
GFD-R-D.051 Editor:
Configuration Description, Deployment and Patrick Goldsack, Hewlett Packard Labs
Lifecycle Management Working Group
 September 9, 2005

Configuration Description, Deployment,
and Lifecycle Management

SmartFrog-Based Language Specification

Status of this Memo
This document provides information to the community regarding the specification of the
Configuration Description, Deployment, and Lifecycle Management (CDDLM) Language.
Distribution of this document is unlimited.

Copyright Notice
Copyright © Global Grid Forum (2002, 2005). All Rights Reserved.

Abstract
Successful realization of the Grid vision of a broadly applicable and adopted framework
for distributed system integration, virtualization, and management requires the support
for configuring Grid services, their deployment, and managing their lifecycle. A major
part of this framework is a language in which to describe the components and systems
that are required. This document, produced by the CDDLM working group within the
Global Grid Forum (GGF), provides a definition of the CDDLM language that is based
on the SmartFrog (Smart Framework for Object Groups) and its requirements.

CDDLM Specs
There are five documents created by the CDDLM group. They are described in the text below.
The CDDLM Foundation document sets the stage for the remaining documents by introducing
the area, by describing functional requirements, use cases, and high-level architecture. It also
compares this group with other working groups as well as with other related efforts in the
industry.
The SmartFrog Language spec describes a language primarily intended for configuration
description and deployment. It is declarative, i.e. it supports attribute value pairs. Furthermore, it
supports inheritance, references (including lazy), parameterization, predicates and schemas. It
has the same functionality as CDL (see next paragraph), except that it is not XML-based.

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 2

SmartFrog language predates CDL and it was used as a model when creating CDL. The two
languages will be compatible. CDL is primarily intended for machines, SmartFrog for humans.

The CDDLM Configuration Description Language (CDL) is an XML-based language for
declarative description of system configuration that consists of components (deployment objects)
defined in the CDDLM Component Model. The Deployment API uses a deployment descriptor
in CDL in order to manage deployment lifecycle of systems. The language provides ways to
describe properties (names, values, and types) of components including value references so that
data can be assigned dynamically with preserving specified data dependencies. A system is
described as a hierarchical structure of components. The language also provides prototype-based
template functionality (i.e., prototype references) so that the user can describe a system by
referring to component descriptions given by component providers.
The CDDLM Component Model outlines the requirements for creating a deployment object
responsible for the lifecycle of a deployed resource. Each deployment object is defined using the
CDL language and mapped to its implementation The deployment object provides a WS-
ResourceFramework (WSRF) compliant "Component Endpoint" for lifecycle operations on the
managed resource. The model also defines the rules for managing the interaction of objects with
the CDDLM Deployment API in order to provide an aggregate, controllable lifecycle and the
operations which enable this process.

The deployment API is the WSRF-based SOAP API for deploying applications to one or more
target computers. Every set of computers to which systems can be deployed hosts one or more
"Portal Endpoints", WSRF resources which provide a means to create new "System Endpoints".
A System Endpoint represents a deployed system. The caller can upload files to it, then submit a
deployment descriptor for deployment. A System Endpoint is effectively a component in terms
of the Component Model specification -it implements the properties and operations defined in
that document. It The deployment API is the WSRF-based SOAP API for deploying applications
to one or more target computers. Every set of computers to which systems can be deployed hosts
one or more "Portal Endpoints", WSRF resources which provide a means to create new "System
Endpoints". A System Endpoint represents a deployed system. The caller can upload files to it,
then submit a deployment descriptor for deployment. A System Endpoint is effectively a
component in terms of the Component Model specification -it implements the properties and
operations defined in that document. It also adds the ability to resolve references within the
deployed system, enabling remote callers to examine the state of components with it.

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 3

Table of Contents

Table of Contents .. 3
List of Figures.. 4
1 Introduction .. 5
2 CDDLM-WG and the Purpose of this Document .. 5
3 The CDDLM Notation... 5

3.1 Background.. 5
4 Requirements for the language.. 6
5 Concrete Syntax ... 7

5.1 Attributes, Attribute Lists and Streams ... 7
5.2 Component Descriptions .. 8
5.3 Types vs. Prototypes ... 10
5.4 References ... 11

5.4.1 Reference Elimination – Resolution.. 12
5.4.2 Prototype References.. 12
5.4.3 Placement References .. 13
5.4.4 Link And LAZY Link References... 14

5.5 Comments .. 16
6 Parameterization... 16
7 Include Files ... 17
8 Main .. 18
9 Resolution – Semantics For The CDDLM Notation... 19

9.1.1 Type Resolution.. 20
9.1.2 Placement Resolution... 20
9.1.3 Link Resolution .. 22

10 Functions... 22
10.1 concat ... 23
10.2 vector.. 23
10.3 append.. 23
10.4 formatString... 24
10.5 sum... 24
10.6 product ... 24
10.7 random ... 25
10.8 next... 25
10.9 date ... 25

11 Schemas .. 26
12 Summary of CDDLM Language Processing.. 29
13 The CDDLM Syntax... 30
14 The CDDLM Notation Lexical Rules... 30
15 Encoding ... 32
16 Security Considerations ... 33
17 Editor Information.. 33
18 Contributors .. 33
19 Acknowledgements .. 33
Intellectual Property Statement .. 33
Full Copyright Notice ... 33
References.. 34

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 4

20 An example deployment of a simple Grid application .. 35
20.1 Scenario: Tuple-space dispatch of stock analysis workload. ... 35
20.2 Cross-application components ... 35

20.2.1 Java Processes .. 35
20.2.2 Tuple Space .. 36
20.2.3 Worklet ... 36
20.2.4 Worklet Container.. 36
20.2.5 Security ... 37
20.2.6 Database.. 37
20.2.7 dateTime ... 37
20.2.8 Bulk Node Deployer .. 37

20.3 Worklets... 38
20.3.1 Past History Worklet.. 38
20.3.2 Predictor Worklet ... 38
20.3.3 Data Feed Worklet ... 38

20.4 Test Data.. 39
20.5 Test Harness .. 39

20.5.1 Test Worklet Container ... 39
20.5.2 Test Harness ... 40

20.6 Liveness ... 42
20.7 Scaling ... 42

List of Figures
Figure 1. CDDLM Language Use and Relationship with other Components 6
Figure 2. Use of Inheritance in Templates ... 10
Figure 3. Scope of References... 12

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 5

1 Introduction
Deploying a complex, distributed service presents many challenges related to service
configuration and management. These range from how to describe the precise, desired
configuration of the service, to how we automatically and repeatably deploy, manage and then
remove the service. This document addresses the description challenges, while other challenges
are addressed by the follow-up documents . Description challenges include how to represent the
full range of service and resource elements, how to support service "templates", service
composition, correctness checking, and so on. Addressing these challenges is highly relevant to
Grid computing at a number of levels, including configuring and deploying individual Grid
Services, as well as composite systems made up of many co-operating Grid Services.

2 CDDLM-WG and the Purpose of this Document

The CDDLM WG addresses how to: describe configuration of services; deploy them on the
Grid; and manage their deployment lifecycle (instantiate, initiate, start, stop, restart, etc.). The
intent of the WG is to gather researchers, developers, practitioners, and theoreticians in the areas
of services and application configuration, deployment, and deployment life-cycle management
and to explore the community need for a broader effort in this area. The target of the CDDLM
WG is to come up with the specifications for CDDML a) language, b) component model, and c)
basic services. This document represents one of the two CDDLM language specifications. This
specification is based on the expertise with SmartFrog language developed at HP Labs. The other
language will be entirely XML based. The two language specifications will be compatible.
Both languages will be declarative, i.e. they will support attribute value pairs. They will
furthermore support inheritance, references (including lazy), parameterization, predicates and
schemas. The rest of the document describes the features supported in the SmartFrog-based
CDDLM language.

This document describes the configuration language. It does not describe the binding of the
language to any system that supports the language. Such bindings may introduce specific
attributes, functions, predicates, components or other constructs that map from a general
configuration language to a specific role of the language, or a specific implementation of a
runtime.

3 The CDDLM Notation
3.1 Background
The CDDLM notation has been designed to provide users of the CDDLM framework with a
simple, yet powerful, attribute description language. The reason that the notation has been
developed, rather than merely using XML, is that a number of features are required that are not
directly supported by XML, though they could be encoded, and that use of these features
requires the use of human-friendly syntax. The syntax is derived from the tried and tested first
generation SmartFrog notation [1] and it makes a few minor changes to reflect the core
differences between it and CDDLM.

