

Roy, Sander Experimental [Page 1]

GFD-E.5 Alain Roy
Scheduling Working Group University of Wisconsin-Madison
Category: EXPERIMENTAL Volker Sander
 Forschungszentrum Jülich GmbH
 May 23rd, 2002

Advance Reservation API

Status of this Draft

This document specifies an experimental grid working draft for the Grid
scheduling community. Discussion and suggestions are requested.
Distribution of this memo is unlimited.

GGF EDITOR NOTE: This document is EXPERIMENTAL and is not intended to
specify a Grid recommendation or standard, nor is this document a
“recommendations track” document. It is intended solely to provide
details of an experimental API.

Copyright Notice

Copyright (c) Global Grid Forum (2002). All rights reserved.

Table of Contents

1. Introduction .. 2
1.1. Scope .. 2
1.2. A Context .. 2
1.3. Terms .. 3

2. Reservations .. 4
3. Using the API ... 6
3.1. Initialization ... 6
3.2. Describing a Reservation Request 6
3.3. Passing Authorization Information 8
3.4. Creating a Reservation ... 9
3.5. Modifying a Reservation .. 9
3.6. Querying a Reservation .. 10
3.7. Reservation Attributes .. 10
3.8. Committing a Reservation .. 11
3.9. Binding a Reservation ... 11
3.10. Using Callbacks ... 12
3.11. Canceling a Reservation ... 13
3.12. Deactivating the Advance Reservation Module 14

4. Grid Advance Reservation API Reference 14
4.1. Constants ... 14
4.2. Data Structures ... 18
4.3. Functions ... 19

5. Security Considerations .. 25
6. Author Information ... 25
7. Copyright Notice ... 25
8. Intellectual Property Notice ... 26

GFD-E.5 May 2002

Roy, Sander EXPERIMENTAL [Page 2]

1. Introduction

The Grid scheduling architecture should provide programmers with convenient
access to end-to-end Quality of Service (QoS) for programs. To do so,
mechanisms are required for making advance QoS reservations for different
types of resources, including computers, networks, and disks. A reservation
is a promise from the system that an application will receive a certain level
of service from a resource. For example, a reservation may promise a certain
bandwidth on a network or a certain percentage of a CPU.

A Grid resource reservation API should provide two capabilities. First, it
should allow users to make reservations either in advance of when the
resource is needed or at the time that the user needs it. Second, the same
API should be capable of making and manipulating a reservation regardless of
the type of the underlying resource, thereby simplifying the programming when
an application must work with multiple kinds of resources and multiple
simultaneous reservations.

1.1. Scope

This document presents an advance reservation API. It does not present any
mechanisms or interfaces for querying the status of previously made
reservations, in order to assist users in discovering good times to make
reservations. It is expected that another document will describe such
mechanisms and interfaces.

This document uses the Resource Specification Language (RSL) to describe a
reservation request. While we believe that RSL is a good interim solution, we
expect that a longer-term solution will be developed separately in
cooperation with the Information Services working group.

Advance reservations for computer resources are just beginning to be used. We
expect that as advance reservations become more widely used, our
understanding will deepen and grow. During this time, it will be useful for
different advance reservation systems to provide the same interface, in order
to enable broad experimentation with such systems. This document provides
such an interface, but we expect that as our knowledge grows, we will desire
an updated interface. We expect this interface to serve us well for two to
five years, at which point a new interface will be developed to reflect new
understanding.

1.2. A Context

The proposed Grid Advance Reservation API can be considered a remote
procedure call mechanism to communication with a reservation manager. A
reservation manager controls reservations for a resource: it performs
admission control and controls the resource to enforce the reservations. Some
resources already can work with advance reservations, so the reservation
manager is a simple program. Most resources cannot deal with advance
reservations, however, so the reservation manager tracks the reservations and
does admission control for new reservation requests.

GFD-E.5 May 2002

Roy, Sander EXPERIMENTAL [Page 3]

To create a flexible architecture that supports co-allocation, resource
location, and resource acquisition steps, we propose a layered architecture
with three levels of APIs and one level of low-level mechanisms.

The remaining document describes the intermediate API in Figure 1, the Grid
Advance Reservation API. We note that there is no requirement that the Grid
Advance Reservation API be implemented by using a local reservation API; this
is just a conceptual guide to aid in understanding where this API fits in a
larger context. This API is immediately useful both to programmers wishing to
make advance reservation and to those building higher-level tools, such as
superschedulers, co-reservation agents, or other as-yet-unforeseen tools.

We envision that when users desire advance reservations for multiple
resources and different kinds of resources at the same time, they will build
tools on top of the Grid Advance Reservation API. For example, users may wish
to reserve time on two computers, disk space on those two computers for
storage of intermediate results, and network bandwidth between the two
computers for communication. This API will be useful for these sorts of co-
reservations.

1.3. Terms

Within the document several terms are used to precisely describe the
semantics of the API calls. To clarify the use of these terms and to avoid
misunderstandings, we briefly explain these terms:

Reservation: This is a promise from the system that an application will
receive a certain level of service from a resource.

Creating a Reservation: This process involves asking for a specific resource
behavior of given duration within a specified time interval.

Figure 1 − layered advance reservation architecture

1. Grid Advance Reservation API
Make remote, authenticated, reservations for a single resource.

2. Local Reservation API
Makes reservations with diverse resource types; within single
trust domain. For example, the PBS API.

3. Reservation Managers
Controls admission and enforces
reservations for particular resources.

Batch Scheduler
Reservation Manager

Network Reservation
Manager …

Superscheduler High-Level
Agent

Co-reservation
High-Level API …

GFD-E.5 May 2002

Roy, Sander EXPERIMENTAL [Page 4]

Committing a Reservation: To facilitate the use of co-reservations,
implementers might choose to use a two-phase commit protocol. Once, a
reservation is created, it is on hold for a specific time. If the reservation
is not committed within this time interval, it is cancelled.
Binding a Reservation: Some reservations cannot be instantiated without the
provision of additional run-time information. The binding step is supposed to
facilitate the creation of reservations without requiring a detailed
knowledge about all required attributes. To actually use the reservation,
however, the user must “bind” the reservation, that is, provide the missing
attributes.

