernet switches that deliver the circuit.

Discovery Service The NSI discovery service is a web service that allows an RA to discover information
about the services available in a PA and the versions of these services.[3]

Edge Point A network resource that resides at the boundary of an intra-network topology, this may
include for example a connector on a distribution frame, a port on an Ethernet switch, or
a connector at the end of a fibre.

Inter-Network Topology This is a topological description of a set of Networks and their transfer functions, and the
connectivity between Networks.

Lifecycle State Machine
(LSM)

The LSM allows messages relating to terminating a Connection to be sent and received.

Message Transport Layer
(MTL)

The MTL delivers an abstracted message delivery mechanism to the NSI layer.

Network A Network is an Inter-Network topology object that describes a set of STPs with a
Transfer Function between STPs.

Network Resource Manager
(NRM)

The Network Resource Manager owns a set of transport resources and has ultimate
responsibility for authorizing and managing the use of these resources. Each NRM is
always associated with a single NSA.

Network Services Network Services are the full set of services offered by an NSA. Each NSA will support
one or more Network Services.

Network Service Agent (NSA) The Network Service Agent is a concrete piece of software that sends and receives NSI
Messages. The NSA includes a set of capabilities that allow Network Services to be
delivered.

Network Service Interface
(NSI)

The NSI is the interface between RAs and PAs. The NSI defines a set of interactions or
transactions between these NSAs to realize a Network Service.

Network Services Framework
(NSF)

The Network Services framework describes an NSI message-based platform capable of
supporting a suite of Network Services such as the Connection Service and the
Topology Service.

NSI Message An NSI Message is a structured unit of data sent between an RA and a PA.

NSI Topology The NSI Topology defines a standard ontology and a schema to describe network
resources that are managed to create the NSI service. The NSI Topology as used by the
NSI CS (and in future other NSI services) is described in: GWD-R-P: Network Service
Interface Topology Representation[5].

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 137

ero An Explicit Routing Object (ero) is a parameter in a Connection request. It is an ordered
list of STP constraints to be used by the inter-Network pathfinder.

Provision Provisioning is the process of requesting the creation of the physical instance of a
Connection in the data plane.

Provision State Machine
(PSM)

The Provision State Machine is a simple state machine, which transits between the
Provisioned and the Released state.

Release Releasing is the process of de-provisioning resources on the data-plane. When a
Connection is Released on the data-plane, the Reservation is retained.

Requester/Provider Agent
(RA/PA)

An NSA acts in one of two possible roles relative to a particular instance of an NSI.
When an NSA requests a service, it is called a Requester Agent (RA). When an NSA
realizes a service, it is called a Provider Agent (PA). A particular NSA may act in
different roles at different interfaces.

Reservation State Machine
(RSM)

The state machine that defines the message sequence for creating Connection
reservations and managing these reservations.

Service Demarcation Point
(SDP)

Service Demarcation Points (SDPs) are NSI topology objects that identify a grouping of
two Edge Points at the boundary between two Networks.

Service Termination Point
(STP)

Service Termination Points (STPs) are NSI topology objects that identify the Edge
Points of a Network in the intra-network topology.

Service Plane

The Service Plane is a plane in which services are requested and managed; these
services include the Network Service. The Service Plane contains a set of Network
Service Agents communicating using Network Service Interfaces.

Service Definition An XML document that describes the parameters that can be specified when requesting
a new service.

Simple Object Access
Protocol (SOAP)

SOAP is a protocol specification for exchanging structured information in the
implementation of Web Services in computer networks.

Reservation State Machine
(RSM)

The Reservation State Machine state machine defines the sequence of operation of
messages for creating or modifying a reservation.

Reserve When a Provider Agent receives (and then confirms) a Connection Reservation request
the Provider Agent then holds the resources needed by the Connection.

Topology Distribution Service The NSI Topology distribution Service is a service that allows the NSI topology to be
exchanged between NSAs.[4]

Terminate Terminating is the process which will completely remove a Reservation and Release any
associated Connections. This term has a formal definition in the CS state-machine.

Ultimate PA (uPA) The ultimate PA is a Provider Agent that has an associated NRM.

Ultimate RA (uRA) The Ultimate RA is a Requester Agent is the originator of a service request.

XML Schema Definition (XSD) XSD is a schema language for XML.

eXtensible Markup Language
(XML)

XML is a markup language that defines a set of rules for encoding documents in a
format that is both human-readable and machine-readable.

19. Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights might or might not be available;
neither does it represent that it has made any effort to identify any such rights. Copies of claims
of rights made available for publication and any assurances of licenses to be made available, or
the result of an attempt made to obtain a general license or permission for the use of such
proprietary rights by implementers or users of this specification can be obtained from the OGF
Secretariat.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 138

The OGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights, which may cover technology that may be required to
practice this recommendation. Please address the information to the OGF Executive Director.

20. Disclaimer
This document and the information contained herein is provided on an “As Is” basis and the OGF
disclaims all warranties, express or implied, including but not limited to any warranty that the use
of the information herein will not infringe any rights or any implied warranties of merchantability or
fitness for a particular purpose.

21. Full Copyright Notice

Copyright (C) Open Grid Forum (2008-2019). Some Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included as references to the derived portions on
all such copies and derivative works. The published OGF document from which such works are
derived, however, may not be modified in any way, such as by removing the copyright notice or
references to the OGF or other organizations, except as needed for the purpose of developing
new or updated OGF documents in conformance with the procedures defined in the OGF
Document Process, or as required to translate it into languages other than English. OGF, with the
approval of its board, may remove this restriction for inclusion of OGF document content for the
purpose of producing standards in cooperation with other international standards bodies.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its
successors or assignees.

GWD-R-P.237 December 2, 2019
NSI-WG

nsi-wg@ogf.org 139

22. References

1. OGF GFD.212: NSI Connection Service v2.0, Open Grid Forum, June 16 2014,
https://www.ogf.org/documents/GFD.212.pdf

2. OGF GFD.213: Network Service Framework v2.0, Open Grid Forum, June 16 2014,
https://www.ogf.org/documents/GFD.213.pdf

3. OGF GFD.220: Network Service Agent Description, Open Grid Forum, July 1, 2016,
https://www.ogf.org/documents/GFD.220.pdf

4. OGF GFD.236: Network Service Interface Document Distribution Service, Open Grid
Forum, June 1, 2019, https://www.ogf.org/documents/GFD.236.pdf

5. GWD-R-P Network Service Interface Topology Representation, Open Grid Forum, June
2013, https://redmine.ogf.org/attachments/93/draft-gwdrp-nsi-topology-representation.pdf

6. OGF GFD.206: Network Markup Language Base Schema version 1, Open Grid Forum,
May 2013, https://www.ogf.org/documents/GFD.206.pdf

7. OGF GFD.217: Network Service Interface Signaling and Path Finding, June 16 2014,
https://www.ogf.org/documents/GFD.217.pdf

8. IETF RFC 5905, Network Time Protocol Version 4: Protocol and Algorithms Specification,
http://tools.ietf.org/html/rfc5905

9. IETF RFC 4122, A Universally Unique IDdentifier (UUID) URN Namespace,
https://tools.ietf.org/html/rfc4122

10. ITU-T Rec. X.667 Information technology - Open Systems Interconnection - Procedures
for the operation of OSI Registration Authorities: Generation and registration of Universally
Unique Identifiers (UUIDs) and their use as ASN.1 Object Identifier components

11. ISO/IEC 9834-8:2005 Information technology -- Open Systems Interconnection --
Procedures for the operation of OSI Registration Authorities: Generation and registration
of Universally Unique Identifiers (UUIDs) and their use as ASN.1 Object Identifier
components

12. IETF RFC 4655, "A Path Computation Element (PCE)-Based Architecture", http://www.rfc-
editor.org/rfc/rfc4655.txt

13. ISO 8601:2000 “Data elements and interchange formats — Information interchange —
Representation of dates and times” or xsd:dateTime

14. IETF RFC 6453, “A URN Namespace for the Open Grid Forum (OGF)”,
http://tools.ietf.org/html/rfc6453

15. OGF GFD-CP.191 "Procedure for Registration of Subnamespace Identifiers in the
URN:OGF Hierarchy”, http://www.ogf.org/gf/docs/

16. W3C XML “Schema Definition Language (XSD) 1.1 Part 2: Datatypes”,
http://www.w3.org/TR/xmlschema11-2/#anyURI

17. OGF GFD.235: Error Handling in NSI CS 2.1, Open Grid Forum, August 18, 2017,
https://www.ogf.org/documents/GFD.235.pdf

18. NSI CS 2.1 XML Schema, ogf-nsi-project, Open Grid Forum,
https://github.com/OpenGridForum/ogf-nsi-project

