
GFD-I.030 Authors:
Open Grid Services Architecture I. Foster, Argonne & U.Chicago (Editor)
http://forge.gridforum.org/projects/ogsa-wg H. Kishimoto, Fujitsu (Editor)

A. Savva, Fujitsu (Editor)
D. Berry, NeSC

A. Djaoui, CCLRC-RAL
A. Grimshaw, UVa

B. Horn, IBM
F. Maciel, Hitachi

F. Siebenlist, ANL
R. Subramaniam, Intel

J. Treadwell, HP
J. Von Reich, HP

 29 January 2005

ogsa-wg@ggf.org

The Open Grid Services Architecture, Version 1.0

Status of this Memo
This document provides information to the community regarding the specification of the Open
Grid Services Architecture (OGSA). It does not define any standards or technical
recommendations. Distribution is unlimited.

Copyright Notice
Copyright © Global Grid Forum (2002-2005). All Rights Reserved.

Abstract
Successful realization of the Open Grid Services Architecture (OGSA) vision of a broadly
applicable and adopted framework for distributed system integration, virtualization, and
management requires the definition of a core set of interfaces, behaviors, resource models, and
bindings. This document, produced by the OGSA working group within the Global Grid Forum
(GGF), provides a first version of this OGSA definition. The document focuses on requirements
and the scope of important capabilities required to support Grid systems and applications in both
e-science and e-business. The capabilities described are Execution Management, Data, Resource
Management, Security, Self-Management, and Information. The description of the capabilities is
at a high-level and includes, to some extent, the interrelationships between the capabilities.

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 2

Contents
The Open Grid Services Architecture, Version 1.0... 1
Status of this Memo... 1
Copyright Notice ... 1
Abstract ... 1
Contents... 2
1 Introduction... 4
2 Requirements .. 5

2.1 Interoperability and Support for Dynamic and Heterogeneous Environments 5
2.2 Resource Sharing Across Organizations.. 7
2.3 Optimization .. 7
2.4 Quality of Service (QoS) Assurance .. 8
2.5 Job Execution... 8
2.6 Data Services ... 9
2.7 Security .. 9
2.8 Administrative Cost Reduction.. 10
2.9 Scalability .. 10
2.10 Availability .. 11
2.11 Ease of Use and Extensibility .. 11

3 Capabilities ... 11
3.1 Overview.. 11
3.2 OGSA Framework ... 13
3.3 Infrastructure Services ... 15
3.4 Execution Management Services ... 17

3.4.1 Objectives .. 17
3.4.2 Approach ... 18
3.4.3 EMS Services .. 20
3.4.4 Resources... 20
3.4.5 Job Management.. 21
3.4.6 Selection Services.. 22
3.4.7 Interactions with the rest of OGSA ... 23
3.4.8 Example Scenarios... 24

3.5 Data Services ... 25
3.5.1 Objectives .. 26
3.5.2 Models ... 26
3.5.3 Functional Capabilities .. 28
3.5.4 Properties ... 30
3.5.5 Interactions with the rest of OGSA ... 31

3.6 Resource Management Services .. 33
3.6.1 Objectives .. 33
3.6.2 Model... 33
3.6.3 Management Capabilities .. 35
3.6.4 Properties ... 35
3.6.5 Interactions with other OGSA services ... 36

3.7 Security Services.. 36
3.7.1 Objectives .. 36
3.7.2 Model... 37
3.7.3 Example Scenarios... 40
3.7.4 Functional Capabilities .. 42

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 3

3.7.5 Properties ... 45
3.7.6 Interactions with other OGSA services ... 45

3.8 Self-Management Services .. 46
3.8.1 Objectives .. 46
3.8.2 Basic Attributes ... 46
3.8.3 Example Scenarios... 47
3.8.4 Functional Capabilities .. 48
3.8.5 Properties ... 50
3.8.6 Interactions with the rest of OGSA ... 51

3.9 Information Services .. 51
3.9.1 Objectives .. 51
3.9.2 Models ... 52
3.9.3 Example scenarios ... 52
3.9.4 Functional capabilities ... 54
3.9.5 Properties ... 56
3.9.6 Interactions with the rest of OGSA ... 56

4 Security Considerations .. 57
Editor Information... 57
Contributors... 57
Acknowledgements ... 57
Glossary... 58
Intellectual Property Statement ... 59
Full Copyright Notice.. 59
References ... 59

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 4

1 Introduction
Grid systems and applications aim to integrate, virtualize, and manage resources and services
within distributed, heterogeneous, dynamic “virtual organizations” [Grid Anatomy] [Grid
Physiology]. The realization of this goal requires the disintegration of the numerous barriers that
normally separate different computing systems within and across organizations, so that
computers, application services, data, and other resources can be accessed as and when required,
regardless of physical location.

Key to the realization of this Grid vision is standardization, so that the diverse components that
make up a modern computing environment can be discovered, accessed, allocated, monitored,
accounted for, billed for, etc., and in general managed as a single virtual system—even when
provided by different vendors and/or operated by different organizations. Standardization is
critical if we are to create interoperable, portable, and reusable components and systems; it can
also contribute to the development of secure, robust, and scalable Grid systems by facilitating the
use of good practices.

We present here a service-oriented architecture, the Open Grid Services Architecture (OGSA),
that addresses this need for standardization by defining a set of core capabilities and behaviors
that address key concerns in Grid systems. These concerns include such issues as: How do I
establish identity and negotiate authentication? How is policy expressed and negotiated? How do
I discover services? How do I negotiate and monitor service level agreements? How do I manage
membership of, and communication within, virtual organizations? How do I organize service
collections hierarchically so as to deliver reliable and scalable service semantics? How do I
integrate data resources into computations? How do I monitor and manage collections of
services?

This document is divided into two main parts, focused on requirements and capabilities,
respectively. In §2, we provide an abstract definition of the set of requirements that OGSA is
intended to address. This analysis is based on requirements, technical challenges, use cases,
previous experience, and the state of the art in related work. The abstract rendering is not
constrained by any assumptions about the underlying infrastructure, but rather is intended to
frame the “Grid” discussion and define solutions.

In §3, we translate the requirements of §2 into a coherent set of capabilities that collectively
define OGSA. We first describe infrastructure services and assumptions that constrain our
development of the OGSA design, in particular explaining how OGSA both builds on, and is
contributing to the development of, the growing collection of technical specifications that form
the emerging Web Services Architecture [WS-Architecture]. Then we present a refinement of the
required functionality into capabilities: Execution Management, Data, Resource Management,
Security, Self-Management and Information services.

This document uses a number of terms whose meaning may require more explanation than given
in the text. A companion document, the OGSA Glossary of Terms [OGSA Glossary], provides
unambiguous definitions of such terms.

In a later version of this document, we will provide descriptions of specific services, making clear
where existing service specifications can be used unchanged and where modified or new service
specifications are needed. We will also describe the current state of any work known to be
underway to define such extensions or definitions.

This informational document (GWD-I), a product of the Global Grid Forum’s OGSA working
group, defines OGSA version 1.0. The OGSA working group is committed to releasing a set of

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 5

recommendation (GWD-R) documents in the future to provide a normative description of the
architecture.

2 Requirements
This definition of OGSA version 1.0 is driven by a set of functional and non-functional
requirements, which themselves are informed by the use cases listed in Table 1 and described in
companion documents [OGSA Use Cases][OGSA Use Cases Tier 2]. These use cases cover
infrastructure and application scenarios for both commercial and scientific areas. They do not
constitute a formal requirements analysis, but have provided useful input to the architecture
definition process.

Table 1: The OGSA use cases

Use case Summary

Commercial Data Center
(CDC)

Data centers will have to manage several thousands of IT resources,
including servers, storage, and networks, while reducing
management costs and increasing resource utilization.

Severe Storm Modeling Enable accurate prediction of the exact location of severe storms
based on a combination of real-time wide area weather
instrumentation and large-scale simulation coupled with data
modeling.

Online Media and
Entertainment

Delivering an entertainment experience, either for consumption or
interaction.

National Fusion
Collaboratory (NFC)

Defines a virtual organization devoted to fusion research and
addresses the needs of software developed and executed by this
community based on the application service provider (ASP) model.

Service-Based
Distributed Query
Processing

A service-based distributed query processor supporting the
evaluation of queries expressed in a declarative language over one
or more existing services.

Grid Workflow Workflow is a convenient way of constructing new services by
composing existing services. A new service can be created and used
by registering a workflow definition to a workflow engine.

Grid Resource Reseller Inserting a supply chain between the Grid resource owners and end
users will allow the resource owners to concentrate on their core
competences, while end users can purchase resources bundled into
attractive packages by the reseller.

Inter Grid Extends the CDC use case by emphasizing the plethora of
applications that are not Grid-enabled and are difficult to change:
e.g. mixed Grid and non-Grid data centers, and Grid across multiple
companies. Also brings into view generic concepts of utility
computing.

Interactive Grids Compared to the online media use case, this use case emphasizes a
high granularity of distributed execution.

Grid Lite Extends the use of Grids to small devices—PDAs, cell phones,
firewalls, etc.—and identifies a set of essential services that enable

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 6

the device to be part of a Grid environment.

Virtual Organization
(VO) Grid Portal

A VO gives its members access to various computational,
instrument-based data and other types of resources. A Grid portal
provides an end-user view of the collected resources available to the
members of the VO.

Persistent Archive Preservation environments handle technology evolution by
providing appropriate abstraction layers to manage mappings
between old and new protocols, software and hardware systems,
while maintaining authentic records.

Mutual Authorization Refines the CDC and NFC use cases by introducing the scenario of
the job submitter authorizing the resource on which the job will
eventually execute.

Resource Usage Service Facilitates the mediation of resource usage metrics produced by
applications, middleware, operating systems, and physical (compute
and network) resources in a distributed, heterogeneous
environment.

IT Infrastructure and
Management*

Job execution, cycle sharing and provisioning scenarios.

Application Use Cases* Peer-to-Peer PC Grid computing, file sharing and content delivery
scenarios.

Reality Grid* Distributed and collaborative exploration of parameter space
through computational steering and on-line, high-end visualization.

The Learning GRID* User-centered, contextualized and experiential-based approaches for
ubiquitous learning in the framework of a Virtual Organization.

HLA-based Distributed
Simulation*

A distributed collaborative environment for developing and running
simulations across administrative domains.

GRID based ASP for
Business*

An infrastructure for Application Service Provision (ASP)
supporting different business models based on Grid technology.

Grid Monitoring
Architecture*

Grid monitoring system scalable across wide-area networks and
able to encompass a large number of dynamic and heterogeneous
resources.

* Use cases appearing in Tier 2 document

Analysis of these use cases and other relevant input led us to identify characteristics of Grid
environments and applications, and functional and non-functional requirements, that appear both
important and broadly relevant. We summarize our findings in the following sections.

2.1 Interoperability and Support for Dynamic and Heterogeneous Environments
Some use cases involve highly constrained or homogeneous environments that may well motivate
specialized profiles. However, it is clear that, in general, Grid environments tend to be
heterogeneous and distributed, encompassing a variety of hosting environments (e.g.,
J2EE, .NET), operating systems (e.g., Unix, Linux, Windows, embedded systems), devices (e.g.,
computers, instruments, sensors, storage systems, databases, networks), and services, provided by
various vendors. In addition, Grid environments are frequently intended to be long-lived and
dynamic, and may therefore evolve in ways not initially anticipated.

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 7

OGSA must enable interoperability between such diverse, heterogeneous, and distributed
resources and services as well as reduce the complexity of administering heterogeneous systems.
Moreover, many functions required in distributed environments, such as security and resource
management, may already be implemented by stable and reliable legacy systems. It will rarely be
feasible to replace such legacy systems; instead, we must be able to integrate them into the Grid.

The need to support heterogeneous systems leads to requirements that include the following:

• Resource virtualization. Essential to reduce the complexity of managing heterogeneous
systems and to handle diverse resources in a unified way.

• Common management capabilities. Simplifying administration of a heterogeneous system
requires mechanisms for uniform and consistent management of resources. A minimum set
of common manageability capabilities is required.

• Resource discovery and query. Mechanisms are required for discovering resources with
desired attributes and for retrieving their properties. Discovery and query should handle a
highly dynamic and heterogeneous system.

• Standard protocols and schemas. Important for interoperability. In addition, standard
protocols are also particularly important as their use can simplify the transition to using
Grids.

2.2 Resource Sharing Across Organizations
The Grid is not a monolithic system but will often be composed of resources owned and
controlled by various organizations. One major purpose of OGSA is to support resource sharing
and utilization across administrative domains, whether different work units within an enterprise
or even different institutions. Mechanisms are needed to provide a context that can be used to
associate users, requests, resources, policies, and agreements across organizational boundaries.
Sharing resources across organizations also implies various security requirements, a topic we
address in §2.7.

Resource sharing requirements include:

• Global name space. To ease data and resource access. OGSA entities should be able to
access other OGSA entities transparently, subject to security constraints, without regard to
location or replication.

• Metadata services. Important for finding, invoking, and tracking entities. It should be
possible to allow for access to and propagation, aggregation, and management of entity
metadata across administrative domains.

• Site autonomy. Mechanisms are required for accessing resources across sites while
respecting local control and policy (see Delegation in §2.7).

• Resource usage data. Mechanisms and standard schemas for collecting and exchanging
resource usage (i.e., consumption) data across organizations—for the purpose of
accounting, billing, etc.

2.3 Optimization
Optimization refers to techniques used to allocate resources effectively to meet consumer and
supplier requirements. Optimization applies to both suppliers (supply-side) and consumers
(consume-side) of resources and services. One common case of supply-side optimization is
resource optimization. For example, resource allocation often provides for worst case scenarios
(e.g., highest expected load, backup against failures) and leads to resource underutilization.

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 8

Resource utilization can be improved by flexible resource allocation policies such as advance
reservation of resources with a bounded time period and the pooling of backup resources.

Demand-side optimization must be able to manage various types of workload, including the
demands of aggregate workloads, which can be difficult to predict. An important requirement in
this area is the ability to dynamically adjust workload priorities in order to meet the overall
service level objectives. Mechanisms for tracking resource utilization, including metering,
monitoring and logging; for changing resource allocation; and for provisioning resources on-
demand are the required foundation of demand-side optimization.

2.4 Quality of Service (QoS) Assurance
Services such as job execution and data services must provide the agreed-upon QoS. Key QoS
dimensions include, but are not limited to, availability, security, and performance. QoS
expectations should be expressed using measurable terms.

QoS assurance requirements include:

• Service level agreement. QoS should be represented by agreements which are established
by negotiating between service requester and provider prior to service execution.
Standard mechanisms should be provided to create and manage agreements.

• Service level attainment. If the agreement requires attainment of Service Level, the
resources used by the service should be adjusted so that the required QoS is maintained.
Therefore, mechanisms for monitoring services quality, estimating resource utilization,
and planning for and adjusting resource usage are required.

• Migration. It should be possible to migrate executing services or applications to adjust
workloads for performance or availability.

2.5 Job Execution
OGSA must provide manageability for execution of user-defined work (jobs) throughout their
lifetime. Functions such as scheduling, provisioning, job control and exception handling of jobs
must be supported, even when the job is distributed over a great number of heterogeneous
resources.

Job execution requirements include:

• Support for various job types. Execution of various types of jobs must be supported
including simple jobs and complex jobs such as workflow and composite services.

• Job management. It is essential to be able to manage jobs during their entire lifetimes.
Jobs must support manageability interfaces and these interfaces must work with various
types of groupings of jobs (e.g., workflows, job arrays). Mechanisms are also required for
controlling the execution of individual job steps as well as orchestration or choreography
services.

• Scheduling. The ability to schedule and execute jobs based on such information as
specified priority and current allocation of resources is required. It is also required to
realize mechanisms for scheduling across administrative domains, using multiple
schedulers.

• Resource provisioning. To automate the complicated process of resource allocation,
deployment, and configuration. It must be possible to deploy the required applications
and data to resources and configure them automatically, if necessary deploying and re-
configuring hosting environments such as OS and middleware to prepare the environment

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 9

needed for job execution. It must be possible to provision any type of resource not just
compute resources, for example, network or data resources.

2.6 Data Services
Efficient access to and movement of huge quantities of data is required in more and more fields
of science and technology. In addition, data sharing is important, for example enabling access to
information stored in databases that are managed and administered independently. In business
areas, archiving of data and data management are essential requirements.

Data services requirements include:

• Data access. Easy and efficient access to various types of data (such as database, files,
and streams), independent of its physical location or platform, by abstracting underlying
data sources is required. Mechanisms are also required for controlling access rights at
different levels of granularity.

• Data consistency. OGSA must ensure that consistency can be maintained when cached or
replicated data is modified.

• Data persistency. Data and its association with its metadata should be maintained for
their entire lifetime. It should be possible to use multiple persistency models.

• Data integration. OGSA should provide mechanisms for integrating heterogeneous,
federated and distributed data. It is also required to be able to search data available in
various formats in a uniform way.