2. Reservations

Reservations have five important attributes:

Start Time: The earliest time that the reservation may begin. A
reservation always has a start time, even if it is an immediate
reservation, which begins as soon as the reservation is made. The start
time is in seconds from 00:00:00 UTC, January 1, 1970. For example, to
make an immediate reservation, the user can call the Unix time() function
to discover the current time and use that as the start time.

Duration: The amount of time the reservation lasts, in seconds. All
reservations must specify their duration, so that the underlying
reservation managers can do appropriate admission control for reservations
granted in advance.

Resource Type: The type of underlying resource, such as a network, a
computer, or a disk.

Reservation Type: A particular kind of reservation.

Resource-Specific Parameters: Parameters that are unique to each type of
resource, such as bandwidth for a network reservation and number of nodes
for a computation reservation.

Optionally, a reservation may specify the attribute End Time in the same way
that Start Time is specified. If the difference between End Time and Start
Time exceeds the value of Duration, any given time interval of the correct
duration starting at or after Start Time and not ending past End Time is
accepted for the reservation. The exact start time is made by the reservation
manager.

When a reservation is requested, one must specify these attributes, as shown
below in the API description. If the reservation request is accepted, a
reservation handle is returned from the system. This is an opaque string that
uniquely identifies the reservation. All future operations require this
handle. (The internal format of this string will be described in a different
document. Generally, programmers and users do not need to be aware the format
of this reservation handle. It may vary from reservation manager to
reservation manager, and it does not need to be interpreted by anything other
than the reservation manager for correct operation. The reservation handle
should, however, encode how the reservation manager for that reservation can

GFD-E.5 May 2002

Roy, Sander EXPERIMENTAL [Page 5]

be contacted, because only the create reservation function actually allows
the user to specify the reservation manager.

Once the application has received a reservation handle, it can perform
several operations with that handle:

• Modify Reservation: One can request a modification to an existing

reservation. For instance, one can increase the bandwidth that has already
been requested. A modification that reduces its requirements normally
succeeds, although certain factors may cause reduction modifications to
fail, such as local policy that does not allow small reservations on some
resources. In no case SHOULD the underlying implementation implement a
modification such that if the modification fails, the original reservation
is lost. For example, a simple implementation may implement modification
by canceling a reservation and making a new reservation, but if the new
reservation fails and it cannot be rolled back to the original
reservation, this would be unacceptable.

• Cancel Reservation: One can inform the reservation manager that the

reservation is no longer needed (i.e., canceled).

• Bind Reservation: When the application is ready to use a reservation, it

may need to provide run-time information that was not available at the
time the reservation was made. This is known as binding a reservation. For
example, network reservations require port numbers to be specified, but
they are not usually known at reservation time. Not all reservations
require such run-time parameters.

• Unbind Reservation: A reservation can be unbound. It then will no longer

be usable by the person using the reservation. It can be rebound, however,
with new run-time parameters.

• Commit Reservation: When a reservation is created, it can be specified as

a two-phase commit reservation. Such reservations time-out after a
specified time-period, unless the reservation is committed.

• Query Reservation Status: One can discover the status of a reservation by

polling it. The status includes whether the start of the reservation has
begun and whether the reservation has been committed.

• Query Reservation Attributes: One can discover attributes associated with
an existing reservation. These include begin and end time of the given
reservation and whether it is a two-phase commit reservation. The
attributes also include specific information required to actually use a
reservation. Example attributes are a directory name where data was staged
on, or a queue name which has to be used for submitting a job.

• Register Callback: One can provide a function that will be called when the

status of a reservation changes or when the reservation manager wishes to
provide extra information to the application. This information may include
notification that the related reservation appears to be too small.
Callbacks implement the monitor functionality described in S-RFC 3.

GFD-E.5 May 2002

Roy, Sander EXPERIMENTAL [Page 6]

3. Using the API

The Advance Reservation API should be provided as a library that can be
linked by programs written in C. Additional bindings (e.g., from a Java
implementation) are not described here. We note that although this API is
derived from the GARA API and has some references to Globus, an
implementation of the API is not required to include any such references to
Globus.

3.1. Initialization

Before one can use the API, an initialization of the module is required.

grid_reservation_activate();

Programs are allowed to call this activate function more than once.
Invocations after the first have no effect. The advance reservation module
does, however, keep track of how many times it has been activated; and the
deactivation function (see Section 3.10) MUST be called that same number of
times before it actually deactivates the Grid reservation module.

The idea of this behavior is to simplify application development if several
portions of a program (particularly libraries) wish to independently use the
Grid reservation API. Each portion of the program can independently invoke
the Grid reservation API without worrying about when the module will be
activated or deactivated.

3.2. Describing a Reservation Request

Until the Grid Information Group finishes its work in progress and defines a
standard resource description language such as MDSML, reservation attributes
or allocation properties will be described by using the Resource
Specification Language (RSL) of the Globus Project. We note that since the
API treats the reservation attribute specification as a string, we should not
have to change the API once we describe a new specification method. Moreover,
RSL offers the advantage that it can handle Boolean operations and comparison
operations, although this use is not demonstrated here.

An RSL string is simply a list of attribute-value pairs that looks like the
following.

&(attribute-1=value-1) (attribute-2=value-2) … (attribute-N=value-N)

An example RSL string for requesting a network reservation for 150Kbps
between a source IP address of 140.221.48.146 and a destination address of
140.221.48.106 looks like the following.

&(resource-type=network)
 (start-time=953158862)
 (duration=3600)
 (endpoint-a=140.221.48.146)
 (endpoint-b=140.221.48.106)
 (bandwidth=150)

GFD-E.5 May 2002

Roy, Sander EXPERIMENTAL [Page 7]

Note that this string was spaced out on several lines for readability, while
RSL strings do not have newlines in them. More information about RSL is
available from the Globus Project Web page: http://www.globus.org.

