
meder@mcs.anl.gov

GFD-E.024 (Experimental) S. Meder
Grid Security Infrastructure (GSI) WG V. Welch
 U. Chicago
 S. Tuecke
 D. Engert
 ANL
 February 2001
 Revised June 2004

GSS-API Extensions

Status of this Memo

This document provides information to the community regarding extensions to GSS-API as
defined in RFC 2743 and RFC 2744.

This document is a product of the Grid Security Infrastructure (GSI) Working Group of the
Global Grid Forum. The latest version of this document is available from the GSI WG
webpage:

https://forge.gridforum.org/projects/gsi-wg

Distribution of this document is unlimited.

Copyright

Copyright © Global Grid Forum (2004). All Rights Reserved.

Please see Section 11 for full Copyright statement.

Abstract

This document describes extensions to RFC 2743, Generic Security Service Application
Program Interface Version 2, Update 1. Extensions include: credential export and import;
delegation at any time; credential extensions (e.g. restrictions) handling.

GFD-E.024 GSS-API Extensions July 2004

meder@mcs.anl.gov 2

Table of Contents
1 Introduction..3
2 Extension Specifications..4
2.1 Credential Export and Import ..4
2.1.1 gss_export_cred call...5
2.1.2 gss_import_cred...7
2.2 Delegation At Any Time..8
2.2.1 gss_init_delegation ..9
2.2.2 gss_accept_delegation..10
2.3 Extended Credential Inquiry ..12
2.3.1 gss_inquire_sec_context_by_oid call ..12
2.3.2 gss_inquire_cred_by_oid call ..13
2.4 Context options ..14
2.4.1 gss_set_sec_context_option call ..15
2.5 Buffer Set Functions ..16
2.5.1 gss_create_empty_buffer_set...16
2.5.2 gss_add_buffer_set_member call...16
2.5.3 gss_release_buffer_set call ..17
3 Changes to existing functions ..18
3.1 gss_accept_sec_context ...18
3.2 gss_init_sec_context ..18
3.3 gss_getMIC, gss_verifyMIC, gss_wrap, gss_unwrap..18
4 Additional Desired Functionality...18
4.1 Token Framing...18
4.2 Different levels of verbosity with gss_display_status ...19
5 Security Considerations ...20
5.1 Credential export and import ...20
5.2 Delegation at any time and restricted delegation handling..20
6 C-Bindings ...21
7 References..23
8 Acknowledgments..23
9 List of OIDs Defined in this Document...24
10 Contact Information ...24
11 Copyright Notice..25
12 Intellectual Property Statement..25

GFD-E.024 GSS-API Extensions July 2004

meder@mcs.anl.gov 3

1 Introduction

RFC 2743 defines the Generic Security Service Application Program Interface (GSS-API)
Version 2, Update 1 [3, 4], as an API for portably adding authentication, delegation, and
message protection to distributed computing applications.

In 1997, the Globus Project (www.globus.org) introduced the Grid Security Infrastructure
(GSI), an implementation of a security mechanism for Grid computing that uses the GSS-
API standard. This implementation uses public key protocols for use in programming Grid
applications [2] -- that is, applications that run in dynamic, inter-domain distributed
computing environments. Based on this implementation, a great deal of experience has been
gained on the use of GSS-API in numerous real applications and middleware toolkits. While
this experience has been overwhelmingly positive, it has also led to an understanding of
some deficiencies in the existing GSS-API.

This document describes extensions to the GSS-API made by the Globus Project to address
these deficiencies. These extensions are:

• Credential export and import: Processes need to be able, in a controlled and standard

fashion, to export credentials to and import credentials from other processes. This
includes processes that are not written to the GSS-API.

• Delegation at any time: GSS-API only allows for delegation during the initial context
establishment, via an argument to gss_init_sec_context. This document extends GSS-
API to also allow for delegation at any time after initial context establishment.

• Credential extensions handling: When delegating a credential, it is often useful to attach
additional data, such as restriction policies, to that delegated credential which restricts
its usage. This document defines extensions to the GSS-API to allow such extensions to
be specified during delegation and to be extracted from a security context after
authentication. However, the approach is neutral to the actual attached data.

Section 2 describes the GSS-API extensions.

Section 3 contains changes to existing GSS-API functions.

Section 4 contains discussions of problems with the existing GSS-API that the authors have
found, but have not had time to work out solutions for.

Section 5 contains security considerations.

Section 6 contains C-bindings for the API extensions.

Section 7 contains the references.

Section 8 contains acknowledgements.

GFD-E.024 GSS-API Extensions July 2004

meder@mcs.anl.gov 4

Section 9 contains the OIDs defined by this document.

Section 10 contains the change log for this document.

Section 11 contains contact information for the authors.

Section 11 contains the copyright information for this document.

Section 12 contains the intellectual property information for this document.