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 6

There is an XML binding for the language to go along with this form of the language design,
providing support for those who prefer to use that syntax. This syntax is provided in [3].

The CDDLM component model in no way depends on the nature of this notation. Indeed there
are relatively few aspects of the notation that are specific to the CDDLM framework. Most of the
language is simply for defining collections of attributes. The framework uses these attributes to
achieve the desired configuration effect. The details of these attributes and their impact on the
framework are left to other CDDLM documents. This document concentrates only on the use of
the notation for defining attributes.

The role of the notation is summarized in the diagram below. The descriptions merely define
collections of attributes, represented as data structures after parsing, and these may be used
either:
• by the CDDLM infrastructure as defining the configuration of some distributed system;

though certain well-formedness conditions apply in that specific attributes must be present

• by other programs as the configuration data that they require, though here too, well-
formedness criteria might exist - defined on a case by case basis.

CDDLM

Description

(in Notation)

Data

Structures

Run-Time

ServicesRunning

Application

Use as Data Structure

Compilation

“Type Resolution”

Deployer

Create

Application

Interpret as

Application

Description User

Classes

Figure 1. CDDLM Language Use and Relationship with other Components

4 Requirements for the language
A language designed to support the use of a framework such as CDDLM has a number of core
requirements:

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 7

1. The language is primarily designed to define configuration data for use by the framework
services, defining the configuration of the resources and software components that define
the Grid service to be deployed.

2. The language will be used for such a wide variety of services and resources, and of such
complexity, that a language must be both readable and support a number of abstraction
mechanisms such as inheritance and parameterization.

3. The language must support the notion of templating, the ability to provide patterns of
configuration that may be specialized at time of use.

4. The language must support a way of checking the use of templates to ensure that they are
being applied in an appropriate way.

5. The language must support the notion that data is available at different phases of a
service deployment – for example some data is available at time of template definition or
use, other data is only available at run-time. An example of the former may be data
regarding the performance of web servers required for a service whilst an example of the
latter may be the specific type of the nodes on which the servers are to run, and hence the
precise number of servers required to meet the required performance.

5 Concrete Syntax
5.1 Attributes, Attribute Lists and Streams
A CDDLM description consists of an ordered collection of attributes. The attributes are ordered
because several of the operations in the CDDLM framework require an order, for example the
order in which the configuration should be instantiated.

Each attribute has a name and a value, this value being either a basic value (integer, string, etc),
or an ordered collection of attributes known as a component description. This recursion provides
a tree of attributes, the leaves of which are the basic values. A value may also be provided by
reference to another attribute. This is described by the following BNF, where Stream indicates
the entry point to a CDDLM language parser.

Stream ::= AttributeList

AttributeList ::= AttributeListElement*
AttributeListElement ::= Attribute | #include string (1)
Attribute ::= Name Value (2)
Name ::= BaseReference | -- (3)
Value ::= ; | Basic ; | ComponentDescription | [LAZY] BaseReference ; (4)

Basic ::= Number | String | Boolean | Vector
Vector ::= [] | [Basic (, Basic)*]

From this, it is clear that the input to the parser is a collection of attributes, each named and
having an optional value (2). If the value is not present, (the first alternative in (4)) the value is
defined to be the string containing the name of the attribute. Thus, the following two attribute
definitions are equivalent.

foo;
foo "foo";

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 8

The reason for providing this feature is to enable the use of attributes where the presence of the
attribute is what is important, not its value.

The syntax for a name will be covered later, but for now it can be considered to be either a
simple sequence of letters and digits, starting with a letter, or the double-hyphen "--" (3). The
double hyphen is for use at times when the attribute name is not important (a new unique name is
generated and used). This is particularly useful with the function syntax described in Section 10.

Include files (1) are covered in more detail in section 7, but in general they consist of parseable
CDDLM text which are parsed as attribute lists and unpacked into place within the container
attribute list.
The syntax for the basic values is best given by example.

Integer: 345
Long: 65325L
Float: 34.76
Double: 1534.456D
String: "this is a string"
Multi-line String: ## This is a string
 Over many lines #
Boolean: true
Vector: [3.67, [34, 53, 1], ["string", 34], []]
Binary Data: @base64data@

Consequently, an example of a piece of CDDLM text is as follows
portNum 4074;
hostname "ahost.cddlm.org";
isHighPriority false;
validUsers ["fred", "harry", "mike"];
data @234s4Txx@

defining four attributes with the appropriate values.
5.2 Component Descriptions
Attributes may have values that are collections of other attributes, known as component
descriptions. They obtain their name from the fact that they may be interpreted by the framework
as the description of a component, though they may equally be used to describe structured data.

A component description consists of two parts, a reference to another component description to
act as a source of attributes, and a collection of attributes that are then added to, or override, the
attributes of the referenced collection. The syntax is:

ComponentDescription ::= extends BaseComponent

BaseComponent ::= [Reference | NULL] (; | { AttributeList })

Both the reference and the attribute list are effectively optional. If neither is present, the resultant
attribute list is defined to be empty. The syntax is most easily explained through an example:

SFService extends { // an implicit extension of NULL
 portNum 4047;
 hostname "ahost.Cddlm.org";
 administrators ["patrick"];
}

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 9

UseableService extends SFService { //an extension of the previous component
 portNum 4048; // override the definition of portNum
 users ["fred", "harry"]; // add a new attribute
}

The text consists of two attributes, both of which have values that are collections of attributes.
The second of these, UseableService, is defined as an extension of the first, SFService, with two
attributes added to or overwriting those inherited. The text is semantically identical to the
following:

SFService extends {
 portNum 4047;
 hostname "ahost.Cddlm.org";
 administrators ["patrick"];
}

UseableService extends {
 portNum 4048;
 hostname "ahost.Cddlm.org";
 administrators ["patrick"];
 users ["fred", "harry"];
}

Note that the attributes in a component description are ordered and that when an attribute is
overwritten it maintains its position, but when it is a new attribute it is added to the end. The
process of expansion of the inheritance in this way is known as Type Resolution and is explained
further below.

Note also that the parsed stream is considered to be in an implicit, anonymous (i.e. not named in
an outer component description), component description known as ROOT.

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 10

portNum 4047;

hostname “pgoldsac.hpl.hp.com”;

admininstrators [“patrick”];

portNum 4048;

users [“fred”, “harry”];

Implicit Root Component Descriptoon

SFService

UseableServce

extends

NULL

extends

Implicit Root Component Description

UseableServce

extends

portNum 4048;
hostname “pgoldsac.hpl.hp.com”;
admininstrators [“patrick”];
users [“fred”, “harry”];

portNum 4047;

hostname “pgoldsac.hpl.hp.com”;

admininstrators [“patrick”];

SFService

extends

NULL

NULL

original semantic equivalent

Figure 2. Use of Inheritance in Templates

The example is also shown in the diagram. It clearly shows that there are two kinds of
relationship between component descriptions. One is the containment relationship, where a
component description contains an attribute that is itself a component description. The second is
the inheritance or extension relationship. This second class of relationship is one that can be
transformed, by type resolution, to an equivalent one containing no extension (also indicated by
the NULL extension).
Whilst the extension relationship is merely a convenient way of defining attributes, the
containment hierarchy is a more fundamental construct. It should be noticed that that
containment hierarchy effectively provides a naming scheme by which attributes may be
referenced. In this it is similar to other such named hierarchies, such as directory hierarchies
common in files systems.
5.3 Types vs. Prototypes
CDDLM does not define types for attributes and components. Rather it defines the notion of a
prototype. Each attribute whose value is a component description may be considered as a
prototype for another: it may be taken and modified as appropriate to provide the value for the
new attribute. The mechanism for this is the extends construct.

Any attribute whose value is a component description may be, at a later juncture, selected and
modified to provide a new component description to be bound to a name. This new attribute may
be further modified by subsequent attributes. In this way, it is possible to provide partial

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 11

definitions, with default values for attributes, to be completed or specialized when used. This
provides a simple template mechanism for components.