Following is a list of attributes that may be used to specify a reservation.
The universal attributes are for all types of reservations, while the other
attributes are for specific types of resources. Note that the compute
resource attributes are mutually exclusive. This minimal set of supported
attributes might be extended in future versions of the document.

Attribute Units Default Req? Description
Universal Attributes
resource-type Y Allowable values: “network”,

“compute”, “disk”, or “graphic-
pipeline”.

reservation-type Currently valid only for network
reservations. If it is not specified,
it is a foreground reservation.
Otherwise it is one of “background” or
“low-latency

start-time secs Y Earliest acceptable time the
reservation starts in seconds since
00:00:00 UTC, January 1, 1970. If one
specifies “now”, then the reservation
will begin immediately.

end-time secs Latest acceptable time the reservation
might be active; UTC format as above.

duration secs 100 Length of the reservation, in seconds.
two-phase n/a false If “true”, then the reservation will

time-out after some time, unless it is
committed. See discussion in text.

two-phase-timeout secs implementation
-dependent

 The time for the timeout when the two-
phase commit option is specified.

Compute Resource Attributes
number-of-cpus Int 1 Number of CPUs to be reserved.
percent-cpu % 20 Percentage of the CPU’s time given to

the reserved process.
Network Resource Attributes
endpoint-a Y The machine at one end of the network

flow. This may be specified as a
dotted IP address, such as
140.221.48.162, or a machine name,
such as dslnet2.mcs.anl.gov

endpoint-b Y The machine at the other end of the
network flow. This may be specified as
a dotted IP address, such as
140.221.48.162, or a machine name,
such as dslnet2.mcs.anl.gov

bandwidth Kbps 8 How fast a flow can transfer data.
directionality bidirectional unidirectional-ab: reservation for

traffic from a to b.
unidirectional-ba: reservation for
traffic from b to a.
bidirectional: reservation for traffic
in both directions.

GFD-E.5 May 2002

Roy, Sander EXPERIMENTAL [Page 8]

Disk Resource Attributes

size KB The storage space needed for a single
file or set of files.

bandwidth Kbps 8 Speed for reading/writing file.

3.3. Passing Authorization Information

Before any of the following operations can be done, an important data
structure must be initialized. The intention of the data structure is to pass
mandatory information such as user credentials or authorization attributes.
For example, some reservations may be granted only when specific
authorization attributes are provided. The final implementation of the data
structure will depend on the input from the Grid Security working group. For
now, we assume that user credentials are accessed by denoting the file name
of the proxy file that contains a valid pair of certificate and private key.
If no name is supplied (NULL), it is assumed that the user identity can be
extracted from the environment. Some toolkits, such as the Globus Toolkit,
support this extraction of the user identity from the environment, and it
simplifies many programming tasks. A superscheduler, on the other hand, is
likely to wish to supply the identity, since it will be handling requests for
many different users.

Enabling the specification of authorization and policy information in the API
is important for implementing high-level functionalities such as a
superscheduler. An example of policy information set by such an entity is the
distinguished name of the owner of a reservation, a list of group
memberships, and a list of user or groups allowed to use the reservation in
subsequent calls. To ensure the integrity of the policy field, it must be
signed by a trusted entity.

Data Structure:

struct authorization_info_s
{
 char *user_proxy_file;
 int number_of_policies;
 policy_sequence_t *policies;
}
typedef struct authorization_info_s
 authorization_info_t;

 struct policy_entry_s
 {
 char *attribute;
 char *value;
 }
 typedef struct policy_entry_s policy_entry_t;

 struct policy_sequence_s
 {
 policy_entry_t policy_list[];
 char dn_of_signing_entity
 unsigned char *signature;
 }

GFD-E.5 May 2002

Roy, Sander EXPERIMENTAL [Page 9]

 typedef struct policy_sequence_s policy_sequence_t;

3.4. Creating a Reservation

Before a reservation can be created, its needs must be specified as described
above. To request a reservation, the application must call
grid_reservation_create().

 int error;
 char *request_rsl = “&(resource-type=compute)
 (number-of-nodes=14)”;
 char *time_rsl = “&(start-time=953158862) (duration=3600)”
 char *resource_manager_contact = "pitcairn.mcs.anl.gov:2119:/O=Grid/"
 "O=Globus/CN=pitcairn.mcs.anl.gov"
 char *reservation_handle;
 authorization_info_t auth_info;

 auth_info.user_proxy_file = NULL;
 auth_info.number_of_policies = 0;
 auth_info.policies = NULL;
 error = grid_reservation_create(reservation_manager_contact,
 &auth_info,
 request_rsl, time_rsl,
 &reservation_handle);

The reservation manager contact is a string obtained from another location,
such as the Grid Information Service. It specifies the URL of the related
reservation manager.

Note that if the reservation had specified “(two-phase=true)” in the
request_rsl, the reservation would have needed to be committed. See below.

3.5. Modifying a Reservation

Modifying a reservation is similar to creating a reservation, except that
instead of providing a reservation manager contact, the application provides
the handle to the reservation that was created earlier.

 int error;
 char *request_rsl = “&(resource-type=compute)
 (number-of-nodes=128)”;
 char *time_rsl = “(start-time=953158862) (end-time=953173262)
 (duration=7200)”

 char *old_reservation_handle;
 char *reservation_handle;
 authorization_info_t auth_info;

 auth_info.user_proxy_file = NULL;
 auth_info.number_of_policies = 0;
 auth_info.policies = NULL;

GFD-E.5 May 2002

Roy, Sander EXPERIMENTAL [Page 10]

 error = grid_reservation_modify(&auth_info, old_reservation_handle,
 request_rsl, time_rsl,
 &reservation_handle);

3.6. Querying a Reservation

To find out the status of a reservation, one can issue the following query.

 int error;
 int status;
 char *reservation_handle;
 authorization_info_t auth_info;

 auth_info.user_proxy_file = NULL;
 auth_info.number_of_policies = 0;
 auth_info.policies = NULL;

 error = grid_reservation_status(&auth_info, reservation_handle,
 &status);

If there is no error, the status will be one of the following.