This document was written under the auspices of the Global Grid Forum Grid Security
Infrastructure Working Group. For more information on this and other related work, see
http://www.gridforum.org/2_SEC/GSI.htm.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC-2119 [1]. While not a normative
document, these terms are used to describe requirements for interoperability with the Globus
Project implementation.

2 Extension Specifications

This section describes extensions to the GSS-API as defined in RFC 2743..

2.1 Credential Export and Import

These functions are intended to be used primarily by complex servers that must juggle
multiple credentials, storing them for a time in files and/or passing them to other processes.
In order to portably implement a reliable service that can accept delegated credentials from
multiple clients, these functions are needed to allow the service to checkpoint and reload the
delegated credential to and from permanent storage.

These functions also provide support for servers that need to pass a credential on to other
processes, for example a secure shell daemon (SSHD) that accepts a delegated credential
from a client and then wants to make that credential available to the spawned shell process.

Previously applications that needed this functionality were forced to use mechanism specific
lower level routines, defeating the purpose of a generic interface.

The gss_export_cred function allows exporting credentials in one of two forms as selected
by the option_req parameter:

When option_req is equal to 0, it exports an opaque buffer suitable for storage in memory or
on disk or passing to another process, which can import the buffer with gss_import_cred.
This method of invocation will normally be used by applications that want to transfer a

GFD-E.024 GSS-API Extensions July 2004

meder@mcs.anl.gov 5

credential to another GSS application or save a credential to some storage medium so it can
be loaded later (perhaps after a restart).

When option_req is equal to 1, it exports a buffer filled with mechanism-specific
information that the calling application can use to pass the credential to another process that
is not written to the GSS-API. This is intended to work with the existing Kerberos and GSI
GSS implementations. These implementations normally store credentials by writing the
credentials to a file and then storing the path to that file in an environment variable. In the
case of these implementations this function stores the credential on disk and returns a buffer
containing a string suitable for passing to putenv(3). This method of invocation will
normally be used by applications, such as SSHD, which accept a delegated GSS credential
and then want to make this credential available to the shell process they spawn.

Note that in either case, you cannot pass the exported credential to another machine over the
network and assume it will work. Passing a credential to another process may also fail if the
process does not have the same privileges as the original process.

A credential can also expire between export and import. In this case the import of the
credential SHOULD fail, returning an error.

The gss_import_cred function is the complimentary function to gss_export_cred. When
called with the exported buffer and option_req set to the same value used in the
gss_export_cred call it MUST return a credential handle suitable for use with other GSS-
API functions. While this function is similar in function to gss_acquire_cred, there is no
compatibility between the two (i.e. one cannot take a buffer from gss_export_cred and use
gss_acquire_cred to import it).

2.1.1 gss_export_cred call

Inputs:

• option_req INTEGER – 0 = Export simple data good only for reuse with

gss_import_cred, 1 = Export mechanism-specific data that can be passed to non-GSS
applications (see following function description).

• cred_handle CREDENTIAL HANDLE – credential to be exported. The credential may

be modified but is stable and usable after call.

• desired_mech OBJECT IDENTIFIER – desired mechanism for exported credential, may
be NULL to indicate system default

Outputs:

• major_status INTEGER

• minor_status INTEGER

GFD-E.024 GSS-API Extensions July 2004

meder@mcs.anl.gov 6

• export_buffer OCTET STRING – token to be used in future gss_import_cred call (if
option_req == 0) or mechanism specific data (if option_req == 1). To be freed by caller
using gss_release_buffer.

• actual_mech OBJECT_IDENTIFIER – actual mechanism of the exported credential

Returned major_status codes:

• GSS_S_COMPLETE indicates that the operation was successfully completed and

export_buffer contains the requested data.

• GSS_S_CREDENTIALS_EXPIRED indicates the credential referred to by cred_handle

has expired and cannot be exported.

• GSS_S_UNAVAILABLE indicates that the requested operation is not supported by the
underlying mechanism.

• GSS_S_BAD_MECH indicates that the requested mechanism is unsupported.

• GSS_S_FAILURE indicates a failure unspecified at the GSS-API level.

GSS_export_cred is used to export a credential so that it can be passed to another process or
reloaded by the same process after its use of a different credential in the interim.

If the caller passes in a value of 0 for option_req the returned data MUST be suitable for use
in a call to gss_import_cred at a later date or in a different process. Note that the data may
contain the actual credential itself or just a pointer to it (e.g. a filename). In any case it
should be assumed that the returned buffer contains sensitive information and care should be
taken to protect the privacy of its contents. This token MUST be encapsulated using the
mechanism for an exported name object defined in RFC 2743 [3], Section 3.2, using the
exported credential object in place of the name object and a token identifier value of hex 04
02.

If the caller passes in a value of 1 for option_req the return data MUST contain mechanism-
specific data that the calling application can use to pass the credential to another process that
does not use the GSS-API. The caller is responsible for understanding this data and knowing
what to do with it. For example in the case of both Kerberos 5 and GSI the credential will be
stored to a file and the returned data will be a string suitable for passing to putenv(3). In this
case the caller may need to change the ownership of the credential file.