• Data location management. The required data should be made available at the requested
location. OGSA should allow for selection in various ways, such as transfer, copying, and
caching, according to the nature of data.

2.7 Security
Safe administration requires controlling access to services through robust security protocols and
according to provided security policy. For example, obtaining application programs and
deploying them into a Grid system may require authentication and authorization. Also sharing of
resources by users requires some kind of isolation mechanism. In addition, standard, secure
mechanisms are required which can be deployed to protect Grid systems while supporting safe
resource-sharing across administrative domains.

Security requirements include:

• Authentication and authorization. Authentication mechanisms are required so that the
identity of individuals and services can be established. Service providers must
implement authorization mechanisms to enforce policy over how each service can be
used. The Grid system should follow each domain’s security policies and also may have
to identify users’ security policies. Authorization should accommodate various access
control models and implementations.

• Multiple security infrastructures. Distributed operation implies a need to integrate and
interoperate with multiple security infrastructures. OGSA needs to integrate and
interoperate with existing security architectures and models.

• Perimeter security solutions. Resources may have to be accessed across organizational
boundaries. OGSA requires standard and secure mechanisms that can be deployed to
protect organizations while also enabling cross-domain interaction without

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 10

compromising local security mechanisms, such as firewall policy and intrusion-
detection policy.

• Isolation. Various kinds of isolation must be ensured, such as isolation of users,
performance isolation, and isolation between content offerings within the same Grid
system.

• Delegation. Mechanisms that allow for delegation of access rights from service
requestors to service providers are required. The risk of misuse of delegated rights must
be minimized, for example by restricting the rights transferred through delegation to the
intended job and limiting their lifetimes.

• Security policy exchange. Service requestors and providers should be able to exchange
dynamically security policy information to establish a negotiated security context
between them.

• Intrusion detection, protection, and secure logging. Strong monitoring is required for
intrusion detection and identification of misuses, malicious or otherwise, including virus
or worm attacks. It should also be possible to protect critical areas or functions by
migrating attacks away from them.

2.8 Administrative Cost Reduction
The complexity of administering large-scale distributed, heterogeneous systems increases
administration costs and the risk of human errors. Support for administration tasks, by automating
administrative operations and consistent management of virtualized resources, is needed.

Policy-based management is required to automate Grid system control, so that its operations
conform to the goals of the organization that operates and utilizes the Grid system. From the low-
level policies that govern how the resources are monitored and managed to high-level policies
that govern how business processes such as billing are managed, there may be policies at every
level of the system. Policies may include availability, performance, security, scheduling, and
brokering.

Application contents management mechanisms can facilitate the deployment, configuration, and
maintenance of complex systems, by allowing all application-related information to be specified
and managed as a single logical unit. This approach allows administrators to maintain application
components in a concise and reliable manner, even without expert knowledge about the
applications.

Problem determination mechanisms are needed, so that administrators can recognize and cope
quickly with emerging problems.

2.9 Scalability
A large-scale Grid system can create added value such as drastically reducing job turn around (or
elapsed) time, allowing for utilizing huge number of resources, thereby enabling new services.
However, the large scale of the system may present problems, since it places novel demands on
the management infrastructure.

The management architecture needs to scale to potentially thousands of resources of a widely
varied nature. Management needs to be done in a hierarchical or peer-to-peer
(federated/collaborative) fashion.

High-throughput computing mechanisms are required for adjusting and optimizing parallel job
execution in order to improve throughput of the entire computational process, as well as
optimizing a single computation.

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 11

2.10 Availability
High availability is often realized by expensive fault-tolerant hardware or complex cluster
systems. Because of the widespread use of IT systems to provide essential public infrastructure
services, an increasing number of systems are required to operate at a high level of availability.
Since Grid technologies enable transparent access to a wider resource pool, across organizations
as well as within organizations, they can be used as one building block to realize stable, highly-
reliable execution environments. But due to the heterogeneity of the Grid, components with
longer or more unpredictable mean-time-to-repair (MTTR) characteristics than those generally
used in existing high-reliability systems have to be used, presenting difficult problems.

In such a complex environment, policy-based autonomous control (see Policy-based Management
in §2.8) and dynamic provisioning (see Provisioning in §2.5) are keys to realizing systems of high
flexibility and recoverability.

Disaster recovery mechanisms are needed so that the operation of a Grid system can be recovered
quickly and efficiently in case of natural or human-caused disaster, avoiding long-term service
disruption. Remote backup and simplifying or automating recovery procedures is required.

Fault management mechanisms can be required so that running jobs are not lost because of
resource faults. Mechanisms are required for monitoring, fault detection, and diagnosis of causes
or impacts on running jobs. In addition, automation of fault-handling, using techniques such as
checkpoint recovery, is desirable.

2.11 Ease of Use and Extensibility
The user should be able to use OGSA to mask the complexity of the environment if so required.
As much as possible, tools, acting in concert with run-time facilities, must manage the
environment for the user and provide useful abstractions at the desired level. Tempering this ease-
of-use objective is the knowledge that there are “power users” with demanding applications that
will require, and demand, the capability to make low-level decisions and to interface with low-
level system mechanisms. Therefore it should be possible for end-users to choose the level at
which they wish to interact with the system.

It is not possible to predict all of the many and varied needs that users will have. Therefore,
mechanism and policy must be realized via extensible and replaceable components, to permit
OGSA to evolve over time and allow users to construct their own mechanisms and policies to
meet specific needs. Further, the core system components themselves must be extensible and
replaceable. Such extensibility will allow third party (or site-local) implementations which
provide value-added services to be developed and used. Extensibility and customization must be
provided for in a way that does not compromise interoperability.

3 Capabilities
We now turn to the specific capabilities required to meet the requirements introduced above.

3.1 Overview
OGSA is intended to facilitate the seamless use and management of distributed, heterogeneous
resources. In this architecture, the terms “distributed,” “heterogeneous” and “resources” are used
in their broad sense. For example: “distributed” could refer to a spectrum from geographically-
contiguous resources linked to each other by some connection fabric to global, multi-domain,
loosely- and intermittently-connected resources. “Resources” refers to any artifact, entity or
knowledge required to complete an operation in or on the system. The utility provided by such an
infrastructure is realized as a set of capabilities. Figure 1 shows the logical, abstract, semi-layered

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 12

representation of some of these capabilities. Three major logical and abstract tiers are envisioned
in this representation.

The first (bottom) tier of the representation in Figure 1 depicts the base resources. Base resources
are those resources that are supported by some underlying entities or artifacts that may be
physical or logical, and that have relevance outside of the OGSA context. Examples of such
physical entities include CPUs, memory, and disks, and examples of such logical artifacts include
licenses, contents, and OS processes. The virtualizations are tightly-coupled with the entities that
they virtualize, and hence the nomenclature used to name the underlying entities or artifacts is
also used to name their virtualizations. These resources are usually locally owned and managed,
but may be shared remotely. The configuration and customization is also done locally. Since the
actual entities or artifacts can change rapidly, and can be from multiple sources, these resources
can vary greatly in their characteristics, quality of service, version, availability etc.

Although in this discussion a distinction of base resources is made to tie OGSA concepts to
traditional notions of resources, further discussion in this document makes no specific distinction
between base resources and other services as resources, and only the generalized notion of
resources is used.

Figure 1: Conceptual view of Grid infrastructures

(NOTE: The capabilities and resources depicted in the diagram are not an exhaustive list,
 and have been kept minimal for clarity.)

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 13

The second (middle) tier represents a higher level of virtualization and logical abstraction. The
virtualization and abstraction are directed toward defining a wide variety of capabilities that are
relevant to OGSA Grids. These capabilities can be utilized individually or composed as
appropriate to provide the infrastructure required to support higher-level applications or “user”
domain processes. This set of capabilities, as defined in OGSA, is relatively invariant and
standard. The manner in which these capabilities are realized or implemented and further
composed and extended by user-domain applications determines the macro (system level) QoS of
the larger infrastructure, as experienced by an end-user. It should be noted that the capabilities
shown in the diagram only represent a sample of the OGSA capabilities, and that a more
complete set is discussed in the rest of this chapter.

It is worth going into more detail on the relationship between the middle and bottom tiers in
Figure 1. The service-oriented nature of OGSA implies that virtualized resources that are
represented as services are peers to other services in the architecture (for example services in the
middle and top tiers). The peer relationship implies that service interaction can be initiated by any
service in the architecture. Furthermore the services in the second tier need to use and manage the
virtualizations (resources) in the bottom tier to deliver the capabilities that an individual service
(or collection/composition of services) is to provide. This close relationship is indicated by the
finer (thin line) demarcation of the bottom and middle layers in Figure 1. Hence the entities in the
lower layer may be regarded as relevant to, and part of, the OGSA discussion.

At the third (top) tier in the logical representation are the applications and other entities that use
the OGSA capabilities to realize user- and domain-oriented functions and processes, such as
business processes. These are, for the most part, outside the purview of OGSA, but they drive the
definition of the architecture from the use cases that the infrastructure should support (see Table 1
for a list of use cases that are currently known. It should be noted that this list of use cases is not
exhaustive and is expected to grow in the future).

All of these tiers need to interoperate and work synergistically to deliver the required quality of
service (QoS). Since this is the QoS of the entire system, including the application tier (or at the
very least the services participating in the specific user scenario) that determines the user
experience, this is designated as the “Macro Quality of Service.” This is shown by the dotted
arrows in Figure 1.

3.2 OGSA Framework
OGSA realizes the logical middle layer in Figure 1 in terms of services, the interfaces these
services expose, the individual and collective state of resources belonging to these services, and
the interaction between these services within a service-oriented architecture (SOA). The OGSA
services framework is shown in Figure 2 and Figure 3. In the figures cylinders represent
individual services. The services are built on Web service standards, with semantics, additions,
extensions and modifications that are relevant to Grids.

A few important points are to be noted:

• An important motivation for OGSA is the composition paradigm or building block
approach, where a set of capabilities or functions is built or adapted as required, from a
minimalist set of initial capabilities, to meet a need. No prior knowledge of this need is
assumed. This provides the adaptability, flexibility and robustness to change that is
required in the architecture.

• OGSA represents the services, their interfaces, and the semantics/behavior and
interaction of these services. It should be noted that the software architecture driving the
implementation of the internals of these services is outside the OGSA working group’s
scope.

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 14

• In addition, the architecture is not layered, where the implementation of one service is
built upon, and can only interact with, the layer upon which it is logically dependent; or
object-oriented—though many of the concepts may seem to be object-based.

Services are loosely coupled peers that, either singly or as part of an interacting group of services,
realize the capabilities of OGSA through implementation, composition, or interaction with other
services (see Figure 2 and Figure 3). For example: to realize the “orchestration” capability a
group of services might be structured such that one set of services in the group drives the
orchestration (i.e., acts as the “orchestrator”), while other services in the group provide the
interfaces and mechanisms to be orchestrated (i.e., be the “orchestratees”). A specific service may
implement and/or participate in multiple collections and interactions to realize different
capabilities. On the other hand, it is not necessary that all services participate to realize a
particular capability.

The services may be part of, or participate in, virtual collections called virtual domains (see
Figure 2) to realize a capability, as in service groups, or to share a collective context or
manageability framework, as in virtual organizations.

OGSA services require and assume a physical environment that may include well-known physical
components and interconnects such as computing hardware and networks, and perhaps even
physical equipment such as telescopes.

Physical Environment

Security
• Authentication
• Authorization
• Policy
implementation

Resources
• Virtualization
• Management
• Optimization

Execution
Management

• Execution Planning
• Workflow
• Work managers

Provisioning
• Configuration
• Deployment
• Optimization

Data
• Storage Mgmt.
• Transport
• Replica Mgmt.

Virtual
Domains

• Service Groups
• Virtual
Organizations

Physical
Environment

• Hardware
• Network
• Sensors
• Equipment

Infrastructure
Profile

• Required interfaces
supported by all services

Figure 2: OGSA framework

(NOTE: The capabilities listed here are not exhaustive. See the rest of this chapter for more details)

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 15

It is expected that there may be a core set of non-null interfaces, standards and common
knowledge/bootstrap that services must implement to be part of an OGSA Grid. This set of
common implementations and manifestations to support OGSA is referred to as the infrastructure
services or the Grid fabric. As noted in the next section (§3.3), we assume that the Web Services
Resource Framework (WS-RF) specification, currently under development, will be part of the
initial Grid fabric. We describe additional standards that could be a part of the Grid fabric in §3.3.

Figure 3 shows a different view of Figure 2 focusing on a number of possible relationships and
interactions between OGSA services. Cylinders represent individual services on a physical
infrastructure layer. Each “level” in the figure is a collection representing a single capability—
one “level” may realize the Execution Management capability while another may realize the Data
management capability. (Note, however, that no hierarchical or stacking relation is intended
between the different “levels”). The relationships shown are between specific services and may
span capabilities. Some examples of the types of relationships that services may exhibit are uses,
composes, delegates, refers, and extends. Aspects of service interactions for other purposes such
as management/manageability and declarative specification of service profiles can also be
modeled with relationships.

3.3 Infrastructure Services
Our goal in defining OGSA is to define a coherent and integrated set of components that
collectively address the requirements identified in §2, within the context of a service-oriented
architecture. We must necessarily make assumptions about the infrastructure on which we build if
we are to make concrete statements about higher-level services. There are many examples of

Figure 3: Service Relationships

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 16

specifications that tried to be too abstract and did not achieve their goals. For example, CORBA
1.1 failed to achieve interoperability because service names depended on implementation. Thus,
just as the designs of TCP, DNS, and other higher-level TCP protocols and services are informed
by the properties of the IP substrate on which they build, so our design of OGSA is influenced by
our choice of underlying mechanisms. Here we list, and to some extent justify, those choices.

The primary assumption is that work on OGSA both builds on, and is contributing to the
development of, the growing collection of technical specifications that form the emerging Web
Services Architecture [WS-Architecture]. Indeed, OGSA can be viewed as a particular profile for
the application of core WS standards. We made this choice because of a strong belief in the
merits of a service-oriented architecture and our belief that the Web Services Architecture is the
most effective route to follow to achieve a broadly-adopted, industry-standard service-oriented
rendering of the functionality required for Grid systems.

This choice of Web services as an infrastructure and framework means that we assume that
OGSA systems and applications are structured according to service-oriented architecture
principles, and that service interfaces are defined by the Web Services Description Language
(WSDL). For now, we assume WSDL 1.1, with a move to WSDL 2.0 planned once that latter
specification is finalized. We also assume XML as the lingua franca for description and
representation (although recognizing that other representations may be required in some contexts,
for example when performance is critical) and SOAP as the primary message exchange format for
OGSA services. In addition, we seek to develop service definitions that are consistent with the
interoperability profiles defined through the WS Interoperability (WS-I) process.

While thus working within a Web services framework, it is clear that Web services standards as
currently defined do not, and are not designed to, meet all Grid requirements. In some cases,
existing specifications may require modification or extension. Thus, OGSA architects have been
involved in the definition of WSDL 2.0 and in the review of WS-Security and related
specifications, and we identify in this document other areas in which extensions to existing
specifications are desirable. In other cases, Grid requirements motivate the introduction of
entirely new service definitions.

One key area in which Grid requirements motivate extensions to existing specifications is
security. Security issues arise at various layers of the OGSA infrastructure. We use WS-Security
standard protocols to permit OGSA service requests to carry appropriate tokens securely for
purposes of authentication, authorization, and message protection. End-to-end message protection
is required by some scenarios addressed by the OGSA infrastructure, and thus OGSA must also
provide for higher-level protection mechanisms such as XML encryption and digital signatures in
addition to, or in place of, point-to-point transport-level security, such as TLS and IPsec. In
addition to message-level security, an interoperable and composable infrastructure needs security
components to be themselves rendered as services. There are various efforts underway to specify
service definitions for these security services. For example, an OGSA authorization service may
use the proposed WS-Agreement standard along with evolving OASIS1 standards including
SAML and XACML to express security assertions and access control descriptions. When and
where appropriate, OGSA will adopt, or define, those security services.

A key area in which Grid requirements have motivated new specifications—specifications that
have relevance beyond Grid scenarios—is in the area of state representation and manipulation. In
particular, we assume as building blocks the interfaces and behaviors defined by the WS
Resource Framework (WSRF) [WS-RF], the refactoring of the Open Grid Services Infrastructure

1 http://www.oasis-open.org/home/index.php

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 17

(OGSI) [OGSI]. WSRF defines an approach to modeling, accessing, and managing state; to
grouping services; and to expressing faults. These mechanisms all have a fundamental role to
play in constructing Grid systems. In addition, WSRF is being used or considered for use in a
variety of resource modeling and systems management standards efforts, such as the OASIS
WSDM Technical Committee; thus, OGSA-related standards that build on WSRF are likely to be
well-positioned for composition with efforts from these standards bodies.