 GRID_RESERVATION_STATUS_NOT_STARTED
 GRID_RESERVATION_STATUS_NOT_STARTED_BOUND
 GRID_RESERVATION_STATUS_READY_NOT_BOUND
 GRID_RESERVATION_STATUS_ACTIVE
 GRID_RESERVATION_STATUS_FINISHED

A reservation is bound if a previous call to grid_reservation_bind succeeded.
A reservation is ready if the current time is later than the start time, and
the duration has not yet elapsed. A reservation is active if it is both ready
and bound. A reservation is finished if the current time is later than the
start time plus the duration.

3.7. Reservation Attributes

Reservation attributes are a generalized version of the status call that
allow more attributes to be queried. The following is an example of
querying the time that a reservation begins.

 int error;
 char *reservation_handle;
 authorization_info_t auth_info;
 grid_reservation_attribute_t attribute;

 auth_info.user_proxy_file = NULL;
 auth_info.number_of_policies = 0;
 auth_info.policies = NULL;

 error = grid_reservation_attribute(&auth_info, reservation_handle,
 GRID_RESERVATION_ATTRIBUTE_BEGIN_TIME, &attribute);
 printf(“Start time is %s\n”, ctime(attribute.value.time));

GFD-E.5 May 2002

Roy, Sander EXPERIMENTAL [Page 11]

3.8. Committing a Reservation

When a reservation is a two-phase commit reservation (as specified in the
reservation request, see Sections 3.2 and 3.4), it must be committed before
the reservation times out. The time-out period can be specified when the
reservation is made, but it defaults to an implementation-specified time that
can be discovered through some external query mechanism.

 int error;
 char *reservation_handle;
 authorization_info_t auth_info;

 auth_info.user_proxy_file = NULL;
 auth_info.number_of_policies = 0;
 auth_info.policies = NULL;

 error = grid_reservation_commit(&auth_info, reservation_handle);

3.9. Binding a Reservation

When the application is ready to use a reservation, it may need to bind the
reservation. Binding a reservation is a required step if the creation was
done without providing all required attributes to instantiate it, and this is
almost always the case. The following example binds a process-id to a given
reservation.

 int error;
 char *bind_paramters = “&(process-id=5631)”;
 char *reservation_handle;
 authorization_info_t auth_info;

 auth_info.user_proxy_file = NULL;
 auth_info.number_of_policies = 0;
 auth_info.policies = NULL;

 error = grid_reservation_bind(&auth_info, reservation_handle,
 &bind_parameters);

Note that the run-time parameters are specified as an RSL string. This allows
the integration of different reservation managers within one API. Bind
parameters are resource dependent. For compute reservations, for instance,
the only parameter to be specified might be the process-id, which specifies
the process ID of the process that will be receiving the reservation. For
some reservations, such as ones requesting a number of nodes on a machine,
there may be no bind parameters, but the call still must be made. For network
reservations, there are more parameters:

• which-endpoint: If the reservation is being bound from a machine involved

in the reservation, this specifies which machine it is. The machine is
either “a” or “b”, and it matches what was specified in the reservation
request. If a different machine is binding the reservation on behalf of
the processes involved, “a” is used.

GFD-E.5 May 2002

Roy, Sander EXPERIMENTAL [Page 12]

• endpoint-a-port: This is the port used by endpoint-a, as specified in the
reservation request. The implementation assumes that data is being sent
from endpoint-a to endpoint-b; this will be the port used by the sender.

• endpoint-b-port: This is the port use by endpoint-b, as specified in the
reservation request. The implementation assumes that data is being sent
from endpoint-a to endpoint-b; this will be the port used by the receiver.

A reservation is not considered active until it is bound. Once a reservation
has both begun and been bound, the reservation manager must do whatever setup
is necessary in order to ensure that the reservation is granted. If the
reservation was bound before it began, the reservation manager will
automatically enable the reservation once it begins.

If the application is temporarily not using a reservation but will resume
using it before the reservation has expired, the application can unbind the
reservation.

 int error;
 char *reservation_handle;
 authorization_info_t auth_info;

 auth_info.user_proxy_file = NULL;
 auth_info.number_of_policies = 0;
 auth_info.policies = NULL;

 error = grid_reservation_unbind(&auth_info, reservation_handle);

Once an application unbind a reservation, it may bind the reservation again.

3.10. Using Callbacks

Callbacks are used to communicate monitoring functions to the user. If the
application would like to be informed whenever the status of a reservation
changes (see Section 3.6, Querying a Reservation), it can use a callback
function. When the user registers a callback function, it will immediately be
called once, to provide the current status, and will be called every time the
status changes thereafters.

First, the application needs to create a callback function.

 static void callback_handler(
 char *reservation_handle,
 grid_reservation_event_t event,
 void *user_parameter)
 {
 /* Place code here to examine the event */
 /* If it is a status event, event.event_type will be
 STATUS_EVENT, and the status will be in
 event.event. */
 if (event.event == STATUS_EVENT)
 {
 if (event.event_type == RESERVATION_STATUS_FINISHED)
 {
 /* React to reservation being finished */

GFD-E.5 May 2002

Roy, Sander EXPERIMENTAL [Page 13]

 }
 }
 return;
 }

Then the application must register this function for each reservation that
needs to be monitored.

 static void callback_handler(char *reservation_handle,
 grid_reservation_event_t event,
 void *user_parameter);

 int error;
 char *reservation_handle;
 authorization_info_t auth_info;

 auth_info.user_proxy_file = NULL;
 auth_info.number_of_policies = 0;
 auth_info.policies = NULL;

 error = grid_reservation_callback_register(&auth_info,
 reservation_handle,
 callback_handler, NULL);

Note that the last parameter passed to the registration function will be
forwarded as the user_parameter to the callback function.