In either case the data is returned in export_buffer, which the calling application is
responsible for freeing using gss_release_buffer.

GFD-E.024 GSS-API Extensions July 2004

meder@mcs.anl.gov 7

2.1.2 gss_import_cred

Inputs:

• option_req INTEGER – 0 = import_buffer is opaque data as created by gss_export_cred

called with option_req = 0, 1 = import_buffer is handle to a credential as created by
gss_export_cred called with option_req = 1 (e.g. strings of the form
“KRB5CCNAME=FILE:filename”).

• desired_mech OBJECT IDENTIFIER – desired mechanism for the imported credential,

may be NULL to indicate system default.

• import_buffer OCTET STRING – buffer containing data for import as created by a call
to gss_export_cred.

• lifetime_req INTEGER – in seconds, 0 requests default.

Outputs:

• major_status INTEGER

• minor_status INTEGER

• cred_handle CREDENTIAL HANDLE – the returned credential handle. Resources

associated with the credential handle must be released by the application after use with a
call to gss_release_cred.

• lifetime_rec INTEGER – in seconds, with reserved value for INDEFINITE.

• actual_mech OBJECT_IDENTIFIER – actual mechanism of the imported credential.

Returned major_status codes:

• GSS_S_COMPLETE indicates that the operation was successful and cred_handle

contains a handle to a usable credential.

• GSS_S_BAD_MECH indicates that the requested mechanism is unsupported.

• GSS_S_DEFECTIVE_TOKEN indicates the import buffer is unparsable.

• GSS_S_NO_CRED indicates that the imported credential is unusable or inaccessible.

• GSS_S_CREDENTIALS_EXPIRED indicates that the imported credential has expired.
• GSS_S_FAILURE indicates an error unspecified at the GSS-API level.

GFD-E.024 GSS-API Extensions July 2004

meder@mcs.anl.gov 8

gss_import_cred is the complimentary function to gss_export_cred and is intended to be
used to allow use of a credential that was passed from another process or read from storage.

The credential, or the handle to the credential, is read from import_buffer, which MUST be
unmodified. A handle to the credential is returned in cred_handle.

The lifetime_rec result MUST indicate the length of time for which the acquired credential
will be valid, as an offset from the present. A mechanism MAY return a reserved value
indicating INDEFINITE if no constraints on credential lifetime are imposed. A caller of
gss_import_cred MAY request a length of time for which the acquired credential is to be
valid (using the lifetime_req parameter), beginning at the present, or can request a credential
with a default validity interval. Requests for postdated credentials are not supported within
the GSS-API. Implementations MAY supply credential validity period specifiers at a point
prior to invocation of the gss_import_cred call (e.g., in conjunction with user login
procedures). As a result, callers requesting non-default values for lifetime_req MUST be
prepared to accommodate the return of a credential with a different lifetime as indicated by
lifetime_rec. The lifetime_req parameter should be viewed as advisory and no error should
be returned if the lifetime request cannot be honored.

2.2 Delegation At Any Time

These functions are designed to allow more flexible protocols to be built on top of the GSS-
API. They allow delegation to happen at times other than context initiation, in either
direction regardless of the direction of context initiation (i.e. the acceptor in context
initiation can be the delegator) and with a credential other than the credential used for
context initiation.

These functions also allow the initiator and acceptor to attach extensions, such as restriction
polices, to a delegated credential. These extensions are mechanism-specific and completely
opaque to the GSS-API. See the following section on Credential Extension Handling for
information about accessing the extension data.

Furthermore, these functions make it possible to delegate credentials associated with
mechanisms other than the mechanism used for context establishment. Application may for
example wish to delegate a Kerberos credential over a security context established using
GSI.

The two functions for doing delegation are gss_init_delegation and gss_accept_delegation.
These functions are used in a similar manner as gss_init_sec_context and
gss_accept_sec_context; they should be called in a loop as long as they return
GSS_S_CONTINUE_NEEDED and the tokens output by each should be passed into the
other.

Note that mechanisms are not required to support intermingling of calls to other GSS-API
functions (e.g. gss_wrap) with the sequence of calls needed to perform delegation of a
credential. This also implies that if an application initiates a second delegation while a
previous one has yet to complete, the results may be undefined.

GFD-E.024 GSS-API Extensions July 2004

meder@mcs.anl.gov 9

2.2.1 gss_init_delegation

Inputs:

• context_handle CONTEXT HANDLE – handle to existing security context.

• cred_handle CREDENTIAL HANDLE – handle to credential to be delegated. NULL

(GSS_C_NO_CREDENTIAL) specifies the use of the default credential.

• mech_type OBJECT IDENTIFIER – NULL parameter specifies that the system default
should be used.

• lifetime_req INTEGER - 0 specifies default lifetime

• extension_oids SEQUENCE OF OBJECT IDENTIFIER – identifiers for the type of data

in the extensions_buffers. See description below for a discussion of this option.