Finally, we assume notification or eventing capabilities such as those defined within the WS-
Notification specifications [WS-N]. These specifications, derived like WSRF from OGSI, define
notification mechanisms that build on WSRF mechanisms to support subscription to, and
subsequent notification of changes to, state components. (The WS-Eventing specification
provides similar mechanisms, but does not yet connect to WSRF.)

3.4 Execution Management Services
Execution Management Services (OGSA-EMS) are concerned with the problems of instantiating
and managing, to completion, units of work. Examples of units of work may include either
OGSA applications or legacy (non-OGSA) applications (a database server, a servlet running in a
Java application server container, etc).

3.4.1 Objectives
The following example illustrates some of the issues to be addressed by EMS. An application
needs a cache service. Should it use an existing service or create a new one? If it creates a new
service, where should it be placed? How will it be configured? How will adequate resources (e.g.,
memory, disk, CPU) be provided for the cache service? What sort of service agreements can the
cache service make? What sort of agreements does it require?

Similarly, suppose a user wants to run a legacy program. In application areas and industries as
diverse as bioinformatics, electronic design automation, weather forecasting, aerospace, financial
services, and many others there are a class of applications that take some input data (often in
files) and parameters and generate outputs. Many of these application instances are run in what
are often called “embarrassingly-parallel parameter space studies.” A good example of this in
bioinformatics is BLAST—an application that compares a DNA or protein sequence against a
target database and generates a list of similarity scores. An example from aerospace is
Overflow—a computation fluid dynamics (CFD) code that is used in aircraft simulations. Issues
to be addressed when executing such legacy applications include: where will the program run;
how are the data files and executables staged to the execution location; what happens if execution
fails; will execution be restarted, and if so how; and so on. Hereafter we will use BLAST as a
canonical example.

More formally, EMS addresses problems with executing units of work, including their placement,
“provisioning,” and lifetime management. These problems include, but are not limited to:

• Finding execution candidate locations. What are the locations at which a unit of work can
execute because they satisfy resource restrictions such as memory, CPU and binary type,
available libraries, and available licenses? Given the above, what policy restrictions are in
place that may further limit the candidate set of execution locations?

• Selecting execution location. Once it is known where a unit of work can execute, the question
is where should it execute? Answering this question may involve different selection
algorithms that optimize different objective functions or attempt to enforce different policies
or service level agreements.

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 18

• Preparing for execution. Just because a unit of work can execute somewhere does not
necessarily mean it can execute there without some setup. Setup could include deployment
and configuration of binaries and libraries, staging data, or other operations to prepare the
local execution environment.

• Initiating the execution. Once everything is ready, actually starting the execution and carrying
out other related actions such as registering it in the appropriate places.

• Managing the execution. Once the execution is started it must be managed and monitored to
completion. What if it fails? Or fails to meet its agreements. Should it be restarted in another
location? What about state? Should the state be “checkpointed” periodically to ensure
restartability? Is the execution part of some sort of fault-detection and recovery scheme?

These are the major issues to be addressed by EMS. As one can see, it covers the gamut of tasks,
and will involve interactions with many other OGSA services (e.g., provisioning, logging,
registries, and security.) that are expected to be defined by other OGSA capabilities. Refer to
§3.4.7 for more details.

EMS is important because we cannot just assume a static environment and use registries such as
UDDI. We expect Grids to be used in a large number of settings where the set of available
resources, and the load presented to those resources, are highly variable and require high levels of
dependability. For example, in any dynamically provisioned computing environment, the set of
resources in use by an application may vary over time, and satisfying the application
requirements and service level agreements may require temporarily acquiring the use of remote
resources. Similarly, to respond to unexpected failures and meet service level guarantees may
require finding available resources and restarting executions on those resources. The common
theme is the need to monitor application needs and to respond dynamically to those needs until
completion.

3.4.2 Approach
The solution consists of a set of services that decompose the EMS problem into multiple,
replaceable components. Different use cases may use different subsets of these services to realize
their objectives. In general, though, one can think of EMS as consisting of a supply side and a
demand side. Suppliers provide resources: CPU, disk, data, memory, and services. Consumers use
those resources. On the demand side are tools such as workload management systems, workflow
systems, and so on. On the supply side are services that manage and supply resources—and
enforce policy and service agreements. Figure 4 illustrates a generic framework.

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 19

Figure 4: Notional meta-model for EMS divides the world into a supply side and a demand side.

EMS services enable applications to have coordinated access to underlying resources, regardless
of their physical locations or access mechanisms. EMS services are the key to making resources
easily accessible to end-users, by automatically matching the requirements of a Grid application
with the available resources.

EMS consists of a number of services working together. Below we describe these services.
Before we proceed, though, a few caveats and comments are in order.

First, not all services will be used all of the time. Some Grid implementations will not need some
of the services—or may encapsulate some services within other services and not make them
directly available. In general, we have tried to decompose this capability into services around
those functions that we have seen again and again in different Grid implementations—in other
words those functions that not only does one normally need to use, but also that are interfaces
where one or more different implementations may be desirable.

Second, this is the first pass at the definitions. It is not our objective in this document to
completely define the services. Rather it is our intention to identify key components and their
higher level interactions.

Third, we want to emphasize that these definitions and services will be applicable to general Web
service execution—not just to the execution of legacy “jobs.”

Finally, in this document we assume the existence of a “resource handle.” A resource handle is an
abstract name (see §3.9.4.1 and §3.4.7.2) for a resource and its associated state, if any. We also
assume that a mechanism exists (defined outside the scope of this document) that binds a resource
handle to a “resource address.” A resource address (see address in §3.4.7.2 and §3.9.4.1)
contains protocol-specific information needed to communicate with the resource. We will use RH
to denote a resource handle, and RA to denote a resource address.

Workload Mgmt. Framework

User/Job
Proxies

Environment
Mgmt.

Policies

“ Supply”“ Demand ”
Resource Mgmt. Framework

Optimizing Framework

Resource Selection

Resource – Workload
Optimal Mapping

Workload Optimization

Workload Post Balancing

Workload Optimizing Framework

Workload Optimization

Workload Orchestration

Workload Models
(History/Prediction)

Dependency management

Scheduling Resource Optimizing Framework

Capacity Management

Resource Placement

Primary Interaction

Meta - Interaction

Represents one or more OGSA services
Note that not all services depicted in the
figure are described in this document.

Job
Factory

Admission Control (Workload)

SLA Management (Workload)

Queuing Services

Policies

Selection Context (e.g. VO)

Admission Control (Resources)

Quality of Service (Resources)

Information Provider

Resource Provisioning

CMM Reservation

Resource
Factory

Resource
Allocation

(or Binding)

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 20

3.4.3 EMS Services
There are three broad classes of EMS services:

• Resources that model processing, storage, executables, resource management, and
provisioning;

• Job management and monitoring services; and
• Resource selection services that collectively decide where to execute a unit of work.

We also assume the availability of data management services (§3.4), security services (§3.6), and
logging services (§3.8.3.3). Interactions with these services will be developed in later versions of
this document.

3.4.4 Resources

3.4.4.1 Service Container
A service container, hereafter just a container, “contains” running entities, whether they are
“jobs” (described later) or running Web services. A container may, for example, be a queuing
service, a Unix host, a J2EE hosting environment, or a collection of containers (a façade or a VO
of job containers). Containers have resources properties that describe both static information such
as what kind of executables they can take, OS version, libraries installed, policies, and security
environment, as well as dynamic information such as load and QoS information.

A container implements some subset of the manageability interfaces of a WSDM managed
resource. Extended interfaces that provide additional services beyond the basic service container
are expected.

Containers will have various relationships to other resources that will be exposed to clients. For
example, a container may have a “compatibility” relationship with data containers that indicates
that entities running “in” a container can access persistent data “in” a particular data container.
Other managed resources might be a deployed operating system or a physical network.

Finally, we expect containers to use reservation services, logging services, information services,
job management services, and provisioning services.

3.4.4.2 Persistent State Handle Service (PSHS)
A Persistent State Handle Service (PSHS) keeps track of the “location” of persistent state. Such a
service may be implemented in different ways, including a file system, database, or hierarchical
storage system. A PSHS has methods to get a “resource handle” (RH) to persistent state that it is
managing. The form of the RH depends on how the state is actually stored. A persistent state
“resource address” (RA) may be a path name in a file system or a primary key value in a
database. The important notion is that the RA can be used to directly access the data.

A PSHS implements the manageability interfaces of a WSDM managed resource. Extended
interfaces that provide additional services beyond the basic data container are expected. PSHSs
also have methods for managing their contained RHs, including passing it to other PSHSs. This
facilitates both migration and replication.

Another way to think about a PSHS is that it is a metadata repository that provides information on
how to get to the data efficiently using native mechanisms, e.g., a mount point, a database key, or
a path.

Note that a PSHS is not a data service. Rather it is a means of keeping track of where the state of
executing entities is kept so that it can be accessed quickly if necessary.

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 21

3.4.5 Job Management

3.4.5.1 Job
The OGSA-EMS definition of a job incorporates and extends the notion of a traditional job. The
job encapsulates all there is to know about a particular unit of work (i.e., an instance of a running
application (such as BLAST) or a service). A job is the smallest unit that is managed. It
represents the manageability aspect of a unit of work: it is not the same as the actual running
application, or the execution aspect of the unit of work. (Note, however, that in this document the
term “job” may also be used informally in place of “unit of work,” for example, in statements
such as “submitting a job,” or “executing a job.”)

A job implements some subset of the manageability interfaces of a WSDM managed resource. A
job is named by a distinct resource handle (RH). It is created at the instant that it is requested,
even though at that point no resources may have been committed. The job keeps track of
execution state (e.g., started, suspended, restarted, terminated, completed), resource commitments
and agreements, job requirements, and so on. Many of these are stored in a job document.

A job document describes the state of the job—e.g., the submission description (JSDL [JSDL]),
the agreements that have been acquired, its job status, metadata about the user (credentials etc.),
and how many times the job has been started. We do not include in “state” application-specific
details such as the internal memory of the executing application program.

The job document is exposed as a resource property of the job. The logical view is of one large
document that consists of one or more—possibly many—subdocuments. These subdocuments
can be retrieved independently. The organization of the subdocuments will be subject to further
specification.

3.4.5.2 Job Manager
The Job Manager (JM) is a higher-level service that encapsulates all of the aspects of executing a
job, or a set of jobs, from start to finish. A set of jobs may be structured (e.g., a workflow or
dependence graph) or unstructured (e.g., an array of non-interacting jobs). The JM may be a
portal that interacts with users and manages jobs on their behalf.

The JM will likely interact with an Execution Planning Services (see §3.4.6.1), the deployment
and configuration system, containers, and monitoring services. Further, it may deal with failures
and restarts, it may schedule jobs to resources, and it may collect agreements and reservations.

The JM is likely to implement the manageability interfaces of a WSDM collection, which is a
collection of manageable entities. A WSDM collection can expose as its methods some of the
methods exposed by the members of its collection.

The JM is responsible for orchestrating the services used to start a job or set of jobs, by, for
example, negotiating agreements, interacting with containers, and configuring monitoring and
logging services. It may also aggregate job resource properties from the set of jobs it manages.

Examples of JMs are:

• A “queue” that accepts “jobs,” prioritizes them, and distributes them to different resources for
computation. (Similar to JobQueue [JobQueue] or Condor [Condor].) The JM would track
jobs, may prioritize jobs, and may have QoS facilities, a maximum number of outstanding
jobs, and a set of service containers in which it places jobs.

• A portal that interacts with end-users to collect job data and requirements, schedule those
jobs, and return the results.

• A workflow manager that receives a set of job descriptions, QoS requirements, their
dependence relationships, and initial data sets (think of it as a data flow graph with an initial

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 22

marking), and schedules and manages the workflow to completion—perhaps even through a
number of failures. (In this case a node could be another workflow job manager). (Similar in
concept to parts of DAGman2.)

• An array job manager that takes a set of identical jobs with slightly different parameters and
manages them through completion, for example, Nimrod [Nimrod].

3.4.6 Selection Services

3.4.6.1 Execution Planning Services (EPS)
An Execution Planning Service (EPS) is a service that builds mappings called “schedules”
between jobs and resources. A schedule is a mapping (relation) between services and resources,
possibly with time constraints. A schedule can be extended with a list of alternative “schedule
deltas” that basically say “if this part of the schedule fails, try this one instead.”

An EPS will typically attempt to optimize some objective function such as execution time, cost,
reliability, etc. An EPS will not enact the schedule; it will simply generate it. The enactment of a
schedule is typically done by the JM. An EPS will likely use information services and Candidate
Set Generators (CSG, see below). For example, first call a CSG to get a set of resources, then get
more current information on those resources from an information service, then execute the
optimization function to build the schedule.

3.4.6.2 Candidate Set Generator (CSG)
The basic idea is quite simple: determine the set of resources on which a unit of work can
execute—“where is it possible to execute?”, rather than “where will it execute?” This may
involve issues such as what binaries are available, special application requirements (e.g., 4GB
memory and 40GB temporary disk space, xyz library installed), and security and trust issues (“I
won’t let my job run on a resource unless it is certified Grade A+ by the Pure Computing
Association,” or “they won’t let me run there until my binary is certified safe,” or “will they
accept my credit card?”).

A Candidate Set Generator (CSG) generates a set of containers (more precisely their RHs) in
which it is possible to run a job named by a RH. The set of resources to search over may either be
a default for the particular service or be passed in as a parameter.

We expect CSGs to be primarily called by EPSs, or by other services such as JMs that are
performing EPS functions. We expect CSGs to use information services, to access jobs to acquire
appropriate pieces of the job document, and to interact with provisioning and container services
to determine if it is possible to configure a container for a particular execution.

3.4.6.3 Reservation services
Reservation services manage reservations of resources, interact with accounting services (there
may be a charge for making a reservation), revoke reservations, etc. This may not be a separate
service, rather an interface to get and manage reservations from containers and other resources.
The reservation itself is likely to be an agreement document that is signed.

A reservation service presents a common interface to all varieties of reservable resources on the
Grid. Reservable resources could include (but are not limited to) computing resources such as
CPUs and memory, graphics pipes for visualization, storage space, network bandwidth, special-
purpose instruments (e.g., radio telescope), etc.

A reservation could also be an aggregation of a group of lower-level reservations, as might be
negotiated and “resold” by a resource broker.

2 http://www.cs.wisc.edu/condor/dagman/

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 23

Reservation services will generally be used by many different services: a JM might create
reservations for the groups of jobs which are being managed, or an EPS might use reservations in
order to guarantee the execution plan for a particular job. It could also be the case that the
creation of reservations will be associated with the provisioning step for a job.

3.4.7 Interactions with the rest of OGSA
This section details the interactions between the EMS and other parts of OGSA.

3.4.7.1 Deployment & Configuration Service
Often before a service or data container can be used by a unit of work, it must be configured or
provisioned with additional resources. For example, before running BLAST on a host, a user
must ensure that the BLAST executable and its configuration files are accessible to the host. A
more in-depth example is the configuration of a complex application and installation of
appropriate databases, or installing Linux on a host as a first step to using the host as a compute
resource.

3.4.7.2 Naming
OGSA-EMS uses OGSA-naming, see §3.9.4.1. For example, in a sophisticated job queuing
system which has checkpoint and restart feature for availability or load balancing purpose, an
address of the job may specify the location of a job on a particular machine. The abstract name
will identify the job in a location-independent but universal way, for example the abstract name
should be the same before and after the job migration. The human-oriented name may be a user-
friendly short job name that can be disambiguated by referring to the context in which it is used.

3.4.7.3 Information Service
In brief, information services are databases of attribute metadata about resources. Within EMS,
information services are used by many of the different services: for example, containers need to
publish information about their attributes so that CSG services can evaluate the suitability of a
container for a job; an EPS might read policy information for a VO from an information service;
and the PSHS itself could be implemented using information services. How the information
service gets its information is unspecified, although we expect “freshness” to be an attribute on
data. In this sense, OGSA information services are similar to MDS services in Globus [Globus
MDS] and collections in Legion [Legion].

3.4.7.4 Monitoring
Simply starting something up is often insufficient. Applications (which may include many
different services or components) often need to be continuously monitored, for both fault-
tolerance reasons and QoS reasons. For example, the conditions on a given host that originally
caused the scheduler to select it may have changed, possibly indicating the need for rescheduling.

3.4.7.5 Fault-Detection and Recovery Services
Fault-detection and recovery services may or may not be a part of monitoring, and may include
support for managing simple schemes for stateless functions that allow trading off performance
and resource usage; slightly more complex schemes that manage checkpointing and recovery of
single-threaded (process) jobs; and still more complex schemes that manage applications with
distributed state, such as MPI jobs.

3.4.7.6 Auditing, billing and logging services
Auditing, logging, and billing services are critical for the success of OGSA. This will include the
ability for schedulers to interact with resources to establish prices, as well as for resources to

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 24

interact with accounting and billing services. For example, assuming logging as the basis of the
whole chain.