If the user no longer wants to have a function called when the status
changes, it can be unregistered.

 int error;
 char *reservation_handle;
 authorization_info_t auth_info;

 auth_info.user_proxy_file = NULL;
 auth_info.number_of_policies = 0;
 auth_info.policies = NULL;

error = grid_reservation_callback_remove(&auth_info,
 reservation_handle, callback_handler);

Note that one can register multiple callback functions for a single
reservation handle.

3.11. Canceling a Reservation

When the application has finished using a reservation, it should cancel the
reservation by using the reservation handle that was obtained when the
reservation was created.

 char *reservation_handle;
 authorization_info_t auth_info;

GFD-E.5 May 2002

Roy, Sander EXPERIMENTAL [Page 14]

 auth_info.user_proxy_file = NULL;
 auth_info.number_of_policies = 0;
 auth_info.policies = NULL;

 grid_reservation_cancel(&auth_info, reservation_handle);

When the application cancels a reservation, all of the callbacks that have
been registered for that reservation will automatically be cancelled.

It is important to note that all reservation managers should clean up
reservations automatically, once they are expired. However, the cancel call
must not fail if the reservation manager has removed a reservation already.

3.12. Deactivating the Advance Reservation Module

When the application has finished using API, it should deactivate the API, to
enable cleanup.

 grid_reservation_deactivate();

4. Grid Advance Reservation API Reference

We discuss in this section the constants, data structures, and functions that
the API uses

4.1. Constants

The API uses various constants, including errors, callbacks and status
constants, attribute types, and variable types.

Errors

Currently we define N errors, with the specific values as shown here. We
reserve the right to define errors with the values 0-256. Implementations may
use any other errors values they like, but until they become standardized,
they must not use the values 0-256.

GRID_ERROR_NONE (0)

No error has occurred.
GRID_ERROR_UNKNOWN (1)

An error has occurred, but the reservation manager just doesn’t know
what it is.

GRID_ERROR_MODULE_NOT_ACTIVE (2)
The user has tried to use the API without activating the module first.

GRID_ERROR_BAD_PARAMETER (3)
A bad parameter, such as a NULL reservation handle, has been passed to
an API function that actually expected a good parameter.

GRID_ERROR_ZERO_LENGTH_RESOURCE_SPECIFICATION (4)
An resource description was provided, but it is empty. It may be that
this is never returned.

GRID_ERROR_BAD_RESOURCE_DESCRIPTION (5)

GFD-E.5 May 2002

Roy, Sander EXPERIMENTAL [Page 15]

There is an error, probably a syntax error, in the resource description
string.

GRID_ERROR_BAD_RESERVATION_HANDLE (6)
The reservation handle that was provided isn’t really a reservation
handle.

GRID_ERROR_BAD_USER_CREDENTIALS (7)
The credentials specified in the authorization_info_t structure are no
good. Who are you anyway?

GRID_ERROR_NO_USER_CREDENTIALS (8)
The credentials specified in the authorization_info_t were NULL and
they could not be extracted from the environment, leading the
reservation manager to suspect you are a non-person.

GRID_ERROR_BAD_POLICY_DESCRIPTION (9)
The policy specification was not accepted.

GRID_ERROR_CONNECTION_FAILED (10)
The API was unable to connect to the reservation manager.

GRID_ERROR_AUTHORIZATION (11)
The API was unable to authenticate and authorize the user.

GRID_ERROR_VERSION_MISMATCH (12)
Protocol error with the reservation manager because of mismatch of
version.

GRID_ERROR_INVALID_REQUEST (13)
The request cannot be handled by the reservation manager.

GRID_ERROR_UNKNOWN_RESERVATION_TYPE (14)
The reservation type in the reservation request must be one of
“network”, “compute”, or “disk”, but it wasn’t.

GRID_ERROR_PROTOCOL_FAILED (15)
There was a problem communicating with the reservation manager.

GRID_ERROR_MISSING_RESERVATION_TYPE (16)
The reservation type in the RSL reservation request wasn’t provided.

GRID_ERROR_OUT_OF_MEMORY (17)
A request for memory failed.

GRID_ERROR_MISSING_ENDPOINT_A (18)
A network reservation request didn’t specify endpoint-a.

GRID_ERROR_MISSING_ENDPOINT_B (19)
A network reservation request didn’t specify endpoint-b.

GRID_ERROR_CANT_MAKE_RESERVATION (20)
The reservation can’t be made. Probably there are other reservations
already at the same time, and there isn’t room for the new reservation.

GRID_ERROR_BAD_RESERVATION_OBJECT (21)
This error probably means that the user tried to make a network
reservation for an endpoint that the reservation manager hasn’t been
configured to allow reservations for.

GRID_ERROR_SERVICE_EXECUTABLE_NOT_FOUND (22)
The reservation manager is misconfigured.

GRID_ERROR_CANT_CONTACT_RESERVATION_MANAGER (23)
The reservation manager is unavailable. Check to make sure that it’s
running or that the correct resource location was specified.

GRID_ERROR_UNKNOWN_GRAM_ERROR (24)
Some error in the underlying protocol has failed.

GRID_ERROR_MISSING_RESERVATION_TYPE (25)
The request indicates that a subtype has to be specified, but it
wasn´t.

GRID_ERROR_ATTRIBUTE_UNAVAILABLE_FOR_RESERVATION_TYPE (26)
An attribute was requested for a type of reservation that can never
have that attribute. For example, a queue name was requested for a
network reservation.

GFD-E.5 May 2002

Roy, Sander EXPERIMENTAL [Page 16]

GRID_ERROR_ATTRIBUTE_UNAVAILABLE_IN_IMPLEMENTATION (27)
An attribute that might be reasonable to request is not available,
because the implementation doesn’t support it.