• extension_buffers SEQUENCE OF OCTET STRINGS – opaque extension data to be
applied to the delegated credential. See description below for a discussion of this option.

• input_token OCTET STRING – GCC_C_NO_BUFFER or token received from target.

Outputs:

• major_status INTEGER

• minor_status INTEGER

• output_token OCTET STRING –token to pass to target. May be empty. Caller must

release with gss_release_buffer.

Returned major_status codes:

• GSS_S_COMPLETE indicates that delegation is complete and it is not necessary to call

gss_init_delegation again. The returned output_token may have data to be sent to the
target to successfully complete the delegation.

• GSS_S_CONTINUE_NEEDED indicates that the information in the returned

output_token must be sent to the target and a reply must be received and passed as the
input_token argument in a subsequent call to gss_init_delegation.

• GSS_S_DEFECTIVE_TOKEN – consistency checks on input token failed.

• GSS_S_BAD_SIG – bad integrity check on input token.

GFD-E.024 GSS-API Extensions July 2004

meder@mcs.anl.gov 10

• GSS_S_NO_CRED – credential is invalid.

• GSS_S_CREDENTIALS_EXPIRED – provided credential has expired.

• GSS_S_OLD_TOKEN – input_token is too old.

• GSS_S_DUPLICATE_TOKEN – input_token is a duplicate.

• GSS_S_BAD_MECH – unsupported mechanism.

• GSS_S_BAD_BINDINGS – this indicates that the extensions provided were invalid

(e.g. a mismatch of number of OIDs and buffers).

• GSS_S_FAILURE – error unspecified at the GSS-API level.

This routine is used by either side of a security context to perform a delegation to the peer.
The credential being delegated MAY either be the same credential used to setup the context
or MAY be a different credential.

Input parameters other than input_token MUST correspond to the same valid GSS-API
structures during the delegation process.

The extension_oids and extension_buffers parameters can be used to specify a set of
extensions for the delegated credential. There MUST be an identical number of OIDs and
buffers, with each OID indicating what the type of data (e.g. policy language) its
corresponding buffer contains. These values MAY be GSS_C_NO_OID_SET and
GSS_C_NO_BUFFER_SET, respectively, to indicate that no extensions are to be applied to
the credential.

2.2.2 gss_accept_delegation

Inputs:

• sec_context CONTEXT HANDLE – handle to existing security context.

• input_token OCTET STRING – token received from initiator.

• extension_oids SEQUENCE OF OBJECT IDENTIFIER – identifiers for the type of data

in the extension_buffers. See description below for a discussion of this option.

• extension_buffers SEQUENCE OF OCTET STRINGS – requested data for extensions to
be applied to the delegated credential. See description below for a discussion of this
option.

• lifetime_req INTEGER - in seconds, 0 requests default

GFD-E.024 GSS-API Extensions July 2004

meder@mcs.anl.gov 11

Outputs:

• delegated_cred CREDENTIAL HANDLE – on completion this will contain a handle to

the delegated credential. The caller must release with gss_release_cred.

• lifetime_rec INTEGER - in seconds, or reserved value for INDEFINITE

• output_token OCTET STRING – token to pass to initiator. MAY be empty. Caller must
release with gss_release_buffer.

• mech_type OBJECT_IDENTIFIER – mechanism corresponding to delegated credential;

read only, caller should not attempt to release.

Return major_status codes:

• GSS_S_COMPLETE indicates that the delegation has been successful and

delegated_cred contains a handle to a usable credential.

• GSS_S_CONTINUE_NEEDED indicates that the information in the returned

output_token must be sent to the initiator and a reply must be received and passed as the
input_token argument in a subsequent call to gss_accept_delegation.

• GSS_S_DEFECTIVE_TOKEN – malformed token.

• GSS_S_BAD_SIG – integrity check failed.

• GSS_S_OLD_TOKEN – token too old.

• GSS_S_NO_CONTEXT – bad context.

• GSS_S_BAD_MECH – unsupported mechanism for the delegated credential.

• GSS_S_BAD_BINDINGS – this indicates that the extensions provided were invalid

(e.g. a mismatch of number of OIDs and buffers).

• GSS_S_FAILURE – Error unspecified at the GSS-API level.

This routine is used by either side of a security context to accept a delegation being
performed by gss_init_delegation. The credential being delegated MAY be either the same
credential used to setup the context or MAY be a different credential.

Input parameters other than input_token MUST correspond to the same valid GSS-API
structures during the delegation process.

The lifetime_rec parameter, on successful completion, MUST contain the remaining
lifetime, in seconds, of the delegated credential. A mechanism May return a reserved value

GFD-E.024 GSS-API Extensions July 2004

meder@mcs.anl.gov 12

indicating INDEFINITE if no constraints on credential lifetime are imposed. A caller of
gss_accept_delegation MAY also request that the delegated credential be valid for a
specified period of time (via the lifetime_req argument), but MUST be prepared to handle a
delegated credential with shorter than requested lifetime.