• Metering is using the log to keep track of resource usage.
• Auditing is using the log in persistent fashion, possibly non-repudiation as well.
• Billing is yet another service, not defined by OGSA, that may use auditing and/or metering

logs and other data to generate bills, or chargeback.

3.4.7.7 Accounting
Like a credit card, some resources need to see if the user has enough credit to pay. The scheduler
may need to interact with the accounting services, as may certain resources such as containers.

3.4.8 Example Scenarios
The best way to understand these services is to see how they are used to realize concrete use
cases. We have selected three use cases to demonstrate: a system patch tool, deploying a data
caching service, and a legacy application execution.

3.4.8.1 Case 1: System Patch Tool
Often operating system patches or library updates need to be applied to a large number of hosts.
This can be done in several ways. One commonly-used technique is to run a script on each host in
a system that copies the appropriate files. These scripts are often initiated using tools such as
“rsh” or “ssh,” and are called from shell scripts that iterate over a set of hosts to be patched.
Alternatively, hosts may periodically check if they need an update, and if so, run some script to
update the OS.

Using EMS this can be done in many ways. Suppose the OS version number is a piece of
metadata maintained by containers and collected by an information service, and that the objective
is to patch all operating systems that don’t have all the patches. Perhaps the simplest way to
approach this problem is to first query information services for a list of containers whose OS
version number is below some threshold. Then, instruct a Job Manager (JM) to run the patching
service on each container in the list. In this case the JM does not need to interact with execution
planning services (EPS) because it knows where it wants to run the service. Instead, the JM
interacts directly with each container—and possibly a deployment and configuration service, to
execute the patching service on the container. (The deployment and configuration service may be
needed to install the patch service first.)

3.4.8.2 Case 2: A Data Cache Service
Imagine a data cache service that caches data (files, executables, database views, etc.) on behalf
of a number of clients, and maintains some notion of coherence with the primary copies. When a
client requests a cache service, one can either deliver a handle to an existing cache service or
create a new cache service, depending on the location of the client, the location of the existing
caches, the load on existing caches, etc.

Once a decision has been made to instantiate a new cache service, an EPS is invoked to determine
where to place the data cache. The EPS uses CSG to determine where it is possible to run the
service—constrained by a notion of locality to the client. Once a location has been selected, the
service is instantiated on a container.

3.4.8.3 Case 3: A Legacy Application
Our third example illustrates a rather typical scenario. Suppose a user wants to run a legacy
BLAST job. Further, suppose the user is interacting with a portal or queue job manager. There are
four basic phases in getting the BLAST job started:

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 25

1. Job definition phase. What are the input files? What are the service level requirements?
E.g., job must complete by noon tomorrow. What account will be billed for the job? Etc.

2. Discover the resources available and select the resources required to execute the job.

3. Enact the schedule and all that may be involved, e.g., provisioning of resources,
accounting, etc.

4. Monitor the job through its lifetime(s). Depending on the service level agreements the job
may need to be restarted if it fails to complete for any reason.

To realize this case using EMS the JM creates a new legacy job with the appropriate job
description (e.g., written in JSDL [JSDL]). The JM then calls an EPS to get a schedule. The EPS
in turn calls a CSG, which calls information services to determine where the job can be executed
based on binary availability and policy settings. The EPS selects a service container, after first
checking with the service container that the information is accurate. The EPS returns the schedule
to the JM. The JM then interacts (if necessary) with reservation and deployment and
configuration services to set up the job execution environment. This may involve interaction with
the data container as well. The service container is invoked to start the job. Logging services are
used for accounting and audit trail. When the job terminates the job manager is notified by the
container. If the job terminates abnormally, the whole cycle may repeat again (see Figure 5).

Figure 5: Interactions of EMS services to execute a legacy BLAST job

3.5 Data Services
OGSA data services are concerned with the movement, access and update of data resources.

Provisioning
• Deployment
• Configuration

Information
Services

Service
Container

Data
Container

Accounting
Services

Execution
Planning
Services

Candidate Set Generator
(Work -Resource
mapping)

Job Manager

Reservation

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 26

3.5.1 Objectives
Data services are used to move data to where it is needed, manage replicated copies, run queries
and updates, and transform data into new formats. They also provide the capabilities necessary to
manage the metadata that describes OGSA data services or other data, in particular the
provenance of the data itself.

For example, suppose an Execution Management Service needs to access data that is stored
elsewhere. Does it use data services to access the data remotely or to stage a copy to the local
machine? Does it cache some of the data locally? Is the data available in multiple locations? What
policy limitations or service guarantees does the data service provide?

Conversely, suppose that a data federation service wishes to define a schema for data stored in
several different places. How should queries against this schema be mapped to the underlying
resources? Where should any joins or data transformations be executed? To where should the data
be delivered? What quality of service can be guaranteed?

With the exception of certain classes of metadata, the data capabilities do not specify the meaning
of any particular data. Other OGSA services (e.g., information services) that use data services
may add meaning of their own.

3.5.2 Models

3.5.2.1 Types of Data Resource
A data resource is any entity that can act as a source or sink of data. The heterogeneous nature of
the Grid means that many different types of data must be supported. These include, but are not
limited to:

• Flat Files. The simplest form of data is a file with application-specific structure, such as
fixed-length records. These files may be accessed using conventional read and write
operations. Some file formats support database-like queries. Examples include comma-
separated values, which can be queried like relational tables, and XML files, which can be
queried using XML Query [XQuery]. The data access services support these and can also be
extended to support specialized queries over new file formats.

• Streams. Potentially-infinite sequences of data values are called streams. The data access
services support queries and transformations over streams.

• DBMS. Several kinds of database management systems may be part of Grids. These include
relational, XML, and object-oriented databases, among others.

• Catalogues. A catalogue structures and tracks other data services. A simple example of a
catalogue is a directory, which lists a set of files. Nested directories are equivalent to a
hierarchic namespace.

• Derivations. Some data is the result of asynchronous queries or transformations on other data.
These derivations are often managed like finite streams rather than single items.

• Data Services themselves can be data resources for other services, as can be sensor devices or
programs that generate data.

3.5.2.2 Example Scenarios
Data service capabilities are fundamental to the Grid. This section describes a few examples of
how they can be used to support a range of activities.

• Remote access. The simplest use of the OGSA data services is to access remote data
resources across the Grid. The services hide the communication mechanism from the client; if
necessary they can also hide the exact location of the remote data. An optimization of this is
to cache some of the data in a local resource.

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 27

• Staging. When jobs are executed on a remote resource, the data services are often used to
move input data to that resource ready for the job to run, and then to move the result to an
appropriate place.

• Replication. To improve availability and to reduce access times, the same data can be stored
in multiple locations across the Grid.

• Federation. The OGSA data services allow the creation of a virtual data resource that
incorporates data from multiple data sources that are created and maintained separately.
When a client queries the virtual resource, the query is compiled into sub-queries and
operations that extract the appropriate information from the underlying federated resources
and return it in the appropriate format.

• Derivation. The OGSA data services support the automatic generation of one data resource
from another.

• Metadata. Data that describes OGSA data services or other data is fundamental to the Grid.
In the simplest form, this is just another use of the OGSA data services. In addition, OGSA
provides support for maintaining links between data and metadata.

3.5.2.3 Supply & Demand Meta Model
As with other parts of OGSA, the data service architecture can be seen as composed of suppliers
and consumers. Suppliers provide data resources—files, databases, streams and services. They
provide the resource-specific and virtualization interfaces discussed below. Also on the supply
side are services that support data transformation and metadata, and services that enforce policy
and service agreements. On the demand side are services that generate and optimize access
requests, manage service level agreements, and so on. Mediating between the two sides are
services that replicate, federate and optimize data location,. This can be seen in Figure 6 below.

Figure 6: Notional meta-model for data divides the world into a supply side and demand side.

Request Mgmt.
Framework

“ Supply ”“ Demand ”

Resource Mgmt. Framework

Optimizing Framework

Request Optimizing Framework

Primary Interaction

Meta - Interaction

Represents one or more OGSA services

Data virtualization
Resource interface

WSDMReservation
Resource
Factories

Data Movement
Optimization

Location Optimization

Federation

Coherency Management

Resource Selection

Query Optimization

Access Optimization

Caching

SLA Management (Request)

Admission Control (Request)

Resource Optimizing Framework

Quality of Service (Resources)
Admission Control (Resources)

Metadata Catalogs
Location Management

Derived Services

Data Transformation
Query Optimization

Resource Configuration

Concurrent Access

Client
APIs

Policies

Environment
Management

Simple
Access

Queries

Replication Optimization

Resource
provisioning

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 28

3.5.3 Functional Capabilities
This section describes the functional capabilities provided by the OGSA data services. Different
subsets of the services are needed to implement the different capabilities. Implementations are
free to provide only some of these capabilities.

3.5.3.1 Transparency and Virtualization
A distributed system may contain a variety of data resources. These resources may use different
models to structure the data, different physical media to store it, different software systems to
manage it, different schema to describe it, and different protocols and interfaces to access it. The
data may be stored locally or remotely; may be unique or replicated; may be materialized or
derived on demand. OGSA data services can define virtualizations over these data resources.
Virtualizations are abstract views that hide these distinctions and allow the data resources to be
manipulated without regard to them.

Conversely, although the data services allow the clients to ignore these distinctions, some clients
may prefer to exploit them. For example, a client may wish to make use of a particular query
language for a given database, or to specify the location of the particular data resource to use.
One client may require native access to the data, while another needs to tune the performance
parameters of the data resource. To support such clients, the OGSA data services allow clients to
bypass the virtualization interfaces and access the resource-specific interfaces directly. These
layered interfaces allow clients to choose the combination of power and abstraction that suits
them best.

For example, basic file I/O is provided by an interface that provides read and write operations like
those in POSIX and similar systems. The services that provide these operations may perform
sophisticated optimizations such as caching, replication or optimized data transfer. The
virtualized interface will hide these details from the client. Those client that require more
detailed control may use the resource-specific interfaces to manipulate the cache services, replica
services or data transfer services, with the corresponding loss of transparency.

3.5.3.2 Client APIs
Many users will wish to use the OGSA data services with legacy applications that use existing
APIs such as NFS, CIFS, JDBC, ODBC, ADO, POSIX IO or XQuery. Often it will be too
expensive or impractical to rewrite the clients to use new interfaces. However, the OGSA services
can easily be wrapped with a veneer that emulates these existing APIs, although OGSA itself will
not define such wrappers.

Typically these wrappers will map the operations of the existing APIs to the corresponding
messages to send to the OGSA data services. Therefore they may provide access to only a subset
of the full OGSA functionality. The extent of the OGSA functionality that they make available
will depend on the scope of the API concerned.

3.5.3.3 Extensible data type support and operation
It is not possible to predict all the data resources with which the OGSA data services will be used.
In any case, new data resources will be created in the future. The layered architecture described
above allows the addition of new data services that access new types of resources.

Similarly, it is not possible to anticipate all the operations that may be needed on a given
resource. The layered interfaces described above support services that provide additional
operations beyond those specified in the OGSA document. The virtualization layer gives clients
the option of ignoring these extensions, while those clients that require them can bypass the
virtualization layer as necessary.

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 29

3.5.3.4 Data Location Management
The OGSA data services offer reliable data transfer from one location to another. This may be to
create a copy of the original or to migrate the original completely. Data may be cached at a given
location to avoid unnecessary additional transfers. Data caches can be configured in terms of, for
example, lifetime and update consistency. Data may also be replicated between multiple copies,
thus increasing availability through redundancy.

Services for individual users allow them to upload and manage their own data with the above
facilities. The security settings control the access permitted to other users.

3.5.3.5 Simple Access
Simple access services provide operations for reading and writing (logically) consecutive bytes
from a data resource. The accessed resource may be local or remote: the virtualization interface
hides the details of the data location. This allows the data services to optimize both data location
and data access.

3.5.3.6 Queries (Structured Access)
The OGSA data access services provide mechanisms for applying queries to structured data
resources. In simple cases these may run an SQL query over a relational database, an XML query
over an XML database, or a regular expression over a text file. Other services may implement
text mining over a set of documents, or distributed queries over federated databases.

Synchronous queries return the data in the response to a request, while asynchronous queries
expose the derived data as new resources. Services may also deliver the results of a query to a
specified set of other services.

Query services may optimize a query before sending it to the resource. The resources may
further optimize the query and may also handle issues such as concurrent access to the data.

A data federation service will analyze each query that it receives and create sub-queries to be run
on distributed data resources. It may also determine where intermediate processing is done in
order to minimize network traffic. Data federation services must also provide relevant
information to workflow enactment engines to enable them to schedule operations effectively.

3.5.3.7 Transformation
Data services may themselves transform data. For example, they may convert data from one
format to another, or filter it, before moving it or updating it. They may support stored procedures
that execute within the service, making the service a form of container. These transformations
may be instigated explicitly by certain operations, or they may be programmed to be triggered
automatically in response to certain conditions.

3.5.3.8 Data Update
OGSA data services provide a range of mechanisms for updating data resources, depending on
the semantics of the data resource. For catalogues, the operations include creation, renaming and
deletion. For structured files and databases the operations include the update of entries. For
streams and other files the operations are largely limited to appending new data.

Data services may specify some form of transactional behavior for update operations. When a
data resource has replicated versions or is the source for derived data services, the updates may be
propagated to the replicated or derived versions. In this case, and in the case where several clients
are updating the same data resource, the services may implement various forms of consistency

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 30

maintenance, e.g., to ensure that a client always sees the results of its own updates in any queries
that it issues itself.

3.5.3.9 Security Mapping Extensions
Database management systems often implement sophisticated security mechanisms. Some of
these provide a large range of possible operations and access control at the level of individual
tuples. Therefore the OGSA data services support extensions to the standard OGSA security
infrastructure to allow users, operators and applications to access the greater control provided by
such systems.

3.5.3.10 Data Resource Configuration
Data resources often provide sophisticated configuration options. These can be made available to
clients via the OGSA data services. In addition, the services may provide additional operations
for configuring the virtualization of the resource provided by the service. For example, a
relational data service might allow for specific tables from an underlying database resource to be
made part of the data service’s data virtualization, or for views on the underlying database to be
made available as tables within that virtualization.

3.5.3.11 Metadata
Metadata services are data services that store metadata about OGSA data services or other data.
OGSA provides support for maintaining links between OGSA services and the metadata that
describes them. This support includes provision for maintaining the consistency of the metadata.

The metadata for OGSA data services may include information about the structure of the data,
including references to the schemas that describe the data. For some services this is not practical,
as the data resources include many schemas that are modified frequently, and in these cases
schema information will be provided by the services themselves.

3.5.3.12 Provenance
Metadata for data services may also include information about the provenance and quality of the
data. This may be at the level of the whole resource or of its component parts, sometimes to the
level of individual elements. This in turn requires the services or other processes that generate the
data to also maintain the consistency of the metadata. Complete provenance information can
allow the data to be reconstructed by following the workflow that originally created it.

3.5.4 Properties
Properties are non-functional capabilities. They are aspects of the architecture that apply across a
range of services. Whereas functional capabilities are defined by entries in the service interfaces,
non-functional properties have a more global, semantic, role.

3.5.4.1 Scalability
The OGSA data services handle large scale in several dimensions, including size of data sets,
number of data sets, size of data flows, and number of sites.

3.5.4.2 Quality of Service
The OGSA data services can implement various levels of QoS, such as guaranteed delivery and
referential integrity.

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 31

3.5.4.3 Coherency
When data is replicated, cached or derived, a range of coherency operations are available.
Similarly, a range of different mastering and peering strategies are supported for the deployment
of metadata catalogues, and the resolution of conflicting updates.

3.5.4.4 Performance
The OGSA data services are designed to minimize the copying and movement of data to the
minimum. This is a key factor in the overall performance of the Grid.

The data transfer services use monitoring information such as bandwidth, utilization patterns and
packet size. This enables them to choose the best approach for moving a given data set to suit the
agreed quality of service.

3.5.4.5 Availability
The OGSA data services provide features for graceful degradation in the event of network or
other failures. For example, query services may be configured to return partial results when only
a subset of sources is available.

3.5.4.6 Legal and Ethical Restrictions
The OGSA data services may have to operate within an environment where a variety of legal and
ethical policies affect their operation. For example, some policies may restrict the entities that can
access personal data and limit the operations that they can perform (confidentiality). Privacy
concerns may limit the queries that can be made about individuals, although in some cases the
policies may permit queries that return results about a group as a whole, such as average income
or total salary.

Data are often covered by copyright limitations, which restrict the right to create copies of data.
In the European Union, the similar (but distinct) “database right” restrictions apply specifically to
databases.

The security mechanisms provided by OGSA allow these restrictions to be specified. When used
with data services, these mechanisms must allow the specification of policies that apply at the
level of groups (e.g. tables) or elements within a resource. Scenarios involving complex data will
be particularly exacting test cases for these mechanisms.