GRID_ERROR_ATTRIBUTE_ONLY_AFTER_BIND (28)
The reservation has not yet been bound, but the attribute can only be
provided after the reservation has been bound.

GRID_ERROR_ATTRIBUTE_ONLY_AFTER_COMMIT (29)
The reservation has not yet been committed, but the attribute can only
be provided after the reservation has been committed.

GRID_ERROR_COMMIT_NOT_SUPPORTED (30)
The user called grid_reservation_commit, but this call is not supported
for this API-implementation or this resource type.

GRID_ERROR_CALLBACKS_NOT_SUPPORTED (31)
The user tried to register a callback, but this is not supported by
this API-implementation.

GRID_ERROR_INTERNAL_ERROR (256)
The request indicates that some other error occurred. (We need a good
way to deal with these other errors in a regular way. Different errors
can occur for different implementations, so how do we report them?)

Callback and Status Constants

The following events are reported to callbacks, with the specific values as
shown here. We reserve the right to define constants with the values 0-256.
Implementations may use any other constant values they like, but until they
become standardized, they must not use the values 0-256.

GRID_RESERVATION_STATUS_EVENT (0)

The status of the reservation has changed. See the lists of status
constants below.

GRID_RESERVATION_CHANGE_EVENT (1)
The reservation has been preempted, or the reservation quantity (like
bandwidth) has changed. See the list changes below.

GRID_RESERVATION_MONITOR_EVENT (2)
The user is informed about specific monitor events such as that he is
exceeding its reservation.

The following statuses can be reported to callbacks on a status event or in
response to a user calling reservation_status.

GRID_RESERVATION_STATUS_NOT_STARTED (0)

The reservation has not yet begun (the current time is before the start
time).

GRID_RESERVATION_STATUS_NOT_STARTED_BOUND (1)
Although the reservation has not yet begun, the reservation has been
bound.

GRID_RESERVATION_STATUS_READY_NOT_BOUND (2)
The reservation has begun (the current time is after the start time)
but can’t yet be used because it has not been bound yet.

GRID_RESERVATION_STATUS_ACTIVE (3)
The reservation has begun and been bound.

GRID_RESERVATION_STATUS_FINISHED (4)
The reservation is over. That is, the current time is greater than the
start time plus the duration of the reservation.

The following changes can be reported on a CHANGE_EVENT:

GFD-E.5 May 2002

Roy, Sander EXPERIMENTAL [Page 17]

GRID_RESERVATION_RESERVATION_CHANGE_PREEMPTED (5)

The reservation has been preempted because a more important reservation
has occurred. Currently, this will not be reported, because preemption
has not yet been implemented.

GRID_RESERVATION_CHANGE_QUANTITY (6)
The quantity (like bandwidth) has been changed. This occurs for bulk
transfer network reservations or for reservations that are adaptable in
response to changing conditions.

Attribute Types

The following types of attributes can be requested in the
grid_reservation_attribute function with the which_attribute parameter.
Currently we define 12 attributes, with the specific values as shown here. We
reserve the right to use attributes with the values 0-256. Implementations
may use any other attribute values they like, but until they become
standardized, they must not use the values 0-256.

GRID_RESERVATION_ATTRIBUTE_BEGIN_TIME (0)

The time a reservation begins
GRID_RESERVATION_ATTRIBUTE_END_TIME (1)

The time a reservation ends
GRID_RESERVATION_ATTRIBUTE_HAS_BEGUN (2)

A Boolean indicating whether a reservation has begun and has not yet
ended.

GRID_RESERVATION_ATTRIBUTE_IS_BOUND (3)
A Boolean indicating whether a reservation has been bound and has not
yet ended.

GRID_RESERVATION_ATTRIBUTE_IS_COMMITTED (4)
A Boolean indicating whether a reservation has been committed and has
not yet ended.

GRID_RESERVATION_ATTRIBUTE_NEEDS_BIND (5)
A Boolean indicating whether a reservation needs to be bound.

GRID_RESERVATION_ATTRIBUTE_NEEDS_COMMIT (6)
A Boolean indicating whether a reservation needs to be committed.

GRID_RESERVATION_ATTRIBUTE_AUTHORIZED (7)
A Boolean indicating whether the identity/authorization given in the
attribute request function call is sufficient to operate on the
reservation. (In case different users want to work with a reservation.)

GRID_RESERVATION_ATTRIBUTE_QUEUE_NAME (8)
A string indicating the queue a job should be submitted to, in order
for the reservation to work.

GRID_RESERVATION_ATTRIBUTE_PATH_NAME (9)
A string indicating where files should be written, in order for the
disk reservation to work.

GRID_RESERVATION_ATTRIBUTE_MAX_NETWORK_DELAY_ESTIMATE (10)
A floating-point number indicating the best guess as to the delay
packets using a network reservation will experience

GRID_RESERVATION_ATTRIBUTE_LIKELIHOOD_OF_FULFILMENT (11)
A number 0-100 indicating the system’s best guess of the percent chance
that a reservation will actually be given to the user. Preemptions,
downtimes, and nasty system administrators may affect this percentage,
and there is no guarantee that a system can accurately provide this
estimate.

GFD-E.5 May 2002

Roy, Sander EXPERIMENTAL [Page 18]

Variable Types

The following types are used to indicate what variable type is returned for
an attribute.

GRID_RESERVATION_VARIABLE_INT

The variable is of type “int” for an integer.
GRID_RESERVATION_VARIABLE_BOOLEAN

The variable is of type “int” for an boolean (TRUE or FALSE).
GRID_RESERVATION_VARIABLE_FLOAT

The variable is of type “float” for an floating point number.
GRID_RESERVATION_VARIABLE_STRING

The variable is of type “char *” for an string.
GRID_RESERVATION_VARIABLE_TIME

The variable is of type “time_t” for a specific time.

Miscellaneous Constants

GRID_RESERVATION_API_VERSION (1)

The version of the library that must be compiled against or that one is
running against. Currently this is defined to be 1.