The extension_oids and extension_buffers parameters MAY be used to request extensions to
be applied to the delegated credential. There MUST be an identical number of OIDs and
buffers with each OID indicating the type of data (e.g. policy language) its corresponding
buffer contains. See gss_init_delegation for a discussion of these OIDs. Note that depending
on the mechanism, the initiator MAY decide to ignore the extensions requested by the
acceptor. These values MAY be GSS_C_NO_OID_SET and GSS_C_NO_BUFFER_SET,
respectively, to indicate that no extensions are requested in the credential.

2.3 Extended Credential Inquiry

Applications wanting to make more complex authorization decisions require more
information about a client’s credential than just the client’s identity. In order to provide this
information the gss_inquire_sec_context_by_oid and gss_inquire_cred_by_oid functions
were added. These functions give applications a means to retrieve arbitrary data about a
context or credential.

The gss_inquire_sec_context_by_oid and gss_inquire_cred_by_oid functions are called with
an object identifier identifying the information that the application is interested in. This
object identifier will either be one of a number of generic OIDs or may be mechanism-
specific.

2.3.1 gss_inquire_sec_context_by_oid call

Inputs:

• sec_context CONTEXT HANDLE – handle to existing security context.

• desired_object OBJECT IDENTIFIER – OID of desired object.

Outputs:

• major_status INTEGER

• minor_status INTEGER

• data_set SET OF OCTET STRING – zero or more pieces of data corresponding to the

data associated with the desired_object OID. To be freed by caller using
gss_release_buffer_set.

GFD-E.024 GSS-API Extensions July 2004

meder@mcs.anl.gov 13

Return major_status codes:

• GSS_S_COMPLETE indicates that the function completed successfully and data was

returned.

• GSS_S_CONTINUE_NEEDED indicates that there are more data items to be returned

(see following description).

• GSS_S_NO_CONTEXT indicates that no valid context was recognized for the input
context handle provided.

• GSS_S_FAILURE indicates that the requested operation failed for reasons unspecified at

the GSS-API level.

The desired_object parameter MUST contain an OID that references information the
application is interested in. This may, for example, be an OID that identifies an extension
used in the delegation routines

If the requested data is not present, major_status MUST be set to GSS_S_COMPLETE and
0 objects MUST be returned in data_set.

Note that there is disagreement between the current GSS-API RFC [3] and the RFC
specifying the C-language bindings [4]. While the GSS-API RFC states that functions that
functions of this nature should not iterate using GSS_S_CONTINUE_NEEDED, the RFC
specifying language bindings does so. Applications SHOULD be prepared to handle this
function returning only a single piece of data per call and call it iteratively if it returns
GSS_S_CONTINUE_NEEDED.

2.3.2 gss_inquire_cred_by_oid call

Inputs:

• cred_handle CREDENTIAL HANDLE - handle to existing credential.

• desired_object OBJECT IDENTIFIER - OID of desired object.

Outputs:

• major_status INTEGER

• minor_status INTEGER

• data_set SET OF OCTET STRING - zero or more pieces of data corresponding to the

data associated with the desired_object OID. To be freed by caller using
gss_release_buffer_set.

GFD-E.024 GSS-API Extensions July 2004

meder@mcs.anl.gov 14

Return major_status codes:

• GSS_S_COMPLETE indicates that the function completed successfully and data was

returned.

• GSS_S_CONTINUE_NEEDED indicates that there are more data items to be returned
(see following description).

• GSS_S_NO_CRED indicates there was no valid credential

• GSS_S_FAILURE indicates that the requested operation failed for reasons unspecified at

the GSS-API level.

The desired_object parameter MUST contain an OID that references information the
application is interested in. This may for example correspond to an OID used in the extended
delegation routines. The OID id-gss-ext-inquire-cred-restrictions, as defined in Section 9,
MAY be used to request restrictions on the use of the credential. This allows restrictions that
may be encoded in a mechanism-specific manner to be requested independent of the
mechanism.

If the requested data is not present, major_status MUST be set to GSS_S_COMPLETE and
0 objects will be returned in data_set.

Note there is disagreement between the current GSS-API RFC [3] and the RFC specifying
the C-language bindings [4]. While [3] states that functions of this nature should not iterate
using GSS_S_CONTINUE_NEEDED, [4] does so. Applications SHOULD be prepared to
handle this function returning only a single piece of data per call and call it iteratively if it
returns GSS_S_CONTINUE_NEEDED.

2.4 Context options

Currently there is no method for passing flags into the gss_accept_sec_context call. Instead
of changing the arguments to this function we define a method that allows us to set options
on a security context and then pass the context into a first call of gss_accept_sec_context or
gss_init_sec_context. This provides the means for an application to achieve more fine-
grained control of the underlying GSS-API mechanism.

The options are identified with OIDS, which may be mechanism specific or one of the
generic options defined below.