3.5.5 Interactions with the rest of OGSA
This section summarizes the interactions between the data services and the other parts of OGSA.

3.5.5.1 Transactions
Data services are the classic example for transactions, and many data resources provide
independent transactional support. There are several ways that transactions can be implemented
in distributed systems. Conventional ACID transactions are one such; another is two-phase
commit, which implements synchronization for distributed databases. In addition, “time warp”
co-ordination, in which services can execute speculatively and roll-back their execution in the
event of a transaction being aborted, can also be supported.

In general, transactions should be supported for any interaction of OGSA services, not just data
services. This level of support is not discussed in v1 of this document. However, data services
may provide their own guarantees of transactional behavior.

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 32

3.5.5.2 Logging
Similarly to other OGSA services, data services use logging services, for example for audit.
Conversely, the logging services themselves may use the data services to store the logs.

3.5.5.3 Execution Management Services
Data services have a close relationship with Execution Management Services (OGSA-EMS).
OGSA-EMS uses data services in order to stage data where it is needed. The OGSA-EMS
Execution Planning Service has to take into account the costs of accessing the data from
candidate computational resources.

3.5.5.4 Workflow
Workflows can instruct data access services to send query results to third parties and to apply
transformations as the data is moved. This task requires that the workflow services have intimate
knowledge of the capabilities of the data access services. Also, a call to a distributed query
service may cause a variety of data movements and operations on other machines. For these
reasons a data service can provide information to the workflow manager to ensure that the
workflow enactment takes full account of the effect of distributed queries on the network and
other resources.

3.5.5.5 Provisioning
In addition to the provisioning of storage space and of services themselves, data services also
require provisioning support for uploading data sets to data resources. Some may also require
support for uploading filters and cutters to a given data service.

3.5.5.6 Resource Reservation
Data services may need to reserve certain resources in order to operate. For example, a file
transfer will require storage space and network bandwidth, while a distributed query system may
additionally require compute power in order to perform join operations. Equally, data services
must provide interfaces to allow them to be reserved.

3.5.5.7 Discovery
The data services may use the discovery services not just for registering services themselves, but
also for registering the data sets that are stored by those services. They may also register the
locations of schema definitions.

3.5.5.8 Security
Security services support the mapping of OGSA identities and roles to resource-specific identities
and roles. VO management services similarly provide control of these mappings. Security
services also provide support for checking the integrity and encryption of data transfers.

3.5.5.9 Network management
Network management can be crucial when planning the transfer of large amounts of data. Data
services will provide the necessary information, and possibly the initial trigger, for appropriate
OGSA services to configure the network parameters to suit the amount of data to be transferred
and the time constraints specified on those transfers.

3.5.5.10 Naming
The OGSA data services use OGSA-naming (§3.9.4.1) for naming data sets. For example, in a
replicated file system, an address may specify the location of a file on a particular machine. The

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 33

abstract name will identify the file in a location-independent manner, perhaps using a directory
service. The human-oriented name may be a user-friendly short file name that can be
disambiguated by referring to the context in which it is used.

3.5.5.11 Notification
We can use the notification service to externalize database triggers. Database management
systems often provide a mechanism that specifies actions to be taken when certain conditions
(triggers) are met. OGSA can easily cause these triggers to invoke the notification services.

In addition, some implementations of the notification services may use the data services to store
the notification messages and support client queries.

3.6 Resource Management Services

3.6.1 Objectives
Resource management performs several forms of management on resources in a Grid. In an
OGSA Grid there are three types of management [OGSA RM] that involve resources:

• Management of the resources themselves (e.g., rebooting a host, or setting VLANs on a
network switch)

• Management of the resources on Grid (e.g., resource reservation, monitoring and control)
• Management of the OGSA infrastructure, which is itself composed of resources (e.g.,

monitoring a registry service)
3.6.2 Model
Different types of interfaces realize the different forms of management in an OGSA Grid. These
interfaces can be categorized into three levels, shown in the middle column of Table 2, and also
on the right in Figure 7.

Table 2: Relationships between types of management and interfaces

Type of management Level of interface Interface

Resource level CIM/WBEM, SNMP, etc. Management of the resources
themselves Infrastructure level WSRF, WSDM, etc.

Resource management on the
Grid Functional interfaces

Management of OGSA
infrastructure

OGSA functions level
Specific manageability
interfaces

We provide below a detailed description of each level and its interfaces. Note that the
descriptions focus on the manageability interfaces, not on the implementation (e.g., on the
services that implement them). Also note that a service may implement multiple interfaces (which
are possibly unrelated in terms of functionality), and that a service may be separated from the
functionality that it represents (e.g., a manageability provider for a resource that is separate from
this resource). Therefore a description based on services would be imprecise, and a description
based on interfaces is chosen instead.

In Figure 7, the OGSA capabilities cover all levels, extending to capabilities in the resources that
are needed to implement these OGSA capabilities. The interfaces are shown as small circles.

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 34

At the resource level, resources are managed directly through their native manageability
interfaces (for discrete resources, these are usually SNMP, CIM/WBEM, JMX, or proprietary
interfaces). Management at this level involves monitoring (i.e., obtaining the state of the resource,
which includes events), setup and control (i.e., setting the state of the resource), and discovery.
These resources are managed by following the description given by a resource model, which
defines their properties, operations, events, and their relationships with each other.

The infrastructure level provides the base management behavior of resources, forming the basis
for both manageability and management in an OGSA environment. Standardization of this base
management behavior is required in order to integrate the vast number and types of resources—
and the more limited set of resource managers—that are introduced by multiple suppliers. The
infrastructure level provides:

• A base manageability model, which represents resources as WS-Resources [WS-RF] and
allows resources in OGSA to be manipulated through the standard Web services means for
discovery, access, etc. This model allows the resources to become manageable, at least to a
minimum degree, by enabling discovery, termination, introspection, monitoring, etc. The
resource model of the resources is accessed through the base manageability model.

By using a single basic manageability model and possibly a single resource model, the
relationships (dependencies and component definitions), operational status, statistics, etc.
become consistent throughout all layers of management.

• A generic manageability interface that is common to all services implementing OGSA
capabilities. This manageability interface has functionality such as introspection, monitoring,
and creation and destruction of services.

At the OGSA functions level, there are two types of management interfaces, denoted by the two
circles on the top of each of the capabilities shown in Figure 7:

• Functional interface: Some common OGSA capabilities (e.g., OGSA EMS) are a form of
resource management. Services that provide these capabilities expose them through
functional interfaces (e.g., create and destroy a job).

Data
services

OGSA
functions
level

Domain-specific capabilities

OGSA capabilities

Security
services

Infrastructure
level

Resource
level

Execution
mgmt

services

Resources

Infrastructure services

Figure 7: Levels of management in OGSA

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 35

• Manageability interface: Each capability has a specific manageability interface through
which the capability is managed (e.g., monitoring of registries or monitoring of a job
manager). This interface could extend the generic manageability interface, adding any
manageability interfaces that are specific to the management of this capability.

3.6.3 Management Capabilities
Management functionality at the infrastructure level is provided by OASIS WSDM, which is
expected to become a key standard for manageability across the IT landscape. WSDM is
developing separate documents to address management of Web services (MOWS) [MOWS] and
management using Web services (MUWS) [MUWS part 1][MUWS part 2]. MUWS provides the
base manageability model, i.e., how to represent resources, plus basic manageability functions
that are common to the OGSA, such as state representation and operations, and relationships
among resources. MOWS provides the generic manageability interface to manage the services in
an OGSA Grid. As for resource models, CIM is currently under consideration as the resource
model to be used in OGSA. Due to its breadth and extensibility, CIM can be used in the
management tasks of multiple OGSA capabilities such as security, execution management, self-
management, etc.

At the OGSA functions level, the resource management capability includes (but is not limited to)
typical distributed resource management activities and IT systems management activities. These
activities may be policy-based, i.e., may enforce policy assertions that are put in place to support
requirements such as authentication scheme, transport protocol selection, QoS metrics, privacy
policy, etc. Functionalities included in the OGSA resource management capability include
resource reservation, monitoring and control, VO management, security management, problem
determination and fault management, policy management (i.e., management of the policies
themselves), service groups and discovery services, metering, deployment, and discovery.

3.6.4 Properties

3.6.4.1 Scalability
Management architecture needs to scale to potentially thousands of resources. Management needs
to be done in a hierarchical and/or peer-to-peer (federated/collaborative) fashion to achieve this
scalability, so OGSA should allow these forms of management.

3.6.4.2 Interoperability
Management architecture must be able to span software, hardware and service boundaries, e.g.,
across the boundaries between different products, so standardized and broad interoperability is
essential to avoid “stovepipes.”

3.6.4.3 Security
There are two security aspects in management. Management of security concerns the
management of the security infrastructure, including the management of authentication,
authorization, access control, VOs and access policies. Secure management refers to using the
security mechanisms on management tasks. Management should be able to ensure its own
integrity and to follow access control policies of the owners of resources and VOs.

3.6.4.4 Reliability
A management architecture should not force a single point of failure. For purposes of reliability, a
resource may be virtualized by multiple services each exposing a single URL as the management
endpoint. In such situations, the system that provides manageability capabilities must be aware

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 36

that for certain queries, such as metrics, the manageability provider must aggregate the results
from the multiple services that virtualize that single resource.

3.6.5 Interactions with other OGSA services
The infrastructure services implement the interfaces at the infrastructure level, such as WSRF and
WSDM. Since these interfaces define the base management behavior of resources, all OGSA
services will use these interfaces when managing these resources.

The information services provide resource management functionalities, especially for monitoring,
that many OGSA services will use. Two examples are registries, used for resource discovery, and
logging, which can be used by problem determination.

The execution management services and data services are consumers of resource management
functionality, using it for discovery, provisioning, monitoring, etc. of execution and storage-
related tasks. They are also providers of resource management functionality at the OGSA
functions level.

Self-management services are used on the functional interfaces of resource management services
to control resources (e.g., applications, devices, and their allocation) on a Grid. They can also be
used on the specific manageability interfaces of these resource management services, to control
the Grid infrastructure itself (e.g., monitoring registries and, when they get overloaded, deploying
more instances). The same applies also to security services which, for instance, control access for
both the functional and specific manageability interfaces.

3.7 Security Services
This section describes objectives, models, functional capabilities, and properties of the security
services, and discusses the interactions with the rest of OGSA.

3.7.1 Objectives
OGSA security services are to facilitate the enforcement of the security-related policy within a
(virtual) organization [Grid Anatomy][Grid Physiology][VO Security].

In general, the purpose of the enforcement of security policy is to ensure that the higher-level
business objectives can be met. This is often a delicate balance, as there is an increased cost
associated with increased policy enforcement, and an increased loss exposure with less stringent
enforcement, while potential profits or rewards may be adversely affected by the increased
complexity and inflexibility of stricter policy requirements. Note that in some cases, legislative
rules and regulations mandate conformance to associated security policy.

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 37

The property that Grid-specific applications may span multiple administrative domains (see
Figure 8) implies that each of these domains will have its own business objectives to meet, which
translates to the individual domains separately establishing and enforcing their own policies,
which can differ greatly in complexity and strictness. Note that all interactions associated with a
thread of work in a Grid application must adhere to the domain-locally-enforced policies as well
as to the policies established for the VO—i.e. the cross-organizational (business) agreement.

To meet the business and associated security objectives, the security policy can, for example,
specify the enforcement of message integrity and confidentiality, authentication of interacting
entities, minimum authentication strength, secure logging and audit, separation of responsibilities,
intrusion and extrusion detection, authorization policy checks, least privilege operations,
mandatory access control mechanisms, discretionary access control mechanisms, trust and
assurance level of the environment, application isolation, avoidance of DoS attacks, redundancy,
and training.

OGSA security architectural components must support, integrate, and unify popular security
models, mechanisms, protocols, platforms, and technologies in a way that enables a variety of
systems to interoperate securely. The components must be able to support integrating with
existing security architectures and models across platforms and hosting environments. This means
that the architecture must be implementation-agnostic, so that it can be instantiated in terms of
any existing security mechanisms (e.g., Kerberos [Kerberos V5], PKI [PKI]); extensible, so that it
can incorporate new security services as they become available [RFC2903][WS Security
Whitepaper][Liberty]; and integratable with existing security services. Also, services that
traverse multiple domains and hosting environments need to be able to interact with each other,
thus introducing the need for interoperability at multiple levels: protocol, policies and identity. In
addition, certain situations can make it impossible to establish trust relationships among sites
prior to application execution. Given that the participating domains may have different security
infrastructures (e.g. Kerberos or PKI) it is necessary to realize the required trust relationships
through some form of federation among the security mechanisms.

3.7.2 Model
This section describes a model to facilitate the reasoning about, and the specification of, the
OGSA security services. The presented model is not a formal model in the mathematical sense,

Figure 8: Cross-Organizational Collaborations

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 38

but is meant to provide a language to describe, and to obtain common understanding about, the
security policies that are to be enforced.

In general, one can make the observation that entities are interacting through mechanisms within
a context. Entities are things such as users, subjects or services. Interaction mechanisms span all
the different communication methods, such as mail, telephone, HTTP, SOAP, SSL/TLS, etc. A
context puts the interaction in perspective, and could localize the interaction to a single machine,
or could be associated with a service invocation within a VO, and/or with an established secure
association, and/or with a distributed transaction.

All these entities, mechanisms and contexts can be described by sets of attributes or properties.
Some of these attribute types and values may be used for unique identification, others are used for
classification or grouping. Furthermore, some of these attributes are inescapable. An inescapable
attribute can identify an entity by itself without any reference to an outside authority. Examples of
inescapable attributes are a shared secret, a private/public key pair, fingerprints, etc. All other
attribute values are essentially bound to an entity’s inescapable attribute by an issuer or attribute
authority.

Security policies are statements about these different entities, interaction mechanisms and
contexts, and specify restrictions on the associated attribute values, properties and their
relationships. The policy statements (or rules) will be able to be expressed in terms of these
entities (e.g. identities, user attributes), resources (i.e. end points), and environment
characteristics (e.g. time, location, purpose, or the trust level of the requester or request path).
These policies will be about various aspects including authorization, authentication, trust, identity
mapping, delegation, assurance levels, etc.

Key Material

Group of unique names Organizational role

Serve
r

User
AttributesVO

Policy

Resource
AttributesSite

Policy

Policy

Authorization Policy
Architecture

Local Site
Kerberos

Identity

Policy
Enforcement

Point

VO
Other

Stakeholders

Site/
Resource

Owner
Authorization

Service/
PDP

Policy and
attributes.

Permit or
Deny

Resource

Standardize

Delegation

User

Process acting
on user’s behalf

PKI/Kerberos
Identity

Translation
Service

PKI
Identity

Delegation
Policy

Figure 9: Example input for the policy decision and enforcement

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 39

The model defines the security services as entities with interaction patterns that facilitate the
administration, expression, publishing, discovery, communication, verification, enforcement and
reconciliation of the security policy. In other words, the security policy enforcement is the
ultimate goal, and the security services are designed and deployed to support that goal.

To make this model more concrete, we will identify a number of these entities, interaction
mechanisms and contexts, and discuss some of their attributes and common relationships. Figure
9 shows an example of the policy enforcement to protect the use of a resource. In order to
understand the model, it helps to walk through the example in Figure 9 from the two opposite
ends: on one side the initial user authentication, and on the other the enforced authorization, and
to realize that a user will only be allowed to access the resource if the authorization policy
evaluated at the enforcement point will yield permit. The resource’s authorization policy will be
expressed as rules for the attribute values of the relevant entities, such as, for example, the user’s
name, her role, her VO-membership, etc. With the initial authentication of the user, only
inescapable attribute values are presented and verified, such as the possession of the private key
associated with the presented public key. Normally, there is a mismatch between the fact that the
policy is expressed in derived attributes and the initial authentication only yields a key, and this
can be resolved by finding the matching attribute assertions that bind the key to the attributes
used in the policy expression. Several security services are depicted in Figure 9; these are used to
federate the user’s public key credentials to Kerberos ones, and to obtain attributes from different
sources, such as the VO or the local site, that assert specific attribute bindings used in the
enforced policy statements.

Conceptually, the presented model is no different from the general Web services security model
and other distributed computing architectures [RFC2903][WS Security Whitepaper][Liberty].
The Grid applications, however, put a distinct focus on the entities and patterns related to cross-
organizational settings, and the security services that enable those interactions [VO
Security][Role-Based VO][EU DataGrid][Fine-Grain Auth][Fine-Grain Auth RM][Dynamic
Access Control][PRIMA][Grid Auth Framework] [Grid AAA Req][CAS][SAZ][GS Security]. It
can be noted that such interactions are also prevalent in business applications where business-to-
business interactions (or organizations boundaries within an enterprise) bring about similar
requirements and settings. For example, Figure 10 shows two organizations and an overlaid
virtual community that is governed by its own policy. Note that the entities within this virtual
community context have their own specific attributes and properties, which are different from,
and have no relation to, those in their home domain. This highlights the fact that our security
services model has to support the concurrent enforcement of multiple policies, which each has to
be evaluated within their own proper context.