Consequently, there are no separate spaces of types and instances; every component is logically
an instance, but may also be a prototype for another. However, it is clear that in providing
descriptions, some components will be defined with the intention that they be used as prototypes
for other components, whilst others will be defined without that expectation. Whilst this may
appear strange in the first instance, it turns out to be one of the main strengths of the CDDLM
notation.
5.4 References
References may occur in three places in the syntax: as the name of an attribute – known as a
placement, as a reference to the extended component (the prototype) of a component description,
and as an attribute value referring to another attribute whose value is to be copied – known as a
link.

The primary purpose of a reference is to indicate a path through the containment hierarchy
defined by the components. In this, it is similar to the notion of path common in file systems in
operating systems such as Linux. A path defines a traversal of the directory hierarchy, a structure
similar to the component hierarchy.

The syntax for references is as follows:
BaseReference ::= ReferencePart (: ReferencePart)*

ReferencePart ::= ROOT | PARENT | WORD | ATTRIB WORD | THIS

Thus, a reference is a colon-separated list of parts each of which indicates a step in the path
through the containment tree. Examples of references are:

PARENT:PARENT:foo:bar
ATTRIB a:b
ROOT

The general rule for the interpretation of a reference is that the reference is evaluated in a context
(a component description somewhere in the description containment tree), and that each step
moves the context to a possibly different component for the remainder of the reference to be
evaluated. This is equivalent to path evaluation in a Linux file system, the path is evaluated in a
current directory, and each part of the path moves the context to another directory.

The semantics of each of the reference parts is as follows: starting at component in which the
reference is defined…

• PARENT - move context to the parent (container) component if it exists, fail otherwise (c.f.
Linux “..”)

• WORD - look for the attribute named “word” in the current context, fail otherwise

• ATTRIB WORD - look for the attribute named “word” in the current context or anywhere in
the containment hierarchy (the closest is chosen), move to the context defined by this
attribute, fail if no attribute is found in the containment hierarchy

• ROOT - switch context to the outer-most component (normally the implicit root component
- c.f. Linux “/ “)

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 12

• THIS – the current context (c.f. Linux “.”)

Some examples of references (in this case link references) are as follows:

Figure 3. Scope of References

The arrows in the left-hand text show the path followed as the references are resolved to obtain
the referenced attribute values, noting that the resolution of ref3 will follow the resolution of
ref2. The contexts traversed as the resolutions progress are shown boxed and the right-hand text
shows the result of resolving the three links.
The above rules determine the general interpretation of references. However, each of the
syntactic contexts has its own slight semantic variation; these variations appear in the detailed
definition of the semantics for references.
5.4.1 Reference Elimination – Resolution
The key to the semantics of the CDDLM notation is the process by which references are
eliminated. This is necessary for each of the three syntactic locations where references may
occur – prototype references, placement references and link references. The process by which
references are eliminated is known as reference resolution. However, each type of reference has
a different notion of resolution and so each has a specific resolution action – known respectively
as type resolution, placement resolution and link resolution. This last name is historically also
known as deployment resolution; this old name appears in parts of the API and is kept for
backward compatibility. The resolution steps are described in more detail in the next few sub-
sections, and then revisited as a whole to examine their interaction with each other.
5.4.2 Prototype References
References to prototypes, as defined in the following syntactic context,

Component ::= extends [LAZY] BaseComponent

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 13

BaseComponent ::= [Reference] (; | { AttributeList })

are resolved as described above except in one respect: if the reference to the prototype consists of
a single WORD part, it is interpreted as ATTRIB WORD.

Thus, the following are equivalent
Foo extends Bar { …}
Foo extends ATTRIB Bar {…}

This is to provide a greater degree of convenience when referring to a prototype as these are
most often defined in the outermost implicit root context, and frequently defined in an included
file. Using this re-interpretation using ATTRIB, rather than adding an implicit ROOT reference
part to the front, ensures that global definitions of prototypes at the top level may be locally
overridden if required.
The following example demonstrates most of the situations:

Foo extends { a 1; }
Bar extends {
 foo extends Foo;
}
Baz extends {
 Foo extends {
 b 2;
 }
 foo1 extends Foo; // recall - this is equivalent to ATTRIB Foo
 foo2 extends ROOT:Foo;
 foo3 extends PARENT:Foo;
 foo4 extends PARENT:PARENT:Foo;
}

After type resolution, which includes the merging and overwrite of attributes as described in
section 5.2, the example is equivalent to:

Foo extends { a 1; }
Bar extends {
 foo extends { a 1; } // ATTRIB Foo finds the outermost
}
Baz extends {
 Foo extends { b 2; }
 foo1 extends { b 2; } // ATTRIB Foo finds the closest enclosing
 foo2 extends { a 1; } // ROOT:Foo finds the one in the root
 foo3 extends { b 2; } // PARENT:Foo finds that in the parent
 foo4 extends { a 1; } // PARENT:PARENT:Foo finds that in the root (in this case)
}

5.4.3 Placement References
An attribute’s name may be a reference, as described in the syntactic clauses

Attribute ::= Name Value
Name ::= BaseReference

This is not completely accurate, as the syntax in fact limits references to being a reference
containing WORDS, the other reference parts are considered erroneous.

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 14

The resolution of the reference is again largely as described above, with the following
modification.

The last reference part of the reference must be a WORD and is treated differently. This word
part is not strictly part of the reference, but is used to identify the name of an attribute that is to
be created (as opposed to referenced) in the context of the prefix part of the name reference.
Thus in the attribute definition

foo:baz:bar 42;

the foo:baz is a reference to a location, bar is the name of the attribute to be created in that
context.

In most cases, the name consists only of that final WORD leaving the prefix reference empty,
indicating the current context. Thus, the attribute is defined in that current context. Where a non-
empty reference prefixes the final word, the reference is used to determine the appropriate
context and the attribute with the given name is placed into that context.

Consider the example
Service extends {
 portNum 4089;
}

Service:portNum 4074;
Service:hostname "ahost.cddlm.org";

The prefix reference Service: is de-referenced to indicate the Service attribute. The two prefixed
attributes are therefore placed within that reference context, overriding or placed at the end of the
context as appropriate. Thus, the example is roughly equivalent to the following (there are some
differences in their behaviour as prototypes):

Service extends {
 portNum 4074;
 hostname "ahost.cddlm.org";
}

The act of placing the attributes into a location is known as placement resolution, and it occurs
simultaneously with the removal of the reference-prefixed attribute from its defining context.
Placement of attributes can lead to a great deal of confusion if not used properly. It reacts in
interesting ways with type resolution; this interaction is explained in the section on resolution.
5.4.4 Link And LAZY Link References
Frequently, attributes need to take on the same values as other attributes. This can be for many
reasons:
• to avoid repetition of values at many points in a description making it easier to maintain that

description

• to hide the structure of the description to a program; to bind parts together by reference rather
than composition.

• to provide a means of simple parameterization; explained further in the section 6.

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 15

This association between the value of one attribute and that of another is defined by providing a
reference in the place of a value of the attribute. This reference is resolved relative to the context
at the point of definition.
Consider the following example, in which a server and a client both need to know the TCP/IP
port on which the server will listen.

System extends {
 server extends {
 portNum 4089;
 }
 client extends {
 portNum ATTRIB server:portNum;
 }
}

The system contains a server and a client. The server and client both have an attribute portNum,
with that of the client being defined as a link to that of the server.

There is a resolution step, known as link resolution (and occasionally deployment resolution),
which replaces references by the values that they reference. During the resolution phase, chains
of links are resolved appropriately.
In the above example, the definition of System is equivalent to the following:

System extends {
 server extends {
 portNum 4089;
 }
 client extends {
 portNum 4089;
 }
}

Consequently, both the server and client share the same value and maintenance is eased in that
should the port number need be changed, this need happen in only one place in the description.

It is frequently the case that the link itself is required as a value; i.e. the link should not be
resolved to the value that it might refer to within the description. This reference may then be
used within a CDDLM application after deployment, for resolution at run-time rather than at the
time of parsing the description.