Generic options, OIDs are defined in Section 9:

id-gss-ext-context-opts-disallow-encryption – Setting this option to 1 MUST cause the
underlying GSS library to disallow any encryption of application data.

id-gss-ext-context-opts-fail-expiration – Setting this option to 1 MUST cause the underlying
GSS library to fail if any message protection operation is attempted after the security context

GFD-E.024 GSS-API Extensions July 2004

meder@mcs.anl.gov 15

has expired. The underlying mechanism SHOULD allow this option to be set to 0 after such
an error is returned so that an application can finish an ongoing process before returning an
error to the user. For example, an application may wish to complete a file transfer already in
progress before refusing to start another transfer. Note that some implementations may not
be able to perform message protection after security context expiration.

id-gss-ext-context-opts-app-check-exts – Setting this option to a list of OIDs (using the SET
OF OBJECT IDENTIFIER data type) will inform the underlying GSSAPI library that the
application will take responsibility for checking any extensions in the peer credential
identified by these OIDs . If the GSS mechanism encounters an extension during context
establishment that the application has not declared its responsibility for, then the GSS
mechanism may choose to fail the authentication. The reason for this is that without the
knowledge that the application is aware of and taking responsibility for handling the
extensions the GSSAPI mechanism cannot be assured they will be respected and must take
the safe course of failure.

2.4.1 gss_set_sec_context_option call

Inputs:

• sec_context CONTEXT HANDLE – handle to security context. NULL specifies that a

new security context should be created.

• option OBJECT IDENTIFIER – OID of desired option.

• value OCTET STRING – value of option.

Outputs:

• major_status INTEGER

• minor_status INTEGER

Return major_status codes:

• GSS_S_COMPLETE indicates that the function completed successfully.

• GSS_S_FAILURE indicates that the requested operation failed for reasons unspecified at

the GSS-API level. This includes an attempt to change an immutable option.

The sec_context parameter MUST either be an existing security context or NULL,
indicating a new security context should be initialized and the specified option set on the
new context.

The option parameter MUST contain an OID that references the option that the application
wishes to set.

GFD-E.024 GSS-API Extensions July 2004

meder@mcs.anl.gov 16

The value parameter MUST contain the value the option should be set to. The size of the
octet string will vary depending on the option being set (analogous to the UNIX setsockopt
function).

2.5 Buffer Set Functions

These functions are needed to support other new functions added in this section.

2.5.1 gss_create_empty_buffer_set

Inputs:

• None

Outputs:

• buffer_set SET OF OCTET STRING To be freed by caller using gss_release_buffer_set.

• major_status INTEGER

• minor_status INTEGER

Return major_status codes:

• GSS_S_COMPLETE indicates that the function completed successfully.

• GSS_S_FAILURE indicates that the requested operation failed for reasons unspecified at

the GSS-API level.

Creates an empty buffer set, to which members may subsequently be added using the
gss_add_buffer_set_member routine.

2.5.2 gss_add_buffer_set_member call

Inputs:

• member_buffer OCTET_STRING

• buffer_set SET OF OCTET STRING

Outputs:

• major_status INTEGER

• minor_status INTEGER

GFD-E.024 GSS-API Extensions July 2004

meder@mcs.anl.gov 17

Return major_status codes:

• GSS_S_COMPLETE indicates that the function completed successfully.

• GSS_S_FAILURE indicates that the requested operation failed for reasons unspecified at

the GSS-API level.

This function adds a buffer to a buffer set. The member_buffer argument may be released after
the completion of this call.

2.5.3 gss_release_buffer_set call

Inputs:

• buffer_set SET OF OCTET STRING

Outputs:

• major_status INTEGER

• minor_status INTEGER

Return major_status codes:

• GSS_S_COMPLETE indicates that the function completed successfully and data was

returned.

• GSS_S_FAILURE indicates that the requested operation failed for reasons unspecified at

the GSS-API level.

This function allows callers to release the storage associated with a SET OF OCTET
STRING allocated by another GSS-API call. This call's specific behavior depends on the
language and programming environment within which a GSS-API implementation operates,
and is therefore detailed within applicable bindings specifications; in particular,
implementation and invocation of this call may be superfluous (and may be omitted) within
bindings where memory management is automatic.

GFD-E.024 GSS-API Extensions July 2004

meder@mcs.anl.gov 18

3 Changes to existing functions

This section contains changes to the behavior of the existing GSSAPI functions.

3.1 gss_accept_sec_context

The gss_accept_sec_context call MUST now accept a non-NULL security context, as
created by the gss_set_sec_context_option call, on initial call.

3.2 gss_init_sec_context

The gss_init_sec_context call MUST now accept a non-NULL security context, as created
by the gss_set_sec_context_option call, on initial call.

3.3 gss_getMIC, gss_verifyMIC, gss_wrap, gss_unwrap

If the GSS_PROTECTION_FAIL_ON_CONTEXT_EXPIRATION option has been set to 1
by the gss_set_sec_context_option call then these functions MUST fail if the security
context being used has expired.