Organization A Organization B

Compute Server C1Compute Server C2

Compute Server C3

File server F1
 (disks A and B)

Person C
(Student)

Person A
(Faculty)

Person B
(Staff) Person D

(Staff)
Person F
(Faculty)

Person E
(Faculty)

Virtual Community C

Person A
(Principal Investigator)

Compute Server C1'

Person B
(Administrator)

File server F1
 (disk A)

Person E
(Researcher)

Person D
(Researcher)

Figure 10: The Virtual Community Concept

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 40

3.7.3 Example Scenarios

3.7.3.1 Digital Library
A digital library program for educational material is operated by a public organization. A number
of schools and public libraries in the nation participate in the library program. The program
provides teachers and students of the participating schools or libraries with a means of sharing
educational materials such as digital books, videos, photos and all other digital materials for
education that would originally have been stored by individual schools or libraries. Each of the
participating schools and libraries is responsible for its users and resource (educational materials)
management, such as registration or removal of users and resources. There is also a case where
some schools, for example universities, consist of several sub-organizations. In such a case, each
sub-organization in a university could form a VO by itself and the university VO would then
become an aggregation of these school VOs. This scenario is depicted in Figure 11.

The following is a list of example policies of how users of the library program have access to the
shared materials.

• All the students enrolled in a participant school can have read access to the materials for
students.

• All the teachers can have read access to materials both for students and faculties.
• Some teachers who are certified by a participant school can also register new materials.

The school libraries in the university may allow access from inside the university, but will not
allow accesses from the Digital Library VO.

3.7.3.2 Least Privilege Delegation
The delegation of rights is a fundamental capability needed to let services work on behalf of other
entities. With this rights-delegation comes the associated risk that any of these services may be
compromised and use those rights in inappropriate ways. To limit the exposure, one would like to
limit the delegated rights to only those rights truly needed by the service. This least-privilege
delegation model requires that one is able to match the invoked service operations with the exact

Digital Library VO

School of
Law

School of
Eng.

School
VO

School
VO

School of
Biz

University VO
University Library

Public Library VOPublic Library VO

Deny!Deny!

Deny!
Deny!

denotes that the resource is exposeddenotes that the resource is exposed
to the VO and available for to the VO and available for authorizedauthorized VO membersVO members

denotes that the resource is exposeddenotes that the resource is exposed
to the VO and available for to the VO and available for authorizedauthorized VO membersVO members

Figure 11: VO example: Digital Library

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 41

“amount” of rights, which is a non-trivial requirement. Many Grid applications use the concept of
jobs, in which job directives are specified in their own language. The job requirements are then
matched with the capabilities and availability of resources by discovery, brokers, and scheduler
services. The language used for the expression of these job directives and resource capabilities
should be able to match up with the directives used to express the equivalent rights needed. Any
mismatch is likely to result in a deployment where essentially too many rights will have to be
given to services to ensure that the job directives can be executed. This issue is illustrated in
Figure 12.

3.7.3.3 Secure logging in a distributed environment
Logging services, and secure access to the logs for reconciliation purposes, becomes a much
harder problem in a distributed setting, where the services and associated logs may reside in
different administrative domains. This scenario is depicted in Figure 13.

 Propagation of Requester’s Rights through
Job Scheduling and Submission Process

Only DOE approved sites

Only NCSA resources

Only compute cluster ABC

All User's Rights & Capabilities
Requester

Compute
Resource

Scheduler

Scheduler

Scheduler

Dynamically limit the
Delegated Rights
more as Job specifics
become clear

Trust parties
downstream to limit
rights for you…
or let them come
back with job
specifics such that
you can limit them

Virtualization complicates Least
Privilege Delegation of Rights

Figure 12: Least-Privilege Delegation and Job Description

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 42

Logging services should have security characteristics so that logs are secured, are capable of
being tamper-proof, and ensure integrity of the messages. When we get to that level of
sophistication, it leads to the notion of auditing—where events are recorded in a secure fashion.
These can be any events, including security events, business events, transaction events, etc.
Security services and infrastructure will need to deal with generating security events that can be
consumed by the event infrastructure so that they can be audited, or acted upon (e.g. an intrusion
defense system may react to a set of DoS events).

3.7.4 Functional Capabilities
In this section we describe the security functional capabilities and how they relate to the
corresponding security services and usage patterns. More detailed description of services and
usage patterns will be provided in later versions of this document.

As an example, Figure 14 illustrates how the requestor and service provider both call-out to
different infrastructure security services to ensure policy compliance. Note that in the picture the
call-outs are made from within the stubs, and outside of and transparently to the application. The
expectation is that most of the policy enforcement could be taken care of this way, which has the
desirable benefit of keeping the security-specific code to a minimum for the application
developers.

Furthermore, Figure 14 clearly shows that in order for service invocations to comply with the
requestor’s, the service provider’s and the VO’s policy, call-outs are made to different security
service instances that are managed in those different organizations.

Distributed Logging in the Grid

Requester

Service

Service

Service

Service

Service

Service

Service

Service

Service

Service

• Each requester and service writes
log entries

• Who can read the log-entries in the
different domains?

• How to re-trace thread-of-work?

Domain

ABC
DEF

GHI

JKL

MNO
log

log

log

log

log

log

log

log

log

log

Figure 13: Secure logging in a distributed environment

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 43

We enumerate the functional capabilities and corresponding security services in the following:

• Authentication. Authentication is concerned with verifying proof of an asserted identity.
This functionality is part of the Credential Validation and Trust Services in Figure 14.
One example is the evaluation of a user-id and password combination, in which a service
requestor supplies the appropriate password for an asserted user-id. Another example
involves a service requestor authenticating through a Kerberos mechanism, and a ticket
being passed to the service provider’s hosting environment, which determines the
authenticity of the ticket before the service is instantiated.

• Identity mapping. The Trust, Attribute and Bridge/Translation Services in Figure 14
provide the capability of transforming an identity that exists in one identity domain into
an identity within another identity domain. As an example, consider an identity in the
form of an X.500 Distinguished Name (DN), which is carried within a X.509 V3 digital
certificate. The combination of the subject DN, issuer DN and certificate serial number
may be considered to carry the subject’s or service requestor’s identity. The scope of the
identity domain in this example is considered to be the set of certificates that are issued
by the certificate authority. Assuming that the certificate is used to convey the service
requestor’s identity, the identity mapping service via policy may map the service
requestor’s identity to an identity that has meaning (for instance) to the hosting
environment’s local platform registry. The identity mapping service is not concerned with
the authentication of the service requestor; rather it is strictly a policy-driven name-
mapping service

Requestor
Application

VO
Domain

Credential
Validation

Service

Authorization
Service

Requestor's
Domain

Service Provider's
Domain

Audit/
Secure-Logging

Service

Attribute
Service

Trust
Service

Service
Provider

Application

Bridge/
Translation

Service

Privacy
Service

Credential
Validation

Service

Authorization
Service

Audit/
Secure-Logging

Service

Attribute
Service

Trust
Service

Privacy
Service

Secure Conversation

Authorization
Service

Trust
Service

Attribute
Service

Credential
Validation

Service

WS-Stub WS-Stub

Figure 14: Security services in a virtual organization setting

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 44

• Authorization. The authorization service is concerned with resolving a policy-based
access-control decision. The authorization service consumes as input a credential that
embodies the identity of an authenticated service requestor and, for the resource that the
service requestor requests, resolves, based on policy, whether or not the service requestor
is authorized to access the resource. It is expected that the hosting environment for
OGSA-compliant services will provide access control functions, and it is appropriate to
further expose an abstract authorization service depending on the granularity of the
access-control policy that is being enforced.

• Credential conversion. The Trust, Attribute and Bridge/Translation Services in Figure 14
provide credential conversion from one type of credential to another type or form of
credential. This may include such tasks as reconciling group membership, privileges,
attributes and assertions associated with entities (service requestors and service
providers). For example, the credential conversion service may convert a Kerberos
credential to a form that is required by the authorization service. The policy-driven
credential conversion service facilitates the interoperability of differing credential types,
which may be consumed by services. It is expected that the credential conversion service
would use the identity mapping service.

• Audit and secure logging. The audit service, similarly to the identity mapping and
authorization services, is policy-driven. The audit service is responsible for producing
records that track security-relevant events. The resulting audit records may be reduced
and examined so as to determine whether the desired security policy is being enforced.
Auditing and subsequently reduction tooling are used by the security administrators
within a VO to determine the VO’s adherence to the stated access-control and
authentication policies.

• Privacy. The privacy service is primarily concerned with the policy-driven classification
of personally identifiable information (PII). Service providers and service requestors may
store personally identifiable information using the privacy service. Such a service can be
used to articulate and enforce a VO’s privacy policy.

A different view of the relationships between the relevant security components is shown in Figure
15 as a layered stack of related services.

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 45

All security interfaces used by a service requestor and service provider need to be standardized
within OGSA. Compliant implementations will be able to make use of existing services and
defined policies through configuration. Compliant implementations of a particular security-
related interface would be able to provide the associated and possibly alternative security
services.

3.7.5 Properties
In general, the properties of the security services depend on the technological requirements that
follow from the policy that has to be enforced. For example, in order to be able to enforce a stated
policy, certain service levels have to be met by the security services, which translates in
properties such as maximum latency, response-time, availability, and recovery.

In many cases, the implementation of the security services will be able to obtain the desired
properties through the use of other services. For example, the attribute information service could
use the data services to access the assertion information in LDAP or RDBMS, and it could make
use of the data mirroring features of those services to achieve the desired availability property
needed to meet the enforcement of the stated security policy.

3.7.6 Interactions with other OGSA services
In general, the invocation of any OGSA service is subject to enforcement of all relevant security
policies. In some cases, this enforcement is implicit and hard-coded; in other cases the ability to
plug-in or call-out to external security infrastructure services is essential for deployment. In this
view, all OGSA services depend on and are layered above the security services.

In some cases, the security services and requirements are intimately connected to other OGSA
services on a higher level. For example, an attribute service implementation can make use of
OGSA data services to retrieve policy related information from a registry or database. In this
view, security services can be consumers of other OGSA services.

Key
Management

User
Management

Policy
Management
(authorization,

privacy,
federation, etc)

Anti-virus
Management

Intrusion
Detection

Policy Expression and Exchange

Bindings Security
(transport, protocol, message security)

Tr
us

t M
od

el

Se
cu

re
 L

og
gi

ng

Secure
Conversations

Credential and
Identity Translation

(Single Logon)

Access Control
Enforcement

Audit &
Non-repudiation

Service/End-point
Policy

Mapping
Rules

Authorization
Policy

Privacy
Policy

Figure 15: Components of Grid Security Model

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 46

3.8 Self-Management Services

3.8.1 Objectives
Self-management was conceived as a way to help reduce the cost and complexity of owning and
operating an IT infrastructure. In a self-managing environment, system components—including
hardware components such as computers, networks and storage devices, and software
components such as operating systems and business applications—are self-configuring, self-
healing and self-optimizing.

These self-managing attributes, described further in §3.8.4, suggest that the tasks involved in
configuring, healing and optimizing the IT system can be initiated based on situations that the
components themselves detect, driven by business needs, and that these tasks are performed by
those same technologies. Collectively, these intuitive and collaborative characteristics enable
enterprises to operate efficiently with fewer human resources, while decreasing costs and
enhancing the organizations’ ability to react to change. For instance, in a self-managing system, a
new resource is simply deployed and then optimization occurs. This is a significant shift from
traditional implementations, in which a significant amount of analysis is required before
deployment, to ensure that the resource will run effectively.

Although it is expected that the self-managing attributes will be pervasive in OGSA, it is not the
case that every single service in a self-managing system will demonstrate all, or even a subset, of
these attributes. Rather, these attributes are part of the autonomous nature of the system as a
whole.

One of the main objectives of self-management is to support service-level attainment for a set of
services (or resources, depending on the taxonomy)—with as much automation as possible, to
reduce the costs and complexity of managing the system. In an operational environment, it is
often necessary to control various aspects of the behavior of a solution component in a manner
that cannot be determined a priori by the component developer. This is achieved in a self-
managing system through the deployment of policies to govern the behavior of system
components derived from business objectives; a role called Service Level Manager. Service level
managers (SLMs) are responsible for setting and adjusting policies, and then changing the
behavior of the managed resource or service in response to observed conditions in the system to
ensure overall compliance with business objectives. SLMs are themselves managed by policies
that are either embedded in their implementation or retrieved from other SLMs. Therefore it is
possible that a service may have both self-managing aspects and also be involved in a self-
managing activity.

Thus composition and hierarchy are expected between different SLMs, thereby significantly
reducing the complexity of operation of the system and initial system design, since complex
SLMs can be built by involving simple SLMs in the process.

While the self-management capability is a significant part of the OGSA, this work is still at a
preliminary stage and hence only some aspects of self-management are described here. A more
detailed analysis will be provided in later versions of this document.

3.8.2 Basic Attributes
The collection of attributes collectively needed for various stages of self-management are given
below. Their existence at a conceptual level is discussed; no assumptions are made about their
implementation.

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 47

3.8.2.1 Service Level Agreement
Service level agreements (SLAs) include business or IT agreements between the service provider
and the users of the service. SLAs provide guidance, expressed in terms of measurable intent, as
to the purpose and delivery objective of the service or resource that is being managed.

3.8.2.2 Policy
A policy is used to govern the behavior of an SLM and the manageable resources under its
control. Policies governing the behavior of self-managing entities are derived from service level
agreements (SLAs), and deployed as part of the management context under which the
manageable resources are used. SLMs orchestrate real-time changes in the dynamic management
infrastructure, based upon policy which governs their behavior.

3.8.2.3 Service Level Manager Model
This model provides the framework to instantiate and work with an SLM such that various SLMs
and human operators can interact and understand each other without having knowledge about
each other built in at design time. There is an interface component to the SLM model, as well as a
representation of an SLM and its component management services (not the managed services)
and the control loops that they form, and instantiation and maintenance of SLMs.

SLMs are typically modeled after a generic control loop pattern that may be used to control and
adjust various service activities. This pattern is a cycle consisting of Monitoring, Analysis and
Projection, and Action phases. SLMs carry out service level attainment activities. Service Level
Management is further described in §3.8.4.1.

3.8.3 Example Scenarios
Self-management capabilities are fundamental to the Grid. This section describes two examples
of real-world usage: Job-level management and Grid system-level management. Similar concepts
can be derived by analyzing how self-management works for other scenarios, e.g., security and so
on. In the following scenarios the terminology used is that of the OGSA Execution Management
Services capability and the Commercial Data Center use case.

3.8.3.1 Job Level management
The IT business activity manager submits a job and negotiates the job’s SLA. The job must be
executed so that it satisfies the agreement. At a later stage, the IT business activity manager may
wish to renegotiate the agreement to address new business requirements. It does so with the job
manager and updates the existing agreement. When the agreement is updated the resource
requirements are recalculated in the service level attainment loop (analysis and projection, see
Figure 16), and the provisioning steps (including resource allocation and deployment) are
triggered (Action) as a result of the changing conditions. After the provisioning steps, the
resources are in a ready state for the required components of the job to start, including starting
executable resources such as application server or DBMS.

The IT business activity manager can monitor the load and resource utilization of the provisioned
resources using the Monitoring Service or the Metering Service. The IT business activity manager
also can obtain the state of the running job from the job manager.

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 48

3.8.3.2 Grid System Level management
At the Grid system level, one aim is to improve resource utilization while maintaining the SLAs
of running jobs. The Grid system service level manager may have to add new resources to
prepare for expected load increases, and to release surplus resources in order to reduce costs. The
resources allocated to a job may also have to be adjusted based on policy—e.g., the priority of a
job relative to other jobs in the Grid system.

In the Analysis and Projection phase, information about the available resources and current load,
and estimates of the expected future utilization and load are evaluated. An expected increase in
utilization may trigger (Action) provisioning steps to add resources to the Grid system’s available
pool, e.g., by arranging to shift resources from other systems or by releasing resources that are
currently being used by lower-priority jobs.

3.8.4 Functional Capabilities
Self-management is essentially self-configuration, self-healing, and self-optimization. This shows
the essential difference of self-management from other OGSA categories: namely, it is not just
about the components that are involved in doing self-management, but the method by which it is
done—the sauce, or the way in which the components interact, control loops are formed and
systems behave intelligently, based on environmental changes. The mechanisms that bring self-
management about can be described as follows:

• Self-configuring mechanisms adapt dynamically to changes in the IT system, using policies
provided by the IT professional. Such changes could trigger provisioning requests leading to,
for example, the deployment of new components or the removal of existing ones, maybe due
to a significant increase or decrease in the workload.