4.2. Data Structures

This section describes the data structures used by the API.

The Event Data Structure

typedef struct
{
 int event_type;
 int event;
 double quantity;
} grid_reservation_event_t;

This structure is provided to callback functions. The event type and event
are constants from the list above. The quantity is provided when the event is
a change event indicating that the quantity has changed.

The Authorization information Structure

typedef struct
{
 char *user_proxy_file;
 int number_of_policies;
 policy_sequence_t *policies;
} authorization_info_t;

GFD-E.5 May 2002

Roy, Sander EXPERIMENTAL [Page 19]

This structure is provided to callback functions. The event type and event
are constants from the list above. The quantity is provided when the event is
a change event indicating that the quantity has changed.

The Attribute Structure

typedef int reservation_attribute_type_t;

typedef struct
{
 reservation_attribute_type_t which_attribute;
 variable_type_t variable_type;
 union
 {
 int boolean; /* TRUE or FALSE */
 int integer;
 float number;
 char *text;
 time_t time;
 };
} grid_reservation_attribute_t;

This structure is returned to describe an attribute that is requested by
grid_reservation_attribute().

Callback functions

typedef void (*grid_reservation_callback_t)(
 char *reservation_handle,
 grid_reservation_event_t event,
 void *user_parameter);

This is the type of function that must be used for callback functions. It is
the user’s responsibility to implement such a function. When a user registers
a callback function of this type, its reference is used to actually call this
routine whenever a callback event occurs.

4.3. Functions

Note that all of the functions of the API return an integer. This integer is
the error code, if any error occurred. See the list of errors in Section 4.1,
Constants.

grid_reservation_activate

int grid_reservation_activate(void);

This function initializes the Grid Advance Reservation Module. This MUST be
called before any other function in the module. Programs are allowed to call
this activate function more than once; invocations after the first have no
effect. The advance reservation module does, however, keep track of how many

GFD-E.5 May 2002

Roy, Sander EXPERIMENTAL [Page 20]

times it has been activated; and the deactivation function (see Section 3.10)
MUST be called that same number of times before it actually deactivates the
Grid reservation module.

grid_reservation_deactivate

int grid_reservation_deactivate(void);

This function informs the Grid Advance Reservation Module that it is no
longer needed, so that it can perform any cleanup that it might need to do.

grid_reservation_create

int grid_reservation_create(
 const char *manager_contact,
 const authorization_info_t *auth_info,
 const char *reservation_specification, /* RSL */
 const char *time_specification, /* RSL */
 char **reservation_handle);

This function attempts to make a reservation.

In:

manager_contact: The contact string for access to the reservation
manager for the resource the user wishes to make a reservation
with.

auth_info: Data structure providing access to the user’s credentials

and additional policy information that might be used for
approving authorization.

reservation_specification: An RSL string describing the attributes the

user wishes to have for the reservation. See Section 3.2,
Describing a Reservation Request.

time_specification: An RSL string describing the time interval the

reservation should be in place. See Section 3.2, Describing a
Reservation Request.

In/Out:

reservation_handle: If the reservation was successfully made, a pointer
to the reservation handle will be provided in the reservation
handle member of the advance_reservation_handle_s. The memory for
this reservation handle is allocated by malloc(), and it is the
user’s responsibility to free the memory with free() when done.
Note that the reservation_handle is also specified as input
parameter. This is because some implementations might require
that the user present a valid reservation handle for another
resource such as a CPU reservation is prerequisite whenever a
disk reservation is made.

GFD-E.5 May 2002

Roy, Sander EXPERIMENTAL [Page 21]

grid_reservation_modify

int grid_reservation_modify(
 const authorization_info_t *auth_info,
 const char *old_reservation_handle,
 const char *reservation_specification, /* RSL */
 const char *time_specification, /* RSL */
 char **reservation_handle);

This function attempts to modify a new reservation. Note that if the
reservation is changed, the user might receive a new reservation handle.

In:

auth_info: Data structure providing access to the user’s credentials
and additional policy information which might be used for
approving authorization.

old_reservation_handle: The handle of an existing reservation that the

user wishes to modify. The memory for this reservation handle
MUST be deallocated by the user.

reservation_specification: An RSL string describing the new attributes

you wish to have for your reservation. See Describing a
Reservation Request above.

time_specification: An RSL string describing the new time interval the

reservation should be in place. See Describing a Reservation
Request above.

Out:

reservation_handle: If the reservation was successfully modified, a
pointer to a new reservation handle will be provided. The memory for
the reservation handle is allocated by malloc(), and it is the user’s
responsibility to free the memory with free().

grid_reservation_commit

int grid_reservation_commit(
 const authorization_info_t *auth_info,
 const char *reservation_handle);

This commits a two-phase commit reservation. It is not a replacement for
binding run-time parameters.

In:

auth_info: Data structure providing access to the user’s credentials
and additional policy information which might be used for
approving authorization.

reservation_handle: The handle for the reservation that the user wishes

to bind.

GFD-E.5 May 2002

Roy, Sander EXPERIMENTAL [Page 22]

grid_reservation_bind

int grid_reservation_bind(
 const authorization_info_t *auth_info,
 const char *reservation_handle,
 const char *bind_parameters);

This binds a reservation by providing run-time parameters.

In:

auth_info: Data structure providing access to the user’s credentials
and additional policy information which might be used for
approving authorization.

reservation_handle: The handle for the reservation that the user wishes

to bind.

bind_parameters: An RSL string describing the new attributes the user

wishes to have for the reservation. See Section 3.9, Binding a
Reservation above.

grid_reservation_unbind

int grid_reservation_unbind(
 const authorization_info_t *auth_info,
 const char *reservation_handle);

This undoes the “bind” for a reservation that has been bound. The reservation
is still valid and can be used again by calling reservation_bind() again.