If the GSS_PROTECTION_FAIL_ON_CONTEXT_EXPIRATION option is set to 0 then
functions SHOULD continue to function as long as they possibly can regardless of the
expiration of security context. Some implementation may not be able to continue
functioning after security context expiration.

4 Additional Desired Functionality

The following sections describe shortcomings in the GSSAPI and propose possible schemes
for modifying the API to address these but do not lay out a specific proposal for change.

4.1 Token Framing

One major shortcoming in the GSS-API specification is that it does not prescribe or
recommend a standard mechanism independent way of framing tokens generated by GSS-
API functions.
We feel that the absence of a framing mechanism negates the utility of the mech_type and
similar parameters, since demultiplexing tokens based on mechanism without said framing
becomes nearly impossible.

We realize that almost all mechanisms used to implement the GSS-API provide their own
framing mechanism and may not want to add additional framing since this may hinder
interoperability with non-GSS-API using applications. Thus any proposed framing should
not be mandatory.

GFD-E.024 GSS-API Extensions July 2004

meder@mcs.anl.gov 19

It is our opinion that any proposed framing mechanism should at the bare minimum allow
for the following:

1. A mechanism for determining the length of the token
2. A way of determining the mechanism that produced the token
3. A mechanism for identifying the token type, where token type indicates the origin

(e.g. context establishment, application data …) of the token

Finally, it may be argued that framing could and should be done at the application level, but
even in this case a recommendation would give the benefit of greater interoperability
between mechanisms which implement framing at the GSSAPI level.

4.2 Different levels of verbosity with gss_display_status

It is desirable to have different levels of error message verbosity at different times. When
returning an error message to a user, simplicity is often the best course. Users tend to want a
simple description of the error and maybe a little guidance on how to fix the problem. Long
error messages tend to scare them away.

On the other hand, if a developer or other user seriously interested in debugging is reading
the error message, the more information the better.

The gss_display_status call currently offers no way to select different levels of verbosity in
the messages it returns. Some possible ways of implementing this are:

• Add a way of passing in a flag to the gss_display_call perhaps by defining more
values for status type.

• Defining a predefined string at the beginning of all strings returned by
gss_display_status to indicate the verbosity level of the string. This has the
advantage that the server can send these strings over the network to a client that can
decide the level of verbosity without involving the server.

• Defining a new call, gss_display_status_ext, that has an option to specify verbosity
level.

GFD-E.024 GSS-API Extensions July 2004

meder@mcs.anl.gov 20

5 Security Considerations

5.1 Credential export and import

Since exported credential buffers may contain sensitive information (e.g. the credential
itself) care must be taken to maintain the privacy of this information. Precautions should
include:

• Storing the exported credential only in files with carefully controlled access policies
• Not sending the exported credential over the network in the clear (unencrypted)
• Being careful which processes are given access to the credential

5.2 Delegation at any time and restricted delegation handling

Applications delegating credentials need to be sure that they are delegating credentials only
to other processes and systems that can be trusted. Since credentials are often stored on disk,
compromises of systems can lead to stolen credentials from trusted processes.

The use of restrictive policies is encouraged for this reason as it can greatly limit the use of
any stolen credential.

GFD-E.024 GSS-API Extensions July 2004

meder@mcs.anl.gov 21

6 C-Bindings

The following are the C-bindings for the API extensions:

typedef gss_buffer_set_desc_struct {
 size_t count;
 gss_buffer_desc * elements;
} gss_buffer_set_desc, *gss_buffer_set_t;

OM_uint32
gss_create_empty_buffer_set(
 OM_uint32 * minor_status,
 gss_buffer_set_t * buffer_set)

OM_uint32
gss_add_buffer_set_member(
 OM_uint32 * minor_status,
 const gss_buffer_t member_buffer,
 gss_buffer_set_t * buffer_set)

OM_uint32
gss_release_buffer_set(
 OM_uint32 * minor_status,
 gss_buffer_set_t buffer_set)

OM_uint32
gss_export_cred(
 OM_uint32 * minor_status,
 const gss_cred_id_t cred_handle,
 const gss_OID desired_mech,
 gss_OID * actual_mech,
 OM_uint32 option_req,
 gss_buffer_t export_buffer);

OM_uint32
gss_import_cred(
 OM_uint32 * minor_status,
 gss_cred_id_t * output_cred_handle,
 const gss_OID desired_mech,
 gss_OID * actual_mech,
 OM_uint32 option_req,
 const gss_buffer_t import_buffer,

 OM_uint32 time_req,
 OM_uint32 * time_rec);

GFD-E.024 GSS-API Extensions July 2004

meder@mcs.anl.gov 22

OM_uint32
gss_init_delegation(
 OM_uint32 * minor_status,
 const gss_ctx_id_t context_handle,
 const gss_cred_id_t cred_handle,
 const gss_OID desired_mech,
 const gss_OID_set extension_oids,
 const gss_buffer_set_t extension_buffers,

 const gss_buffer_t input_token,
 OM_uint32 time_req,
 gss_buffer_t output_token);