• Self-healing mechanisms can detect improper operations of and by the resources and services,
and initiate policy-based corrective action without disrupting the IT environment. Self-
healing has an element of self-protection included in it as well. This means that components
can detect hostile behaviors as they occur, and take corrective actions to make themselves

MonitoringMonitoring

AnalysisAnalysis

ProjectionProjection

ActionAction

Job Level

Grid System Level

Figure 16: Example scenarios: Grid System Level and Job Level

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 49

less vulnerable. The hostile behaviors could include unauthorized access and usage, virus
infection and proliferation, and denial-of-service attacks.

• Self-optimizing mechanisms are able to tune themselves to the best efficiency to meet end-
user or business needs. The tuning actions could mean reallocating resources to improve
overall utilization or optimization by enforcing an SLA. Self-optimization makes use of self-
configuration in its implementation.

It is important to note that the self-configuring, self-healing, self-optimizing mechanisms are not
independent of one another. They work together to allow changes to be made to the configuration
of one or more aspects of the IT system.

All of the OGSA service categories are utilized in achieving self-management. In addition, the
following sections highlight some special functional requirements that are important for self-
management, but that may not be reflected in the same way in other OGSA service categories.

3.8.4.1 Service level management
Service level management ensures that the desired QoS is maintained. This is done through the
activities of the SLMs as described in §3.8.1. These service level attainment activities are
described in more detail here

• Monitoring. The SLM receives and processes resource instrumentation through a monitoring
component. Service execution and monitoring of resource utilization—for example,
monitoring the load and utilization of resources and the running states of service components,
and detecting faults, may be made possible by using the monitoring services from the general
Resource Management capability in OGSA. Such monitoring information is used as input to
the Analysis phase.

• Analysis and projection. Analysis is performed against the instrumentation to evaluate and
determine compliance with the established policy and SLAs. The manager gets to know if
resources are meeting QoS objectives and operating within defined policies. Analysis can
also predict future resource behavior based on history and projected requirements. When
system behavior is not consistent with overall goals, the manager evaluates alternative
courses of action to effect changes in the set of configured resources in its sphere of
influence, and selects a plan of action in accordance with its configured policies.

• Action. The manager then executes the plan, either by interacting with underlying managed
resources or by communicating with other managers responsible for other aspects of the
system. For example a workload manager may adjust priorities and process shares of tasks
executing within a cluster of processors to meet service level objectives and policies. Or, in
cases where local action against a pool of resource is either impossible (in violation of policy
or constrained) or ineffective, a resource manager may “appeal” to other management
functions to remedy the situation. For example, a workload manager might make a
provisioning request to add additional processors to a cluster.

This control loop executes continuously, assessing the current state of the system against the
expressed service level objectives and making adjustments as necessary to bring the system into
compliance. Other services are needed for these activities to be successful—for example capacity
planning, entitlement of resources, problem and root cause analysis, predictive analysis, etc.

A number of management components may be involved in service level attainment activities. The
QoS and SLA requirements addressed by these management activities can be extremely varied.
For example, they may include performance attainment objectives such as processor capacity or
utilization (workload management), or more qualitative objectives such as security levels. Service
level attainment activities affect each other directly or indirectly. Therefore the relationship and

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 50

order of execution between the different management components in the control loops and
service level managers should be fairly loose.

3.8.4.2 Policy and Model based Management
Service level managers orchestrate real-time changes in the dynamic management infrastructure
based upon policy that governs their behavior. The intelligence in the self management is
basically directed by the policies and models about the SLMs and the services that are being
managed.

3.8.4.3 Entitlement
Entitlement is about negotiating with other resource holders (other SLMs, human operators,
resource pools etc.) to obtain the right resources. During this process different SLAs are
compared to find out which resource need is more important. Entitlement is an earlier phase to
resource reservation and provides a looser binding—an option to reserve. In contrast, a resource
reservation guarantees access to the resource.

3.8.4.4 Planning
Planning refers to calculating the optimum requirements of a service in terms of the resources it
needs. This can be at an initiation stage, due to some problem/root cause being identified, or due
to a command from a higher level.

3.8.4.5 Capacity Management
Capacity management includes the actual actions relating to updating the current state and
requirement of resources. It includes things such as linking with inventory, asset management,
moving the resources from the current location into the service domain, moving the resources
from the service domain into a storage area or to another domain, etc.

3.8.4.6 Provisioning
Provisioning, including its sub-activities of deployment and configuration, is an important
activity that is done in support of self-managing actions as resources are prepared for their
expected use. Provisioning is supported by a number of other OGSA services, such as the
Application Contents Service that maintains the deployment contents and configuration
descriptions.

3.8.4.7 Analytics
• Problem and root cause analysis. Analyze monitored data to find out the express issue and

the root cause of detected problems. Includes filtering capabilities, correlation etc.

• Predictive analysis. Analyze monitored data to predict future behavior—to plan for future
resource needs, or to predict future problems.

3.8.5 Properties
Service Level Management components implement self-managing, policy-based capabilities
across multiple QoS dimensions of the management infrastructure. Key QoS dimensions include,
but are not limited to, availability, security, and performance. These cornerstone QoS dimensions
are expressed in terms of measurable intent captured in SLAs. Availability might be measured in
terms of “minutes of outage.” Desired security capabilities might be described as privileges
provided by a class of service for associated users. Performance characteristics could be specified
in terms of well-known throughput or response-time objectives.

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 51

3.8.5.1 Availability
Specifically denotes the metrics that show the failure rate of the service—of all types, including
the macro cases such as system crash, and other, less observable cases, such as the failure of a
service to deliver due to throughput drop and buffer flushing.

3.8.5.2 Security
Security is an extremely important aspect of the IT environment. These measures may include
security violations, probability of security violations, and identity management metrics such as
the time to set up or delete a user, etc.

3.8.5.3 Performance
Gives measurements and metrics—quantifiable data about how the system is performing, such as
cumulative CPU load factor, that go into computing the performance metrics of a specified
service.

3.8.6 Interactions with the rest of OGSA
Self-management interacts with almost all other aspects of OGSA. As the required interactions
are still being worked out, only some services are listed here as an example of what interactions
are expected, with no attempt at being exhaustive.

• Discovery to find and integrate new resources and services.
• Logging and monitoring to provide the information needed to determine the state of the

system.
• Resource reservation to facilitate more predictable resource usage.
• Workflow to automate the actions that the SLMs have to carry out when addressing abnormal

conditions.
• Composition to construct complex or higher level SLMs from simple ones.
• Security, and in particular Authentication and Authorization, are essential as different system

components may be involved in management actions.
• Resource management, and in particular service or resource manageability models, are

required to provide the representation of the service or resource that is being managed. The
SLMs can read this information, and can act on the intelligence in it, in response to a
changing environment or a command from a higher level. Further work to determine how
best to model a service or resource needs to be done.

3.9 Information Services

3.9.1 Objectives
The ability to efficiently access and manipulate information about applications, resources and
services in the Grid environment is an important OGSA capability. In this section, the term
information refers to dynamic data or events used for status monitoring; relatively static data used
for discovery; and any data that is logged. In practice, an information service needs to support a
variety of QoS requirements for reliability, security, and performance. The scope of the OGSA
information service covers publication through consumption. Activities prior to publication (e.g.
sniffing network packets) or subsequent to consumption are out of scope.

While it may be possible to design one single information service that deals with all information
delivery patterns and QoS, OGSA is best served by multiple information services, some general,
and some optimized to meet specific use cases. However, caution should be exercised so as not to
end up with a number of fractured information services, each capable of answering a limited

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 52

number of use cases. The challenge is to balance the desire for generality and requirements on
domain-specific semantics and QoS. In theory, generality can be achieved by abstracting common
(high-level) functionality and features covering the requirements of as many use cases as
possible. While common semantics might encourage interoperable implementations they can also
be too high-level and not fully expose desired behavior. The question of how far the level of
abstraction can be raised, without compromising the usability of the services, is a topic that needs
further investigation.

Clients of the OGSA information services include, but are not limited to, execution management
services, accounting services, problem determination services, resource reservation services,
resource usage services, and application monitoring. To facilitate interoperability and reuse, the
information services themselves should be built on top of OGSA infrastructure capabilities such
as notification (e.g., WS-Notification [WS-N]). Information services could also make use of
other OGSA capabilities such as data access and distributed query processing.

3.9.2 Models
The characterization of an information service depends greatly on factors such as the demand
placed on the source of information (e.g., static versus dynamic, publication rate), its purpose
(e.g., discovery, logging, monitoring) and QoS requirements. However, we see similar, recurring
structures in information services. Information is made available for consumption, either from the
originating producer, or through an intermediary (e.g. logging service, notification broker) acting
on behalf of the originating producer. Either one or more consumers wish to obtain information
from one or more producers, or one or more producers wish to send information to one or more
consumers. Producers and consumers should be decoupled and not be required to have any prior
knowledge of each other. Consumers may contact a producer (or intermediary) and pull
information in one call or they may use a subscription mechanism to receive information as it
becomes available.

OGSA is not prescriptive on the data model used to implement an information service or the
language used to query for information. Current systems broadly fall into those that are based on
XML and XPath/XQuery query languages (e.g., Globus MDS [Globus MDS]) and those that use
the relational model and the SQL query language (e.g., R-GMA [R-GMA]).

Metadata is associated with information (e.g., events or messages) for describing its structure,
properties and usage. For interoperability, a standard event scheme for OGSA information
services is desirable. In some cases, such as when performance is paramount and interoperability
is not a concern; user-defined, optimized events may be more appropriate.

An information service might allow producers and consumers to discover each other by making
detailed descriptions about themselves available for querying. A special distributed registry or
point-to-point mechanism could be used for that purpose. The description could include, for
example, the type of producer or consumer, what information they produce or consume, and their
endpoint URLs.

3.9.3 Example scenarios

3.9.3.1 Directory scenario
A user needs to locate a service description that meets some desired functional and other criteria.
He queries a central directory service where service descriptions are published, and receives an
answer. The directory owner decides who can publish information into the directory and who is
authorized to query it. UDDI is an example legacy directory service. OGSA directory services
could be based on WSRF service group concepts.

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 53

3.9.3.2 Logging scenario
A number of distributed computing usage scenarios require logging services. These scenarios
include those based on problem determination, usage metering, failure recovery, transaction
processing, and security.

A problem determination scenario might proceed as follows. A developer is writing code for a
Disaster Recovery application. Following corporate programming guidelines for logging, he
inserts log statements into his code to provide information regarding any unexpected situations.
He is responsible for coding a section of the application that accesses an RDBMS to obtain
attributes for candidate fail-over resources. He codes this section of the application such that
RDBMS failures are trapped and log records are generated to reference the RDBMS failure. After
development has been completed, the application is deployed into an operating environment
where log records are processed by a handler chain. In this environment, based on the severity
level (e.g., fatal, warning, informational), records exceeding an operator-specified level are stored
in a log by a file handler. Due to the deployment of an erroneous new security policy, the code
reaches an abnormal state and logs a record indicating that the underlying RDBMS has denied
access to the application. The operator had configured the operating environment to store log
records of this severity. After the failure, an analyst, in the role of a log consumer, uses a console
application to peruse the logs. He finds the log statement indicating the RDBMS problem and
directs the database administrator to correct the security policy.

3.9.3.2.1 Grid Monitoring Architecture (GMA) scenario
A scientist wants to run an interactive simulation/rendering job that must be finished within the
next half hour. He must find 100 computing elements that are fast enough, have enough memory
between them, and are linked by fast network connections. He needs up-to-date information and
submits a complex query to the OGSA information service. After a short time he receives the
information on the computing resources that satisfy his query. From the set of possible candidate
resources, he selects the nearest ones and proceeds with his job.

In answering the query, the information service first discovers the information producers for the
computing, storage and network resources that are relevant and then gets the necessary
information before performing a “join” to identify the resources that satisfy the query. The
scientist then needs to monitor his job and respond to partial failures in the execution
environment, possibly using the same GMA-based service (provided that the information has an
associated timestamp). GMA is an example of a multi-purpose information services architecture
[GMA].

3.9.3.3 Producer/Consumer patterns
Frequently, producers and consumers can directly communicate with one another. For those cases
where a direct exchange between a producer and consumer is not appropriate or not possible, the
basic pattern of decoupling producers from consumers using an intermediary is widely used. In
the Producer-Intermediary-Consumer pattern, producers put data into an intermediary, and
consumers extract data from it. In a general sense, this is the pattern followed by any data store.
That is, producers write to and consumers read from a file, RDBMS, ODBMS etc. In addition to
supporting producer and consumer interfaces, an intermediary may also support a management
interface. The management interface controls those functions that are not directly associated with
reading or writing to the data store. Operations controlling retention policy, backup policy, etc.
would be accessed through a management interface.

In distributed computing, the above pattern is followed by several infrastructure services whose
task it is to provide information to consumers. We broadly refer to these services as information

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 54

services. They include: name services, logging services, and notification services. We assume that
the reader is generally familiar with these concepts and we defer OGSA-specific discussions on
each service.

Each of these services has evolved to support a distinct set of domain-specific semantics and
qualities of service. While they each could be implemented using a general-purpose RDBMS for
an underlying data store, this would most likely result in trading off some desirable, specialized
qualities of service for unneeded functionality. For example, a log service that must support fast
writes would most likely find the performance and footprint costs of a full-function RDBMS to
be prohibitive. Similar observations could be made about name services and notification services.

WS-Notification [WS-N] provides a core set of interfaces that should be leveraged by the OGSA
information services. Its features include a publish/subscribe model, a mechanism to organize
items of interest to a subscriber known as “Topics”, and management interfaces for publications
and subscriptions. Other web service specifications addressing the Quality of Service provided by
the underlying messaging infrastructure should also be considered for exploitation by OGSA
information services. For example, WS-Reliability [WS-Reliability] enables reliable message
delivery in the presence of network and system failures.

3.9.4 Functional capabilities
We define naming, discovery, message delivery, logging, and monitoring capabilities.

3.9.4.1 Naming scheme
Traditional distributed systems usually support a two- or three-layer naming scheme. In OGSA,
the naming service, OGSA-naming, uses a three-level convention. Every named OGSA entity is
associated with an (optional) human-oriented name, an abstract name, and an address.

The human-oriented name is usually human-readable and may belong to a name space. Name
spaces are usually hierarchic and usually have syntactic restrictions. Hierarchic name spaces
permit each part of a name to map to a particular context. For example, in the Unix filename
“node1:/var/log/error,” the context for var is the root directory of a machine named
“node1,” the context for “log” directory is “var,” and the context for “error” file is “log.”
OGSA-naming does not require human-oriented names to be unique. Many different naming
schemes exist and this document does not attempt to prescribe the set of all supported schemes.

The abstract name is a persistent name that does not specify a particular location. Other
properties of abstract names such as uniqueness are under discussion. A WSRF endpoint
reference [WS-RF] with renewable references and the Legion Object Identifier are examples of
abstract names. A mechanism, outside the scope of this document, is required to map human-
oriented names to abstract names.

The address specifies the location of an entity. Examples of addresses are the combination of the
endpoint address and reference properties in a WSRF endpoint reference [WS-RF], a memory
address, and an IP address/port pair. A mechanism, outside the scope of this document, is
required to bind abstract names to addresses.

In OGSA we assume the existence of a resource handle. A resource handle is an abstract name of
a resource and its associated state (if any).

3.9.4.2 Discovery
One universally needed capability is service and resource discovery. A directory (or registry) is
an obvious solution, but not the only one. A directory is distinguished from other possible
solutions in that it has persistent storage for the “latest” information and is optimized for searches.

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 55

Low latency response to a high volume of queries is required. The directory may be replicated for
scalability.

Alternatively, a compilation or guide of information can be stored in an index (such as Google).
Unlike a registry, which tends to be centrally controlled, anyone can create an index.

Another alternative is peer-to-peer discovery, where a web service is a node in a network of peers
and dynamically queries its neighbors in search of a suitable match. The query propagates
through the network from one node to another until a match is found, a particular hop count is
reached, or some other termination criterion is satisfied. Yet another alternative for a discovery
service is a general GMA-based service (see below).

3.9.4.3 Message delivery
Producers and consumers interact by exchanging messages, and this can be handled by a common
messaging infrastructure. This infrastructure is only concerned with how to distribute copies of
messages to interested parties, not how these messages are constructed in the first place.
Producers either send messages directly to relevant consumers or make use of an intermediary
(message broker) that decouples producers from consumers. In the latter case the producers
publish their messages to the broker, which takes the responsibility for forwarding the message to
interested parties. A producer (or the intermediary) may provide notification capabilities and
additional function such as a finder service (allowing its producers and consumers to find each
other). Message brokers may store and forward messages in stable storage—not necessarily for
persistency, but for reliable message delivery purposes.