In order to provide a reference value, rather than have it resolved to the value of another attribute
during link resolution, the keyword LAZY may be prefixed to the link to indicate that the link
resolution should not resolve the link. An example of this is:

System extends {
 server extends {
 foo 42;
 }
 client extends {
 myServer LAZY ATTRIB server;
 }
}

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 16

In this case, the client’s attribute myServer is a reference to the server, not a copy of the server
component. As is, resolution will have no effect, as the link will be left to be the attribute value.
If the keyword LAZY had not been present, the following would have been the result of
resolution:

System extends {
 server extends {
 foo 42;
 }
 client extends {
 myServer extends {
 foo 42;
 }
 }
}

The word LAZY is an indication that it will be resolved at run-time – so far as the notation is
concerned, this means that the link is the value.
5.5 Comments
The CDDLM notation follows most modern languages in providing both end-of-line comments
and multi-line bounded comments. The syntax for these is identical to that of Java, namely

// this is a comment to the end of the line
/* this is a comment which is terminated
 by */

6 Parameterization
When extending a prototype, it is normal to override the values of certain attributes to customize
the prototype to its actual use. The simplest way is to extend with the replacement attribute –
however this only works for a top-level attribute. Modification of attributes deep in the structure
requires the placement of the overriding attribute into the correct context, as in the example:

Service extends {
 hostname "localhost";
 portNum 4567;
}
ServicePair extends {
 service1 extends Service ;
 service2 extends Service ;
}
main extends ServicePair { // user needs to know structure of ServicePair
 service1:hostname "riker.cddlm.org";
 service2:hostname "ackbar.cddlm.org";
}

This works adequately, but it has the disadvantage that the use of the ServicePair prototype
requires knowledge of its structure, though it does have the advantage that any attribute in the
structure may be changed if necessary. However, under normal circumstances, there are
attributes whose values are expected to change, and others that are not. Under these
circumstances, it would be good if the description could be parameterized on these attributes.
However, the normal form of parameterization as provided in programming language functions

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 17

is not a good fit to the CDDLM notation semantics – so the language provides a way of finding a
way of hiding the structure of a description and making it easier to override “deep” attributes.

This technique, more of a pattern for the use of links, is shown in the following example:
Service extends {
 hostname "localhost"; // default value
 portNum 4567;
}
ServicePair extends {
 s1Host "localhost"; // provide default value
 s2Host "localhost";
 service1 extends Service { hostname ATTRIB s1host; } // lift attribute
 service2 extends Service { hostname ATTRIB s2host; } // ditto
}
main extends ServicePair { // user needn’t know structure of ServicePair
 s1host "riker.cddlm.org";
 s2host "ackbar.cddlm.org";
}

It is clear that the use of ServicePair requires only the extension with top-level attributes to set
the attributes deeply defined in the Service prototype. This pattern, of the use of links lifting an
attribute value to one provided in the outermost context, is called the parameterization pattern
and is very frequently used.

Note that if a default value for a lifted attribute is not given within the description (in this case
ServicePair provides defaults for both the lifted attributes s1Host and s2Host), a deploy
resolution error will occur if the parameter is not provided at time of use, since the value to
resolve the link will not be found.

7 Include Files
A stream of text may reference include files at certain points in that text. Unlike a C-language
include file, though, the include file is not merely textually embedded into the original stream.
Rather the include file is itself parsed (and must be syntactically correct) as a stream in its own
right. Every stream must parse as a collection of attribute definitions, and this is equally true of
the include files.

Include files may only be used within attribute lists (i.e. at the top level or within a component
definition). The collection of attributes from the include file are simply added to the attribute list
being parsed in the container stream.
Consider the following example:

• file foo.cddlm contains:

foo extends {
 a 42;
}

• the primary stream is:

#include "foo.cddlm"
system extends {

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 18

 myFoo extends foo;
 #include "foo.cddlm"
}

After the parsing is complete (but before type resolution), the following is obtained:
foo extends {
 a 42;
}
main extends {
 myFoo extends foo;
 foo extends {
 a 42;
 }
}

It should be noted that because includes may occur within other component descriptions, this
may be used as a naming mechanism to prevent clashes of attribute name within multiple include
files. Consider

• file foo1.cddlm contains

foo extends { a 42; }

• file foo2.cddlm contains

foo extends { b 42; }

• the primary stream contains

foo1 extends { #include "foo1.cddlm" }
foo2 extends { #include "foo2.cddlm" }
main extends {
 bar extends ATTRIB foo1:foo;
 baz extends ATTRIB foo2:foo;
}

If the includes had not been buried within separately named components, but both had been
included into the top level, only the second of the two mentioned foo attributes would have been
available for extension. The second would have overridden the first.

8 Main
A stream contains a whole collection of attributes at the top level. Most are merely there to act as
building blocks – prototypes for building others. Typically, there is only a single attribute that is
the essence of the description – that which describes the desired configuration and is not merely
a building block on the way. By convention in CDDLM, the reserved attribute name main
defines this special attribute and all the tools provided respect this convention.

Thus, when a stream is parsed to an attribute set, the top-level attribute main defines the system;
the rest are ignored, apart from providing definitions for extensions and other resolutions. This is
equivalent to the Java language use of the “special” method main(…) to indicate the entry point
to a program. The entry point to a configuration description is main.

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 19

Thus in the following example, the attributes def1, def2 and def3 are only present for the
purposes of defining main, and it is only this last attribute that represents the actual configuration
description.

def1 extends {…}
def2 extends {
 foo extends {…}
 bar extends {…}
}
def3 extends {…}

main extends {
 d1 extends def1;
 d2 extends def2;
 d3 extends def3;
}

9 Resolution – Semantics For The CDDLM Notation
Resolution is the process by which the raw CDDLM definitions, with their extensions,
placements and links, are turned into the set of attributes that they semantically represent.
There are two ways of representing the semantics, both roughly equivalent.

1. By defining how the value of an attribute identified by a reference is obtained from a
description; defining the semantics by providing a function from reference to value for all
possible references. This would be the ideal way of defining the semantics, however for
pragmatic reasons the semantics are less “pure” than may be desired and it is hard to define
the semantics in this way. Two aspects that are particularly hard to define in this style are the
order of type resolution and the placement of attributes.

2. By defining a set of transformation rules that eliminate the complexity of the typing (by
expansion), placement (by relocation) and linking (by value copy), resulting in a normalized
form of a description containing merely a hierarchical set of attribute lists.

Either of these two forms of semantic definition would do, however the definition of the
semantics through transformation has a distinct advantage: these transformations are required in
practice and hence are implemented within the CDDLM system. Thus, an understanding of these
transformations is essential to the use of CDDLM.

The three transformation steps are known in CDDLM as resolution steps. These are respectively
type resolution, placement resolution and link resolution. They are carried out in that order: first
the types are expanded, then attributes placed into the correct context from the context in which
they were defined, and finally links are resolved.

It should be noted that the entire description is type and place resolved, but only the top-level
main attribute is normally link resolved. In general, if the other top-level attributes are link
resolved, errors will occur; they are only present to be available as prototypes. Further,
unnecessary work will have been done.

The algorithms defined here for the transformations are the result of much empirical
experimentation – other transformation algorithms produce more regular semantics, others are

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 20

more efficient. However, those presented here are a balance between performance and semantic
simplicity. They provide a great deal of control over the semantics of the resolution process.
9.1.1 Type Resolution
Type resolution is the expansion of the prototype reference optionally provided in the extends
part of a component description. The syntactic form for a component description is roughly

name extends Reference { AttributeList }

The reference refers to a prototype that is to be extended by the attributes in the provided
attribute list. This process of type resolution is a depth-first pass over the root component
description, in the order of definition of the attributes.

• Copying the prototype indicated by the reference, creating a new component description

• Replacing the attribute values of the new component description also mentioned in the
attribute list (i.e. the value, but not the order, changes)

• Adding the remaining attributes at the end of the new prototype

• Type-resolving each of the component description’s attributes if they are component
descriptions

If the prototype reference indicates a component description that is not yet resolved, it resolves it
first before copying: i.e. each type resolution is carried out with respect to the location where the
prototype is defined. The other point to note is that if the reference is only a word, it is
interpreted as ATTRIB word for the purposes of locating the prototype for the component
description.
If, at the end of the process, one or more component descriptions have failed to resolve, in that
their prototypes cannot be found, the whole resolution process ceases and an exception is thrown
indicating the missing prototypes and the locations at which they are referenced.
Note that any references that may be copied as part of the extension process are not modified. Hence,
copied placements are now relative to the new location and copied links similarly. Prototype references
are never copied since a prototype is always resolved before copy.Placement Resolution
Placement resolution is the process by which the attributes are placed into the correct location.
Attributes are named, and this name may contain a reference to a component description as well
as the name by which it is to be known in that component description. If the reference is not
present, the attribute is assumed to be in the correct component description as defined.