OM_uint32
gss_accept_delegation(
 OM_uint32 * minor_status,
 const gss_ctx_id_t context_handle,
 const gss_OID_set extension_oids,
 const gss_buffer_set_t extension_buffers,
 const gss_buffer_t input_token,
 OM_uint32 time_req,
 OM_uint32 * time_rec,
 gss_cred_id_t * delegated_cred_handle,
 gss_OID mech_type,
 gss_buffer_t output_token);

OM_uint32
gss_inquire_sec_context_by_oid(

OM_uint32 * minor_status,
const gss_ctx_id_t context_handle,
const gss_OID desired_object,
gss_buffer_set_t data_set);

OM_uint32
gss_inquire_cred_by_oid(

OM_uint32 * minor_status,
const gss_ced_id_t cred_handle,
const gss_OID desired_object,
gss_buffer_set_t * data_set);

OM_uint32
gss_set_sec_context_option(

OM_uint32 * minor_status,
gss_ctx_id_t * context_handle,
const gss_OID option,
gss_buffer_t value);

GFD-E.024 GSS-API Extensions July 2004

meder@mcs.anl.gov 23

7 References

[1] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels," BCP 14,

RFC 2119, March 1997.

[2] Foster, I., C. Kesselman, and S. Tuecke, "The Anatomy of the Grid: Enabling

Scalable Virtual Organizations," International Journal of Supercomputer
Applications, 2001.

[3] Linn, J., "Generic Security Service Application Program Interface, Version 2, Update

1," RFC 2743, January 2000.

[4] Wray, J., "Generic Security Service API Version 2, C-bindings," RFC 2744, January

2000.

8 Acknowledgments

We are grateful to numerous colleagues for discussions on the topics covered in this paper,
in particular (in alphabetical order, with apologies to anybody we've missed): Joe Bester,
Randy Butler, Carl Kesselman, Keith Jackson, Bill Johnston, Ian Foster, Marty Humphrey,
Cliff Neuman, Laura Pearlman, Frank Siebenlist, Mary Thompson, Gene Tsudik.

This work was supported in part by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing Research,
U.S. Department of Energy, under Contract W-31-109-Eng-38; by the Defense Advanced
Research Projects Agency under contract N66001-96-C-8523; by the National Science
Foundation; and by the NASA Information Power Grid project.

GFD-E.024 GSS-API Extensions July 2004

meder@mcs.anl.gov 24

9 List of OIDs Defined in this Document

This section lists the OIDs used in this document.

id-gss-ext-inquire-cred-restrictions: 1.3.6.1.4.1.6757.1.1.1.1
iso.org.dod.internet.private.enterprise.grid.security.gss-extensions.inquire-cred.restrictions

id-gss-ext-context-opts-disallow-encryption: 1.3.6.1.4.1.6757.1.1.2.1
iso.org.dod.internet.private.enterprise.grid.security.gss-extensions.context-options.disallow-
encryption

id-gss-ext-context-opts-fail-expiration: 1.3.6.1.4.1.6757.1.1.2.2
iso.org.dod.internet.private.enterprise.grid.security.gss-extensions.context-options.fail-on-
context-expiration

id-gss-ext-context-opts-app-check-exts: 1.3.6.1.4.1.6757.1.1.2.3
iso.org.dod.internet.private.enterprise.grid.security.gss-extensions.context-
options.application-checked-extensions

10 Contact Information

Samuel Meder
Distributed Systems Laboratory
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439
Phone: 630-252-1752
Email: meder@mcs.anl.gov

Von Welch
National Center for Supercomputing Applications
Email: welch@ncsa.uiuc.edu

Steven Tuecke
Argonne National Laboratory
Email: tuecke@mcs.anl.gov

Doug Engert
Argonne National Laboratory
Email: deengert@anl.gov

GFD-E.024 GSS-API Extensions July 2004

meder@mcs.anl.gov 25

11 Copyright Notice

Copyright (C) Global Grid Forum (2004). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be
prepared, copied, published and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are included on all such
copies and derivative works. However, this document itself may not be modified in any way,
such as by removing the copyright notice or references to the GGF or other organizations,
except as needed for the purpose of developing Grid Recommendations in which case the
procedures for copyrights defined in the GGF Document process must be followed, or as
required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or
its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and
THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE
OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

12 Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or
other rights that might be claimed to pertain to the implementation or use of the technology
described in this document or the extent to which any license under such rights might or
might not be available; neither does it represent that it has made any effort to identify any
such rights. Copies of claims of rights made available for publication and any assurances of
licenses to be made available, or the result of an attempt made to obtain a general license or
permission for the use of such proprietary rights by implementers or users of this
specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or
patent applications, or other proprietary rights which may cover technology that may be
required to practice this recommendation. Please address the information to the GGF
Executive Director.