3.9.4.4 Logging
An OGSA logging service acts as an intermediary between log artifact producers and consumers.
Producers write log artifacts sequentially, and consumers may read (but not update) the log
records. To ensure the general acceptance of the basic log semantics and to enable the
exploitation of existing implementations, OGSA logging services should support key features
found in existing logging implementations. There may be multiple producers and consumers for a
given logging intermediary, and both may set filters for records. In the logger service the message
exchange is optimized for performance and the records are kept in a persistent store for a period
of time.

3.9.4.5 Monitoring
Information that carries a field for ordering purposes (e.g., a time stamp and sequence number)
can be used for monitoring. An OGSA monitoring service could be equally used for applications
or resources. Some situations (e.g., real-time applications) might impose strict requirement on the
monitoring service (e.g., high update rates and high performance). In such a case a special-
purpose service might be needed.

3.9.4.6 General Information and Monitoring service
A general OGSA service that provides a combination of the above capabilities can provide more
flexibility to the end user. For Grid resources in general (including services and applications), the
amount of available information about resources could be large, dispersed across the network,
and updated frequently. Searches in this space may have unacceptable latencies. In order to
manage such information in a controllable way, it is important to separate information source
discovery from information delivery. Searches should only be used to locate information sources
or sinks. A special-purpose directory is used to hold metadata about the resources. In this case the
directory must cope with high rates of updates that are expected in the dynamic OGSA
environment. Individual producer/consumer pairs can limit the amount of data flowing between

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 56

them to that satisfying the consumer query. This model differs from a message broker that
combines the mechanisms for finding sources and sinks of information and its delivery into a
single searchable channel. The merits of this approach are described in the GMA document
[GMA].

A user of such a general service should be able to put any information, irrespective of its intended
use (e.g., discovery, monitoring), into it without needing to understand the complexity of the
system. He first must specify what information is to be made available in OGSA, where the type
and structure of that information should be well-defined. The user might also wish to specify
certain properties and policies. This could include how the information is held, retention period,
guarantee of delivery, persistency, and access control. A consumer could filter information of
interest using a subscription topic, for example, and it could support a query to further refine the
events delivered to it through predicates defined in the query expression.

More advanced users may require a deeper understanding of the internal workings of the service.
Following a request for information in a general (GMA-based) service, expected behavior is that
a “mediator” capability is used to perform a registry/schema lookup and locate suitable sources of
information. For long-term queries the mediator ensures that, as sources are dropped or new
relevant sources come online, the subscribed consumers are updated. Mediation is also concerned
with planning the distributed queries to the relevant producers, as well as merging the results.

3.9.5 Properties

3.9.5.1 Security
Authentication and authorization rules for consumers and producers allow them to exchange
information in a secure fashion. Discovering metadata information about producers and
consumers (e.g., their existence or the type of information they produce or consume) could also
be subjected to security rules. Some services (e.g., metering, authentication, authorization)
require that messages be made secure (e.g., encrypted) for delivery.

3.9.5.2 Quality of service
Various levels of QoS can be provided by OGSA information services, such as reliable,
guaranteed delivery. WS-Reliability, defined by the OASIS WS-RM TC, provides these reliable
message delivery properties [WS-Reliability].

3.9.5.3 Availability/Performance/Scalability
Information systems play a critical role in OGSA. Since almost every other capability in OGSA
makes use of them, they need to be available at all times and to be especially tolerant of partial
failure. Many clients of the information systems expect to receive information at high rates and
cannot afford to wait long periods of time. High-performance systems are needed in this case.
Because a large number of resources, services and applications may wish to produce and
consume information, the system must also be scalable across wide-area networks.

3.9.6 Interactions with the rest of OGSA
Standard event data models facilitate the transfer of information from producers to consumers.
The use of recognized standards event schema permits the discovery and processing of events
from a large variety of potentially different sources across a VO. Ideally, to avoid mediation
costs, the resource event model and the infrastructure event model should be closely aligned.
Also, to accommodate domain-specific events, event schemas should be extensible. The event
schema currently under development in the OASIS WSDM-TC accommodates the existing CIM
event model and may be used as the basis for the OGSA event data model.

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 57

Notification mechanisms, or an extension of them, could be used to deliver events from producers
to consumers once they have discovered each other, and between other components of the system.

Security services are needed for authentication/authorization between different components.

Distributed query processing is required in the query-planning phase of the mediation between
producers and consumers of information in GMA.

Replication mechanisms are needed so that repositories of metadata (directories or registries) can
be distributed and replicated to avoid single points of failure and improve scalability. Some
temporary inconsistence between replicated copies might be acceptable in some situations; in this
case the information system needs to be robust in the event of inconsistent or out-of-date
metadata.

4 Security Considerations
Security considerations are discussed in the Security services section (§3.7).

Editor Information
Ian Foster
Distributed Systems Laboratory
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439
Phone: 630-252-4619
Email: foster@mcs.anl.gov

Hiro Kishimoto
Grid Computing and Bioinformatics Laboratory
Fujitsu Laboratories
4-1-1, Kamikodanaka, Nakahara, Kawasaki City, Japan
Phone: +81-44-754-2628
Email: hiro.kishimoto@jp.fujitsu.com

Andreas Savva
Grid Computing and Bioinformatics Laboratory
Fujitsu Laboratories
4-1-1, Kamikodanaka, Nakahara, Kawasaki City, Japan
Phone: +81-44-754-2628
Email: andreas.savva@jp.fujitsu.com

Contributors
We gratefully acknowledge the contributions made to this document by Jeffrey Frey, Takuya
Mori, Jeffrey Nick, Chris Smith, David Snelling, Latha Srinivasan, and Jay Unger.

Acknowledgements
We are grateful to numerous colleagues for discussions on the topics covered in this document, in
particular (in alphabetical order, with apologies to anybody we have missed) Mario Antonioletti,
Takuya Araki, Jamie Bernardin, Shel Finkelstein, Steve Fisher, Dennis Gannon, Kate Keahey,
Carl Kesselman, Takashi Kojo, Peter Kunszt, Simon Laws, Tan Lu, James Magowan, Susan
Malaika, David Martin, Nataraj Nagaratnam, Dave Pearson, Benny Rochwerger, John Rofrano,

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 58

Ellen Stokes, Paul Taylor, Steve Tuecke, Sachiko Wada, James Warnes, Philipp Wieder, and
Ming Xu.

We would also like to thank the people who took the time to read and comment on earlier drafts.
Their comments were valuable in helping us improve the readability and accuracy of this
document.

Glossary
The glossary is provided as a companion document, the OGSA Glossary of Terms [OGSA
Glossary].

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 59

Intellectual Property Statement
The GGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described
in this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies
of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification can be obtained from the
GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the GGF Executive Director (see
contact information at GGF website).

Full Copyright Notice
Copyright © Global Grid Forum (2002-2005). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the
copyright notice or references to the GGF or other organizations, except as needed for the
purpose of developing Grid Recommendations in which case the procedures for copyrights
defined in the GGF Document process must be followed, or as required to translate it into
languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

References
 [CAS] Pearlman, L., Welch, V., Foster, I., Kesselman, C., Tuecke, S. A Community

Authorization Service for Group Collaboration. Proceedings of the IEEE 3rd International
Workshop on Policies for Distributed Systems and Networks, 2001.

[Condor] Tannenbaum, T., Wright, D., Miller, K., Livny, M., “Condor—A Distributed Job
Scheduler” in Sternling, T. (ed) Beowulf Cluster Computing with Linux, The MIT Press,
2002.

[Dynamic Access Control] Lepro, R., Cardea: Dynamic Access Control in Distributed Systems.
NAS Technical Report NAS-03-020, 2003.

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 60

[EU DataGrid] EU DataGrid, VOMS Architecture version 1.1. 2003. http://grid-
auth.infn.it/docs/VOMS-v1_1.pdf.

[Fine-Grain Auth] Keahey, K., Welch, V., Lang, S., Liu, B., Meder, S. Fine-Grain Authorization
Policies in the GRID: Design and Implementation. 1st International Workshop on
Middleware for Grid Computing, 2003.

[Fine-Grain Auth RM] Keahey, K., Welch, V. Fine-Grain Authorization for Resource
Management in the Grid Environment. Proceedings of Grid2002 Workshop, 2002.

[Globus MDS] K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman. Grid Information Services
for Distributed Resource Sharing. Proceedings of the Tenth IEEE International Symposium
on High-Performance Distributed Computing (HPDC-10), IEEE Press, August 2001.

[Grid Auth Framework] Lorch, M., Cowles, B. (eds.) Conceptual Grid Authorization Framework
and Classification. GGF Working Group on Authorization Frameworks and Mechanisms,
2004.

[Grid AAA Req] Mullen, S. Crawford, M., Lorch, M, Skow, D. Grid Authentication
Authorization and Accounting Requirements. GGF Site Authentication, Authorization, and
Accounting working group. January, 2004.

[Grid Anatomy] Foster, I., Kesselman, C. and Tuecke, S. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. International Journal of Supercomputer Applications, 15
(3). 200-222. 2001.

[Grid Physiology] Foster, I., Kesselman, C., Nick, J. and Tuecke, S. The Physiology of the Grid:
An Open Grid Services Architecture for Distributed Systems Integration. Globus Project,
2002. www.globus.org/research/papers/ogsa.pdf.

[GS Security] Welch, V., et. al. Security for Grid Services, Twelfth International Symposium on
High Performance Distributed Computing (HPDC-12), IEEE Press, to appear June 2003.

[GMA] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany, V. Taylor and R. Wolski, A Grid
Monitoring Architecture, Global Grid Forum, Final Document Series, March 2000.

[JobQueue] Katramatos, D., Humphrey, M., Grimshaw, G., and Chapin, S. J. JobQueue: A
Computational Grid-Wide Queueing System. Proceedings of the Second International
Workshop on Grid Computing. Lecture Notes in CS, 2001.

[JSDL] Anjomshoaa, A., Brisard, F., Ly, A., McGough, S., Pulsipher, D., Savva, A. (ed.) Job
Submission Description Language (JSDL) Specification, Version 0.6, Global Grid Forum
JSDL-WG, Draft, November 2004. https://forge.gridforum.org/projects/jsdl-
wg/document/draft-ggf-jsdl-spec/en/11.

[Kerberos V5] Kohl, J., and Neuman, C. The Kerberos Network Authentication Service (V5),
RFC 1510, IETF, 1993.

[Legion] S.J. Chapin, D. Katramatos, J.F. Karpovich, and A.S. Grimshaw, “Resource
Management in Legion,” Journal of Future Generation Computing Systems, vol. 15, pp.
583-594, 1999.

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 61

[Liberty] Introduction to the Liberty Alliance Identity Architecture. Revision 1.0, Liberty
Alliance Project. http://www.projectliberty.org/, March 2003.

[MOWS] Sedukhin, I. (ed.) Web Services Distributed Management: Management of Web
Services (WSDM-MOWS) 1.0, OASIS Committee Draft, December 2004,
http://docs.oasis-open.org/wsdm/2004/12/cd-wsdm-mows-1.0.pdf

[MUWS part 1] Vambenepe, W. (ed.) Web Services Distributed Management: Management
using Web Services (MUWS 1.0) Part 1, OASIS Committee Draft, December 2004,
http://docs.oasis-open.org/wsdm/2004/12/cd-wsdm-muws-part1-1.0.pdf

[MUWS part 2] Vambenepe, W, (ed.) Web Services Distributed Management: Management
using Web Services (MUWS 1.0) Part 2, OASIS Committee Draft, December 2004,
http://docs.oasis-open.org/wsdm/2004/12/cd-wsdm-muws-part2-1.0.pdf

[Nimrod] Abramson, D., Giddy, J. and Kotler, L., High Performance Parametric Modeling with
Nimrod/G: Killer Application for the Global Grid? Proceedings of the International Parallel
and Distributed Processing Symposium (IPDPS), Cancun, Mexico, 2000, 520-528.

[OGSA Glossary] Treadwell, J. (ed.) Open Grid Services Architecture Glossary of Terms. Global
Grid Forum OGSA-WG. GFD-I.044, January 2005. http://www.ggf.org/documents/GWD-
I-E/GFD-I.044.pdf

[OGSA RM] Maciel, F. B. (ed.) Resource Management in OGSA. Global Grid Forum CMM-WG.
GFD-I.045, February 2005. http://www.ggf.org/documents/GWD-I-E/GFD-I.045.pdf

[OGSA Use Cases] Foster, I., Gannon, D., Kishimoto, H and J. Von Reich, Jeffrin. (eds.) Open
Grid Services Architecture Use Cases. Global Grid Forum OGSA-WG, GFD-I.029,
October 2004. http://www.ggf.org/documents/GWD-I-E/GFD-I.029v2.pdf

[OGSA Use Cases Tier 2] J. Von Reich, Jeffrin. (ed.) Open Grid Services Architecture: Second
Tier Use Cases. Global Grid Forum OGSA-WG, Draft, March 2004.
https://forge.gridforum.org/projects/ogsa-wg/document/draft-ggf-ogsa-usecase-tier2-
20/en/1

[OGSI] Tuecke, S., Czajkowski, K., Foster, I., Frey, J., Graham, S., Kesselman, C., Maguire, T.,
Sandholm, T., Snelling, D. and Vanderbilt, P. Open Grid Service Infrastructure (OGSI),
Global Grid Forum OGSI-WG, GFD-R-P.15, June 2003.

[PKI] Housley, R., Polk, W., Ford, W., and Solo, D., Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile. RFC 3280, IETF, April 2002.

[RFC2903] de Latt, C., Gross, G., Gommans, L., Vollbrecht, J., Spence, D. Generic AAA
Architecture, RFC 2903, IETF, 2000.

[R-GMA] Cooke A, Gray AJG, Ma LS, Nutt W, Magowan J, Oevers M, Taylor P, Byrom R,
Field L, Hicks S, Leake J, Soni M, Wilson A, Cordenonsi R, Cornwall L, Djaoui A, Fisher
S, Podhorszki N, Coghlan B, Kenny S, O'Callaghan D, R-GMA: An information integration
system for grid monitoring. Lecture Notes in Computer Science 2888: 462-481 2003

GFD-I.030 29 January 2005

ogsa-wg@ggf.org 62

[PRIMA] Lorch, M., Adams, D., Kafura, D., Koneni, M., Rathi, A., and Shah, S. The PRIMA
System for Privilege Management, Authorization and Enforcement in Grid Environments,
4th Int. Workshop on Grid Computing - Grid 2003, 17 November 2003 in Phoenix, AR, US

[Role-Based VO] Canon, S., Chan, S., Olson, D., Tull, C., Welch, V. Using CAS to Manage
Role-Based VO Sub-Groups. Proceedings of Computing in High Energy Physics (CHEP
'03), 2003.

[SAZ] Sekhri, V. and Mandrichenko, I. Site Authorization Service (SAZ) at Fermilab.
Proceedings of Computing in High Energy Physics (CHEP '03), 2003.

[WS Security Whitepaper] Security in a Web Services World: A Proposed Architecture and
Roadmap, Version 1.0, A joint security whitepaper from IBM Corporation and Microsoft
Corporation. April 7, 2002, http://www-106.ibm.com/developerworks/library/ws-secmap/

[WS-N] Graham, S. (ed), Niblett, P. (ed), Chappell, D., Lewis, A., Nagaratnam, N., Parikh, J.,
Patil, S., Samdarshi, S., Sedukhin, I., Snelling, D., Tuecke, S., Vambenepe, W., Weihl, B.
Publish-Subscribe Notification for Web services, Version 1.0, May 3, 2004.
http://www.oasis-open.org/committees/download.php/6661/WSNpubsub-1-0.pdf

[WS-RF] Czajkowski, K., Ferguson, F. D., Foster, I., Frey, J., Graham, S., Sedukhin, I., Snelling,
D., Tuecke, S. and Vambenepe, W. The WS-Resource Framework, Version 1.0, March,
2004. http://www.oasis-open.org/committees/download.php/6796/ws-wsrf.pdf

[WS-Agreement] Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Pruyne, J.,
Rofrano, J., Tuecke, S. and Xu, M. Web Services Agreement Specification (WS-
Agreement). Global Grid Forum GRAAP-WG, Draft, August 2004.

[WS-Architecture] Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C.
and Orchard, D. Web Services Architecture. W3C, Working Draft, 2003.
http://www.w3.org/TR/2003/WD-ws-arch-20030808/

[WS-Reliability] Iwasa, K. (ed.) WS-Reliability 1.1, OASIS standard, November 2004.
http://www.oasis-open.org/committees/download.php/9330/WS-Reliability-CD1.086.zip

 [XQuery] Boag, S., Chamberlin, D., Fernández, M. F., Florescu, D., Robie, J., Siméon J. XQuery
1.0: An XML Query Language, Working Draft, Nov. 2003. http://www.w3.org/TR/xquery/

[VO Security] Siebenlist, F., Nagaratnam, N., Welch, V., Neuman, B.C. Security for Virtual
Organizations: Federating Trust and Policy Domains. In The Grid: Blueprint for a New
Computing Infrastructure (2nd Edition), 2004.