Thus in the example attribute declaration:
foo:bar:baz 42;

The foo:bar: defines the target component description, and baz defines the name for the attribute
in that component description.
Placement resolution is the transformation process that results in the attribute definitions being
removed from their point of definition and placed in the target component descriptions. The
process is a multi-pass process, for each pass:

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 21

• traverse the component description hierarchy

o depth first

o visiting the attributes in the order of definition (as determined by type resolution)

• each attribute visited is examined, if it should be placed elsewhere – try to do so, if it fails –
leave as is.

The pass is repeated until one of the following occurs:
• there are no placements left to transform

• no placements have been successfully carried out, and at least one placement has failed

In the first instance, the placement resolution has successfully completed, the second it has not
and an error is generated.

To see why multiple passes are necessary, consider the following:
foo extends {
 a 21;
}
foo:bar:a 42;
foo:bar extends { b 34; }

In the first pass, the attribute foo:bar:a is first to be placed, but it fails since foo does not yet
contain foo:bar as a component description. Also in the first pass, but later since it is defined
later, foo:bar is placed, giving

foo extends {
 a 21;
 bar extends { b 34; }
}
foo:bar:a 42;

This leaves a placement incomplete so a second pass is required. This time it succeeds, resulting
in

foo extends {
 a 21;
 bar extends {
 b 34;
 a 42;
 }
}

This order dependency does not have much of an effect, except for when two identically named
attributes are placed into the same component description. At this point understanding the order
of resolution becomes important.
Since placement resolution is carried out after type resolution, the following consequences
should be noted:

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 22

• As type resolution is carried out before placement, attributes placed into a prototype will not
be inherited by those extending the prototype.

• Again, as type resolution is carried out before placement, do not place an attribute that is to
be used as a super-type; it will not be found.

• Wherever possible, placement should be restricted to referencing downwards into a structure
from the point of attribute definition. Descriptions can be very hard to understand if
PARENT, ROOT or ATTRIB are used in a placement reference; this particularly so within a
component description to be used as a type. As a consequence, this release of CDDLM does
not permit these reference parts to be used in a placement.

The reason why type resolution is done before placement resolution is that the normal use for
placement is to “fill-in” empty “attribute slots” in a prototype. As each instance of the prototype
will in general need differently filled slots, placement must be done after the type has been
resolved for each instance.

Note that placement of attributes whose values are links do not modify the links to correct for the
new location. Thus, links are resolved with respect to where they are placed, not where they are
defined.
9.1.3 Link Resolution
Link resolution is the most straightforward of the three forms of resolution; all links are resolved
in their location after type and place resolution, and the referenced values copied, replacing the
link as the value of the attribute. There are a number of minor points to note:

• Only links that are not LAZY are resolved; those that are LAZY are left unresolved with the
link itself being the value.

• In resolving a link, the value of the attribute referenced is copied. If the value of the attribute
is a link, this is first resolved and the result copied.

• Links are always resolved in the contexts in which they are located after the type and
placement resolution phases are over, not necessarily those in which they were defined.

• Links referring to an attribute whose value is a LAZY link will copy the LAZY link
unchanged, this being the attribute’s value.

10 Functions
CDDLM provides users with a small number of predefined functions to improve the
expressiveness of the descriptions.

Functions appear, to the language, as predefined component descriptions that may be extended;
the parameters are given as named attributes within the body of that description. For example, a
use of the string concatenate function is

#include "/org/cddlm/functions.cddlm" // the standard functions

val 42;
myString extends concat {

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 23

 -- "the meaning of life is ";
 -- ATTRIB val
}

that results in the value of the myString attribute being "the meaning of life is 42". The names of
the attributes have no effect in this case, the strings being concatenated in the order of definition,
but may be important for some other functions.

Functions are evaluated inner-first, providing for the nesting of function application, and are
evaluated after all the other resolutions steps have be completed. The definitions are themselves
affected by these resolutions. Thus, a function may be extended with the resultant extension also
being a function.

The pre-defined function templates are defined available by including the functions.sf file as
follows:

#include "org/cddlm/functions.sf"

This file defines the list of functions that are described below.
10.1 concat
The concatenate function takes each of its attribute parameters and concatenates them in the
order of definition. These attributes are converted to strings using the toString() Java method. An
example of the use of the concatentate function is:

myString extends concat {
 a "the meaning of life is ";
 b 42;
 c extends concat {
 a " by ";
 b "Douglas Adams";
 }
}

This results in the string "the meaning of life is 42 by Douglas Adams".
10.2 vector
The vector function takes each of its attribute parameters and puts them together into a vector.
An example is

myString extends vector {
 -- "the meaning of life is ";
 -- 42;
 -- extends vector {
 -- " by ";
 -- "Douglas Adams";
 }
}

This results in the vector
["the meaning of life is", 42, ["by", "Douglas Adams"]]

10.3 append
The append function is similar to the vector function, except that all parameters must be vectors
and these are expanded in-line. The difference can be seen by considering the same example

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 24

myString extends vector {
 -- ["the meaning of life is "];
 -- [42];
 -- extends vector {
 -- " by ";
 -- "Douglas Adams";
 }
}

This results in the vector
["the meaning of life is", 42, "by", "Douglas Adams"]

10.4 formatString
FormatString is a function that takes a format string and a set of parameters and creates a
resultant string which has the values of the parameters embedded. The format string attribute
itself should be named format and the various parameter strings should be named sx where x is a
single digit. The format string should identify the places where the various parameter strings
should be embedded using the characters “$x” for a single digit x. An example is

myString extends formatString {
 format "the meaning of $2 is $1";
 s1 42;
 s2 "life";
}

The attributes may of course be links to other values, but not LAZY links as these are not
resolved in time for the function phase.
10.5 sum
The sum function sums each of its attributes type-caste to integers, failure will result in an
exception. The order, of course, is irrelevant. An example of the use of the sum function is:

val1 34;
val2 45;
num extends sum {
 a ATTRIB val1;
 b 345;
 c ATTRIB val2;
}

This will result in num being set to 424.
10.6 product
The product function multiplies each of its attributes type-caste to integers, failure will result in
an exception. The order is irrelevant. An example of the use of the product function is:

times10 extends product {
 ten 10;
}

myNum extends times10 {
 val 34;
}

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 25

This will result in myNum being set to 340.
10.7 random
The random function, which in truth is not really a function since it returns a different value for
each invocation, returns a random number as follows:

• if the attribute integer is set to true, an integer between attributes min
and max is returned, otherwise a floating point value between 0 and 1.
The default values for min and max are 0 and 10 respectively.

• if the attribute seed is provided, and the random number generator has
not yet been initialized, that seed is used.

Examples of the use of the random are:
dice extends random {
 integer true;
 min 1;
 max 6;
}

myConfig extends … {
 throw1 extends dice;
 throw2 extends dice;
}

Each of throw1 and throw2 will be some random integer between 1 and 6. Note that each
invocation in myConfig is independent. Each JVM contains a single random number generator
for use during function resolution.
10.8 next
The next function is one that returns a monotonically increasing value, guaranteed never to
return the same number twice within a single description. Again, it is not strictly a function since
it never returns the same value for the same parameters. The only parameter attribute is the base
attribute, setting a minimum value for the values. If the base is below the next value, it is
ignored. If it is above, the next value will be the base. The default base is 0.

An example of the use of next is:
unique extends concat {
 prefix "xxxyyyqqq";
 postfix extends next;
}

myConfig extends … {
 name extends unique;
 otherAttr 42;
}

10.9 date
The date function returns a string representation of the current date and time. There are no
formatting parameters. Again, this is not strictly a function.

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 26

The string representation of the date must be in the ISO8601 format, specifically the subset of
that standard described in RFC3339 [5]. It can either be a UTC time with the timezone
information to indicate that fact (+00:00), or it can be in the local time, in which case the date
information must instead include the offset from GMT.

An example of the use of date is:
 now extends date { }

This results in now being set to the current date and time, which, at the time and place of writing
would be:

"2004-04-16T11:26:15+01:00"

11 Schemas
It is frequently useful to be able to define a set of well-formedness conditions on the use of a
template in order to guarantee that its use is correct. However, this should be done in a way in
which all the benefits of template extension are not lost. To this end, an additional phase, similar
to that defined for functions, is included which will check schemas defined and attached to a
template.
The predefined predicate supplied by the CDDLM framework is the schema, a description that
describes the set of attributes a template should contain.
Schemas are best described through the use of an example, in this case of a template for a web
server component. The example defines a schema for a web server template, and defines the
template linked to the schema.