In:

auth_info: Data structure providing access to the user’s credentials
and additional policy information which might be used for
approving authorization.

reservation_handle: The handle for the reservation that the user wishes

to bind.

grid_reservation_status

int grid_reservation_status(
 const authorization_info_t *auth_info,
 const char *reservation_handle,
 int *status;

This function queries for a reservation’s status.

In:

auth_info: Data structure providing access to the user’s credentials
and additional policy information which might be used for
approving authorization.

reservation_handle: The handle for the reservation that the user wishes

to query.

GFD-E.5 May 2002

Roy, Sander EXPERIMENTAL [Page 23]

Out:
status: The status of the reservation. It is one of the constants

described in Section 4.1, Callback and Status Constants.

grid_reservation_attribute

int grid_reservation_attribute(
 const authorization_info_t *auth_info,
 const char *reservation_handle,
 reservation_attribute_type_t which_attribute,
 grid_reservation_attribute_t *attribute);

This function returns an attribute for a reservation.

In:

auth_info: Data structure providing access to the user’s credentials
and additional policy information that might be used for
approving authorization.

reservation_handle: The handle for the reservation that the user wishes

to query.

which_attribute: The desired attribute, described in Section 4.1,

Attribute Types, above.
Out:

attribute: Information about the attribute. The data structure is
described above in Section 4.2, The Attribute Structure. Note
that the programmer can retrieve the correct attribute value by
examining the variable_type field and checking the defined
variable types above.

Common Errors:

GRID_ERROR_ATTRIBUTE_UNAVAILABLE_FOR_RESERVATION_TYPE
GRID_ERROR_ATTRIBUTE_UNAVAILABLE_IN_IMPLEMENTATION
GRID_ERROR_ATTRIBUTE_ONLY_AFTER_BIND
GRID_ERROR_ATTRIBUTE_ONLY_AFTER_COMMIT

grid_reservation_callback_register

int grid_reservation_callback_register(
 const authorization_info_t *auth_info,
 const char *reservation_handle,
 reservation_callback_t callback_function,
 void *user_parameter);

After this function successfully completes, the specified callback function
will be called whenever the status of a reservation changes. It will also be
immediately called once to provide the current status of the reservation.
Note that multiple callbacks can be registered for a single reservation.

In:

auth_info: Data structure providing access to the user’s credentials
and additional policy information which might be used for
approving authorization.

GFD-E.5 May 2002

Roy, Sander EXPERIMENTAL [Page 24]

reservation_handle: The handle for the reservation for which the user

wishes to receive callbacks.

callback_function: The function that will be called by GARA when the

status of a reservation changes.

user_parameter: The value provided here will be passed to the callback

function unmodified.

grid_reservation_callback_remove

int reservation_callback_remove(
 const authorization_info_t *auth_info,
 const char *reservation_handle,
 reservation_callback_t callback_function);

After this function successfully completes, the specified callback function
will no longer be called when the status of the reservation changes.

In:

auth_info: Data structure providing access to the user’s credentials
and additional policy information which might be used for
approving authorization.

reservation_handle: The handle for the reservation for which the user

wishes to receive callbacks.

callback_function: The function that will be called by GARA when the

status of a reservation changes.

user_parameter: The value provided here will be passed to the callback

function unmodified.

grid_reservation_cancel

int grid_reservation_cancel(
 const authorization_info_t *auth_info,
 const char *reservation_handle);

This cancels a reservation. When a reservation is cancelled, the reservation
handle (and copies of it) may not be used anymore. For example, if the user
tries to bind the cancelled reservation, it will fail.

In:

auth_info: Data structure providing access to the user’s credentials
and additional policy information which might be used for
approving authorization.

reservation_handle: The handle for the reservation that the user wishes

to cancel.

GFD-E.5 May 2002

Roy, Sander EXPERIMENTAL [Page 25]

grid_reservation_version

int grid_reservation_version(void);

This returns the current version number for the reservation manager. The
current version number is GRID_RESERVATION_API_VERSION, as defined above.

grid_reservation_client_debug

int grid_reservation_client_debug(int debug_on);

In:

debug_on: If true, debugging is turned on. If false, it is turned off.
The exact effect of turning on debugging mode is implementation-
dependent.

grid_client_error_string

const char *grid_client_error_string(
 int error_code);

For any error code returned by the reservation manager, this provides a
printable string that corresponds to the error code.

In:

error_code: The error code for which the user wishes to obtain a string
representation.

5. Security Considerations

Security issues are not discussed in this document. The reservation scenario
described here assumes that security is handled at the point of job
authorization/execution on a particular resource.

6. Author Information

Alain Roy Volker Sander
Department of Computer Sciences Central Institute for Applied Mathematic
University of Wisconsin-Madison Forschungszentrum Jülich GmbH
1210 West Dayton Street 52425 Jülich,
Madison, WI 53706 Germany,
(608) 265-5736 +49 2461 616586
roy@cs.wisc.edu v.sander@fz-juelich.de

7. Copyright Notice

Copyright (C) Global Grid Forum (2002). All Rights Reserved.

This document and translations of it may be copied and furnished to others,
and derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole or
in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative
works. However, this document itself may not be modified in any way, such as

GFD-E.5 May 2002

Roy, Sander EXPERIMENTAL [Page 26]

by removing the copyright notice or references to the GGF or other
organizations, except as needed for the purpose of developing Grid
Recommendations in which case the procedures for copyrights defined in the GGF
Document process must be followed, or as required to translate it into
languages other than English.

The limited permissions granted above are perpetual and will not be revoked by
the GGF or its successors or assigns.

This document and the information contained herein is provided on an "AS IS"
basis and THE GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

8. Intellectual Property Notice

The GGF takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the
implementation or use of the technology described in this document or the
extent to which any license under such rights might or might not be available;
neither does it represent that it has made any effort to identify any such
rights. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made
to obtain a general license or permission for the use of such proprietary
rights by implementers or users of this specification can be obtained from the
GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights,
patents or patent applications, or other proprietary rights which may cover
technology that may be required to practice this recommendation. Please
address the information to the GGF Executive Director.