#include "/org/cddlm/predicates.cddlm" // the definition of schemas

WebServerSchema extends Schema {
 port extends Integer;
 directory extends OptionalString;
}

WebServerTemplate extends {
 schema extends WebServerSchema;
 port 80; // default value
}

Note that the name for the attribute linking the template to its schema need not be, as in this case,
schema. Indeed, a template may have more than one schema attached as attributes, in which case
the uses of the templates are checked against all schemas attached. Schemas must extend the
base schema template Schema.
Schemas may be extended in the same way as other templates, and their uses may easily be
extended through placement as illustrated in the following examples.

#include "/org/cddlm/predicates.cddlm" // the definition of schemas

ThreadedWebServerSchema extends WebServerSchema {
 minimumThreads extends Integer;
}

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 27

ThreadedWebServerTemplate extends WebServerTemplate {
 //overwrite with extended schema
 Schema extends ThreadedWebServerSchema;
 minimumThreads 7;
}

AlternativeThreadedWebServerTemplate extends WebServerTemplate {
 // add to existing schema
 schema:minimumThreads extends Integer;
 minimumThreads 7;
}

Note that schemas are entirely optional and need be used only if required.
Schemas are descriptions that may be attached to other descriptions and cause them to be
checked against the schema description.
Schemas are defined by extending the predefined template Schema, defined in the file
/org/cddlm/predicates.sf:

mySchema extends Schema {
 // schema entries
}

Each of the schema entries are attributes whose names are to be found in the template to be
validated. Each of these entries must extend a description that defines certain properties about
the attribute. The properties are
• optional: a Boolean that states whether the attribute is optional or compulsory

• binding: a string which defines whether the attribute must be lazy ("lazy"), must be eager
("eager"), or may be either ("anyBinding") – this controls whether a link may exist instead of
a value of the correct class

• class: a string which defines the name of the class which should be found as the value of the
attribute (e.g. "Integer"), or any class ("anyClass"). The interpretation of the string depends
on the processing environment.

Thus entries in a schema for a web server component may be:
WebServerSchema extends Schema {
 port extends {
 optional false;
 binding "anyBinding";
 class "Integer";
 }
 directory extends {
 optional true;
 binding "anyBinding";
 class "java.lang.String";
 }
}

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 28

However this is rather cumbersome, so some helper templates are defined in the include file.
These are defined as follows, with the obvious meanings.

Compulsory extends {
 optional false;
 binding "anyBinding";
 class "anyClass";
}

Optional extends {
 optional true;
 binding "anyBinding";
 class "anyClass";
}

OptionalBoolean extends Optional {
 class "Boolean";
}

Boolean extends Compulsory {
 class "Boolean";
}

OptionalInteger extends Optional {
 class "Integer";
}

Integer extends Compulsory {
 class "Integer";
}

OptionalDouble extends Optional {
 class "Double";
}

Double extends Compulsory {
 class "Double";
}

OptionalLong extends Optional {
 class "Long";
}

Long extends Compulsory {
 class "Long";
}

OptionalFloat extends Optional {
 class "Float";
}

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 29

Float extends Compulsory {
 class "Float";
}

OptionalString extends Optional {
 class "String";
}

String extends Compulsory {
 class "String";
}

OptionalVector extends Optional {
 class "Vector";
}

Vector extends Compulsory {
 class "Vector";
}

OptionalReference extends Optional {
 class "Reference";
}

Reference extends Compulsory {
 class "Reference";
}

OptionalCD extends Optional {
 class "ComponentDescription";
}

CD extends Compulsory {
 class "ComponentDescription";
}

12 Summary of CDDLM Language Processing
All of the tools provided with the CDDLM system handle a CDDLM text in an identical way to
produce a fully resolved deployable description. The process is basically:

• parse the text stream to produce hierarchical data structures

• type resolve the root

• place resolve the root

• extract attribute “main” from the root

• link resolve “main”

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 30

• evaluate any functions in “main”

• check schemas in “main”

13 The CDDLM Syntax
The complete CDDLM language syntax is presented here in its entirety.

Stream ::= AttributeList

AttributeList ::= AttributeListElement*

AttributeListElement ::= Attribute | #include STRING

Attribute ::= Name Value

Name ::= BaseReference // limited to WORD parts only

Value ::= ; | Basic ; | Component | [LAZY] BaseReference ;

Basic ::= NUMBER | STRING | MULTILINESTRING | Vector | BINARY

Vector ::= [] | [Basic (, Basic)*]

Component ::= extends [LAZY] BaseComponent

BaseComponent ::= [Reference | NULL] (; | { AttributeList })

BaseReference ::= ReferencePart (: ReferencePart)*

ReferencePart ::= ROOT | PARENT | WORD | THIS | ATTRIB WORD

14 The CDDLM Notation Lexical Rules
In addition to the syntax, we need the rules for the language tokens.

/* White Space */
SKIP : " "| "\t"| "\n"| "\r"| "\f"

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 31

/* Comments */
SINGLELINECOMMENT: "//"~["\n"]"\n"
FORMALCOMMENT: "/**" ~["*/"]"*/ "

/* Reserved Tokens */
RESERVED: ";" | "," | "{" | "}" | "[" | "]" | ":" | true | false |
 "NULL" | "extends" | "LAZY" | "ROOT" | "ATTRIB" |
 "PROPERTY" | "IPROPERTY" | "PARENT" | "HOST" | "PROCESS" |
 "THIS" | "#include"

/* Tokens – using Unicode */
WORD: LETTER (LETTER|DIGIT|SPECIAL)*
SPECIAL: [".", "_", "-"]
LETTER:
 [
 "\u0024",
 "\u0041"-"\u005a",
 "\u005f",
 "\u0061"-"\u007a",
 "\u00c0"-"\u00d6",
 "\u00d8"-"\u00f6",
 "\u00f8"-"\u00ff",
 "\u0100"-"\u1fff",
 "\u3040"-"\u318f",
 "\u3300"-"\u337f",
 "\u3400"-"\u3d2d",
 "\u4e00"-"\u9fff",
 "\uf900"-"\ufaff"
]
DIGIT:
 [
 "\u0030"-"\u0039",
 "\u0660"-"\u0669",
 "\u06f0"-"\u06f9",
 "\u0966"-"\u096f",
 "\u09e6"-"\u09ef",
 "\u0a66"-"\u0a6f",
 "\u0ae6"-"\u0aef",
 "\u0b66"-"\u0b6f",
 "\u0be7"-"\u0bef",
 "\u0c66"-"\u0c6f",
 "\u0ce6"-"\u0cef",
 "\u0d66"-"\u0d6f",
 "\u0e50"-"\u0e59",
 "\u0ed0"-"\u0ed9",
 "\u1040"-"\u1049"
]

/* Literals */

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 32

STRING: ("\"" (
 (~["\"","\\","\n","\r"])
 | ("\\"
 (["n","t","b","r","f","\\","'","\""]
 | ["0"-"3"] ["0"-"7"] ["0"-"7"]
)
)
)* "\"")

MULTILINESTRING: ("##" (
 (~["#","\\"])
 | ("\\"
 (["n","t","b","r","f","\\","'","#"]
 | ["0"-"3"] ["0"-"7"] ["0"-"7"]
)
)
)* "#")

NUMBER: <INTEGER> | <FLOAT> | <LONG> | <DOUBLE> | <BINARY>

INTEGER: (("-")? ["1"-"9"] (["0"-"9"])*) | "0"

FLOAT_BASE: ("-")?
 (
 (["0"-"9"])+ "." (["0"-"9"])* (<EXPONENT>)?
 | "." (["0"-"9"])+ (<EXPONENT>)?
 | (["0"-"9"])+ <EXPONENT>
 | (["0"-"9"])+ (<EXPONENT>)?
)

EXPONENT: ["e","E"] (["+","-"])? (["0"-"9"])+ >

DOUBLE: <FLOAT_BASE> (["d", "D"])?

LONG: <INTEGER> (["l", "L"])?

FLOAT: <FLOAT_BASE> ["f", "F"]

BINARY: "@" ["a"-"z","A"-"Z","0"-"9","+","/"]* "@"
 // note whitespace allowed and ignored

15 Encoding
The text documents contain Unicode characters. The file representation is UTF-8, without a Byte
Order Mark [6].

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 33

16 Security Considerations
There are few security issues in the design of the language apart from the need to have a
canonical representation of the text for signing. This canonical form is generated by the
resolution processes.

17 Editor Information
Patrick Goldsack
Internet Systems and Storage Laboratory
Hewlett-Packard Laboratories
MailStop HPLB
Filton Rd.
Stoke Gifford
Bristol BS34 8QZ
United Kingdom
Phone: +44 117 312 8176
Email: patrick.goldsack@hp.com

18 Contributors
We gratefully acknowledge the contributions made to this specification by Marc Nijdam.

19 Acknowledgements
This work was supported in part by Hewlett Packard Labs.

Intellectual Property Statement
The GGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described
in this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies
of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification can be obtained from the
GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the GGF Executive Director.

Full Copyright Notice
Copyright (C) Global Grid Forum (2002, 2005). All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the
copyright notice or references to the GGF or other organizations, except as needed for the

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 34

purpose of developing Grid Recommendations in which case the procedures for copyrights
defined in the GGF Document process must be followed, or as required to translate it into
languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

References
[1] SmartFrog reference manual

http://www.hpl.hp.com/research/smartfrog/papers/sfReference.pdf

[2] Configuration Description, Deployment, and Lifecycle Management (CDDLM)
Foundation,
http://forge.gridforum.org/projects/cddlm-
wg/document/CDDLM_Foundation_Document/en/1

[3] Configuration Description, Deployment, and Lifecycle Management (CDDLM) XML-
Based Language, Document in preparation

[4] Configuration Description, Deployment, and Lifecycle Management (CDDLM) Basic
Services, Document in Preparation.

[5] RFC 3339, Date and Time on the Internet: Timestamps
ftp://ftp.rfc-editor.org/in-notes/rfc3339.txt

[6] RFC 3629, UTF-8, a transformation format of ISO 10646
http://www.ietf.org/rfc/rfc3629.txt

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 35

20 An example deployment of a simple Grid application
This example covers a small-scale application deployed onto a grid fabric.

The fact that this is deliberately small-scale is important; describing an application to be
deployed on ten-thousand nodes is fundamentally different from describing one to deploy on ten
nodes. The issues will be discussed in section 20.5.
20.1 Scenario: Tuple-space dispatch of stock analysis workload.
The scenario covered here is the one of analysis of stock market data. The actual architecture
somewhat from Van Simmons' paper Wall St., Grid Computing and Jini, which dispatches
Monte-Carlo Simulation tasks to worker services deployed as Jini applications. Sun's JavaSpace
Tuple-space is used to dispatch the tasks: tasks are described as documents inserted into the
Tuple-space. Workers wait for documents of interest arriving in the space; when they arrive they
can be pulled out and acted on –responses can be returned in the same way.
This dispatch architecture is quite appealing, as it decouples service consumers from the services
themselves; there is no need to know where a service is, only that there is something that acts on
documents on certain topics in the space.

The paper also proposes an architecture for worker components; a container model similar to that
for Web Servlets. A worklet runs inside the container, receives documents from "somewhere",
processes them, and returns results. This architecture stops the worklets needing to know
configuration data such as which JavaSpace/Topic to listen to, and permits a container to host
multiple worklets, balance load between them, and do all the other nice things that Servlet
containers are appreciated for.

This SmartFrog language example assumes the same architecture of container, worker and
Tuple-space, but makes no assumptions about the technologies used to implement the T-Space. It
could be Jini, it could be something built on top of WS-ResourceFramework and WS-
Notification. Such details are not relevant to the deployment language.
20.2 Cross-application components
First come some components that are specific to the technologies being used, but not to the
application themselves. One would expect these to be predefined and includable into a system
using the #include mechanism.
20.2.1 Java Processes
First comes a Java process, which has some common options (here memory configuration), and a
vector which allows arbitrary options to be listed (such as
["-ea","-server"]).

A schema is used to declare the type of these optional attributes, and a JavaProcess component is
declared, one which uses the schema:

1 JavaProcessSchema extends Schema {
2 minMemory extends OptionalInteger;
3 maxMemory extends OptionalInteger;
4 JVM_options extends OptionalVector;

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 36

5 }
6
7 JavaProcess extends {
8 javaProcessSchema extends JavaProcessSchema;
9 }

20.2.2 Tuple Space
The Tuple-space is defined as some hypothetical implementation which takes a name and
optionally a port and capacity. The schema reflects this:
10 TSpaceSchema extends Schema {
11 name extends String;
12 port extends OptionalInteger;
13 capacity extends OptionalInteger;
14 }
15
16 TSpace extends {
17 tspaceSchema extends TSpaceSchema;
18 sfClass "org.example.TSpace";
19 }
20

The actual declaration of the TSpace component also declares the class implementing the
component, using an attribute which is part of the SmartFrog runtime (line 18). This tells the
runtime which Java class should be loaded and invoked at deployment time, to instantiate the
real Tuple-space.
20.2.3 Worklet
A worklet is a handler of incoming requests from a Tuple space. Its role is to listen for requests
coming in via a topic in the space.
21 WorkletSchema extends Schema {
22 classname extends String;
23 sourceTopic extends String;
24 destTopic extends String;
25 }
26
27 Worklet extends {
28 sfClass "org.example.sf.Worklet";
29 workletSchema extends WorkletSchema;
30 }

Again, we declare the runtime-specific component implementation class.
20.2.4 Worklet Container
A worklet container is a separate Java process that hosts one or more worklets. The schema
declares that a thread attribute is mandatory (line 33), and that it is bound to a Tuple-space. This
is done by declaring that the tspace attribute has to be bound to a component description (line 35
31 WorkletContainerSchema extends Schema {
32 //how many threads
33 threads extends Integer;

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 37

34 //what tuplespace is this container bound to
35 tspace extends CD;
36 }

The worklet container is declared and bound to this schema. It extends the JavaProcess
component, and as the name given to the new schema declaration (line 39) is different from that
of the JavaProcess binding (line 8), both schemas remain in place. If the same name had been
used, the new schema would have overridden the old declaration.
37 WorkletContainer extends JavaProcess {
38 sfClass "org.example.sf.Container";
39 workletContainerSchema extends WorkletContainerSchema;
40 }

20.2.5 Security
Security credentials are defined by a login and password.
41 CredentialsSchema extends {
42 username extends String;
43 password extends OptionalString;
44 }
45
46 Credentials extends {
47 credentialsSchema extends CredentialsSchema;
48 }

20.2.6 Database
A database is defined a having a URL and login credentials:
49 DatabaseSchema extends {
50 //URL to database
51 URL extends String;
52 //credentials
53 login extends CD;
54 }
55
56 Database extends {
57 databaseSchema extends DatabaseSchema;
58 }

This component maps to the Java JDBC database binding model, as well as directly to databases
exported as Web Services.
20.2.7 dateTime
Finally, a dateTime schema component is declared which states that a Date/Time parameter is
simply a string. This does not provide any additional typechecking, but can enhance readability.
59 dateTime extends String {}

20.2.8 Bulk Node Deployer
A bulk node deployer deploys the same component to a list of nodes, and later probes them for
liveness.
60 BulkNodeDeployerSchema extends {
61 component extends CD;

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 38

62 hosts extends Vector;
63 }
64
65 BulkNodeDeployer extends {
66 bulkNodeDeployerSchema extends BulkNodeDeployerSchema;
67 sfClass "org.example.sf.bulkNodeDeployer";
68 }

20.3 Worklets
Now the worklets are defined. In this example, we have multiple worklets, all using Tuple-space
topics to communicate.
20.3.1 Past History Worklet
The past history worklet looks at a stock over a period of time from a database and analyses it. It
is configured by binding it to a database, a vector of stocks, and a start and end date.
69 PastHistoryAnalyzerSchema extends Schema {
70 database extends CD;
71 startDate extends dateTime;
72 endDate extends dateTime;
73 stock extends Vector;
74 }
75
76 PastHistoryAnalyzer extends Worklet {
77 classname "org.example.PHA";
78 pastHistoryAnalyzerSchema extends PastHistoryAnalyzerSchema;
79 }

20.3.2 Predictor Worklet
The predictor looks at the analyzed history and predicts future values for stocks
80 PredictorSchema extends Schema {
81 startDate extends dateTime;
82 endDate extends dateTime;
83 stock extends Vector;
84 }
85
86 PredictorWorklet extends Worklet {
87 classname "org.example.Predictor";
88 predictorSchema extends PredictorSchema;
89 }

It will be deployed so that it listens on a topic for analyzed data coming from the PastHistory
Worklets.
20.3.3 Data Feed Worklet
A datafeed worklet takes external data and adds it to a Tuple-space. A declaration of an accessor
class is mandatory; a cleaner class can sanitise the data; this is optional.
90 DataFeedSchema extends Schema {
91 URL extends String;
92 //credentials
93 login extends CD;

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 39

94 //classname of an accessor
95 accessor extends String;
96 //classname of an optional cleaner
97 cleaner extends OptionalString;
98
99 //tuple space information
100 tspace extends CD;
101 topic extends String;
102 }
103
104 DataFeed extends {
105 dataFeedSchema extends DataFeedSchema;
106 sfClass "org.example.sf.dataFeed";
107 }

The datafeed will act as the source of data/events into the space. In a production system, the live
feeds from various sources would be sanitized and validated before insertion into the space. For
testing, valid past data (and wildly invalid data) would be used instead.
20.4 Test Data
The test configuration runs a little database app internally when running, the property
TestSourceDatabase:URL exports the URL to the database
108 TestSourceDatabase extends {
109 sfClass "org.example.sf.db.Test";
110 location "/org/example/db/files";
111 URL;
112 }
113

There is also a test Tuple-space
114 TestTSpace extends TSpace {
115 name "test-tspace";
116 port 5600;
117 capacity 1000;
118 }
119

And a test login to the database:
120 TestCredentials extends Credentials {
121 username "guest";
122 password "hello";
123 }
124

20.5 Test Harness
The test harness comprises a TestWorkletContainer and the Test application itself.
20.5.1 Test Worklet Container
The test worklet container contains both types of worklet, and assumes that demand will keep the
system busy as appropriate.
125 TestWorkletContainer extends WorkletContainer {

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 40

126 tspace LAZY TestTSpace;
127 threads 20;
128 sourceTopic;
129 intermediateTopic;
130 destTopic;
131
132 //declare things that will be defined later
133 oldDate;
134 currentDate;
135 futureDate;
136 stock;
137
138 analyzer extends PastHistoryAnalyzer {
139 //bind to the source database
140 database LAZY TestSourceDatabase;
141 sourceTopic PARENT:ATTRIB sourceTopic;
142 destTopic PARENT:ATTRIB destTopic;
143 startDate ATTRIB oldDate;
144 endDate ATTRIB currentDate;
145 stock PARENT:ATTRIB stock;
146 }
147
148 predictor extends PredictorWorklet {
149 //bind to the source database
150 database LAZY TestSourceDatabase;
151 sourceTopic PARENT:ATTRIB sourceTopic;
152 destTopic PARENT:ATTRIB destTopic;
153 startDate ATTRIB currentDate;
154 endDate ATTRIB futureDate;
155 stock PARENT:ATTRIB stock;
156 }
157
158 }

A key feature of the container is that here is where the analyzer and predictor worklets are bound
together, by declaring topics and dates in the TestWorkletContainer component. The analyzer
component listens to the source topic and pushes results to the intermediate topic, analyzing data
from the oldDate to the currentDate. The predictor component listens to the intermediate topic,
predicts from the currentDate to the endDate, and puts its results in the destTopic topic. These
topics are still not defined –only the relationship between them for these worklets is declared.
20.5.2 Test Harness
The test harness is the final glue that makes everything tangible. Anything required that is still
undeclared is declared in this component. This component combines the settings for the worklets
–stocks (line 173), Tuple-space (line 160) date and database to use (lines 170 -172), it also
declares the database component itself (line 175), and, by way of the BulkNodeDeployer
component, configures the system to deploy the TestWorkletContainer on hosts h1-h8 (line 168
and lines 187 -199).
159 TestHarness extends {

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 41

160 tspace extends TestTSpace { }
161
162 sourceTopic "source";
163 intermediateTopic "interim";
164 destTopic "dest";
165 //where the results are to be saved.
166 resultFile "//fileserver/pub/results.xml";
167 //here are the hosts we deploy worklets onto
168 hostlist ["h1","h2","h3","h4","h5","h6","h7","h8"];
169
170 oldDate "2003-04-04";
171 currentDate "2003-04-06";
172 futureDate "2003-04-07";
173 stock ["PEP","CO"];
174
175 testDatabase extends TestSourceDatabase { }
176 testLogin extends TestCredentials;
177
178 testDataFeed extends DataFeed {
179 accessor "org.example.db.Test";
180 URL LAZY testDatabase:URL;
181 login LAZY testLogin;
182 tspace LAZY PARENT:ATTRIB tspace;
183 topic LAZY PARENT:ATTRIB topic;
184 stock PARENT:ATTRIB stock;
185 }
186
187 testNodes extends BulkNodeDeployer {
188 //each node has the same component, a test container
189 //bound to the test settings
190 component extends TestWorkletContainer {
191 tspace LAZY PARENT:ATTRIB tspace;
192 oldDate PARENT:ATTRIB oldDate;
193 currentDate PARENT:ATTRIB currentDate;
194 futureDate PARENT:ATTRIB futureDate;
195 stock PARENT:ATTRIB stock;
196 sourceTopic PARENT:ATTRIB sourceTopic;
197 intermediateTopic PARENT:ATTRIB intermediateTopic;
198 destTopic PARENT:ATTRIB destTopic;
199 }
200
201 //repeat the list of hosts.
202 hosts PARENT:ATTRIB hostlist;
203 }
204
205 /**
206 * and something to analyze the results
207 */
208 resultAnalyzer extends {

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 42

209 sfClass "org.example.sf.ResultAnalyzer";
210 tspace LAZY PARENT:ATTRIB tspace;
211 topic PARENT:ATTRIB destTopic;
212 resultFile PARENT:ATTRIB resultFile;
213 }
214 }

Finally, a new component is declared, a resultAnalyzer, which somehow analyzes the test results
and compares them to expected values. This could perhaps itself be written as a worklet and
hosted in a separate WorkletContainer instance.
This is quite a complex declaration. It combines configuration of individual components, with
the configuration of the entire distributed system. Because a single component can do both,
different configurations could be created to test different aspects of the system, such as different
data sources, or different distribution options.

Note that when binding attributes to instances of components, the LAZY keyword is used. This
is because the binding can not take place until deployment actually occurs. The LAZY keyword
is also used to access other information that is only available at runtime, such as the URL of the
database (line 180). Although it may not seem immediately intuitive as to what attribute
bindings should be marked as LAZY, the parser will inform the user during the resolution phase
if it was unable to resolve all references. Parsing of the deployment descriptor can therefore
identify issues long before deployment is attempted.
20.6 Liveness
Liveness is not explicitly covered in this example. It is assumed that every application or worklet
has a means by which liveness can be probed, and therefore which implementation classes of the
declared SmartFrog components can use to probe the application when requested to do so by
their parent components. For a production system, rigorous checks which actually make database
queries, or submit work to the worklets could be considered, provided the execution costs and
potential side-effects are acceptable.
20.7 Scaling
As mentioned at the introduction, a ten-thousand node application deploys differently. Here are
some underlying issues:

• You can not expect all the nodes to be available at the same time. You do not want to
redeploy the application whenever a node appears or disappears, nor can you have one
single descriptor to describe the entire system.

• You do not want to sequentially deploy parts of an application to all the nodes; it would
take too long.

• The number of processing elements can be changed based on system load.

The way to address these problems is to not adopt such an explicit top-down description of the
configuration. Instead the system should be viewed as functional when there are an acceptable
number of worklets processing data. The deployment descriptor should not itself list all the hosts
in the grid fabric onto which system components should be deployed. Instead, the descriptor
should describe which system components are to be deployed onto hosts in particular roles.

GFD-R-D.051 September 9, 2005

cddlm-wg@ggf.org 43

When the Grid Resource Manager allocates a new node to the application, it must be given a
role, and it must then communicate with some service to discover what application it should
deploy, given its role.
Such dynamic role-based deployment is possible, given the appropriate components.

