
GFD-R-P.065 Editor:
CDDLM Component Model Stuart Schaefer, Softricity
http://forge.gridforum.org/projects/cddlm-wg March 26, 2006

Configuration Description, Deployment,

and Lifecycle Management

Component Model
Version 1.0

Status of this Memo
This document provides information to the community regarding the specification of the
Configuration Description, Deployment, and Lifecycle Management (CDDLM) Component
Model. Distribution of this document is unlimited.

Abstract
Successful realization of the Grid vision of a broadly applicable and adopted framework for
distributed system integration, virtualization, and management requires the support for
configuring Grid services, their deployment, and managing their lifecycle. A major part of this
framework is a language in which to describe the components and systems that are required. This
document, produced by the CDDLM working group within the Global Grid Forum (GGF),
provides a definition of the CDDLM component model and the process whereby a Grid Resource
is configured, instantiated, and destroyed.

CDDLM Specs
There are five documents created by the CDDLM group. They are described in the text below.

The CDDLM Foundation document sets the stage for the remaining documents by introducing
the area, by describing functional requirements, use cases, and high-level architecture. It also
compares this group with other working groups as well as with other related efforts in the
industry.

The SmartFrog Language spec describes a language primarily intended for configuration
description and deployment. It is declarative, i.e. it supports attribute value pairs. Furthermore, it
supports inheritance, references (including lazy), parameterization, predicates and schemas. It has
the same functionality as CDL (see next paragraph), except that it is not XML-based. SmartFrog
language predates CDL and it was used as a model when creating CDL. The two languages will
be compatible. CDL is primarily intended for machines, SmartFrog for humans.

The CDDLM Configuration Description Language (CDL) is an XML-based language for
declarative description of system configuration that consists of components (deployment objects)
defined in the CDDLM Component Model. The Deployment API uses a deployment descriptor in
CDL in order to manage deployment lifecycle of systems. The language provides ways to

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 2

describe properties (names, values, and types) of components including value references so that
data can be assigned dynamically with preserving specified data dependencies. A system is
described as a hierarchical structure of components. The language also provides prototype-based
template functionality (i.e., prototype references) so that the user can describe a system by
referring to component descriptions given by component providers.

The CDDLM Component Model outlines the requirements for creating a deployment object
responsible for the lifecycle of a deployed resource. Each deployment object is defined using the
CDL language and mapped to its implementation. The deployment object provides a WS-
ResourceFramework (WSRF) compliant "Component Endpoint" for lifecycle operations on the
managed resource. The model also defines the rules for managing the interaction of objects with
the CDDLM Deployment API in order to provide an aggregate, controllable lifecycle and the
operations which enable this process.

The deployment API is the WSRF-based SOAP API for deploying applications to one or more
target computers. Every set of computers to which systems can be deployed hosts one or more
"Portal Endpoints", WSRF resources which provide a means to create new "System Endpoints".
A System Endpoint represents a deployed system. The caller can upload files to it, and then
submit a deployment descriptor for deployment. A System Endpoint is effectively a component in
terms of the Component Model specification -it implements the properties and operations defined
in that document. It also adds the ability to resolve references within the deployed system,
enabling remote callers to examine the state of components with it.

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 3

Table of Contents
Table of Contents .. 3
1 Introduction... 5

1.1 Notational Conventions ..5
1.2 Namespaces..6
1.3 Definitions..6

2 CDDLM-WG and the Purpose of this Document .. 7
2.1.1 Configuration Description Language..7
2.1.2 Component Model ...7
2.1.3 Deployment API ..8

3 Components in the CDDLM Architecture .. 8
3.1 Core Concepts and Terminology...9

3.1.1 Components...9
3.1.2 Deployable Systems...9

3.2 Deploying Components .. 11
3.3 Component Lifecycle.. 12

3.3.1 State and State Extension Representation ... 14
4 Components .. 15

4.1 Deployment Components.. 15
4.1.1 ComponentReference... 16
4.1.2 CodeBase... 16
4.1.3 CommandPath ... 17

4.2 Component Delegates ... 17
4.3 Systems .. 18
4.4 Component Properties and Operations .. 19

4.4.1 Component Properties.. 20
4.4.2 Basic Component Operations ... 23

4.5 Faults.. 25
4.5.1 Fault Categories ... 25
4.5.2 Fault Security... 26
4.5.3 Internationalization .. 26
4.5.4 DeploymentFault ... 26
4.5.5 Component Faults .. 27

4.6 Events... 27
4.6.1 Event Interfaces ... 28
4.6.2 Event Format ... 28
4.6.3 Event Registration.. 29
4.6.4 Property Change Notifications ... 31
4.6.5 Fault Notifications ... 31

4.7 Control Flow .. 31
4.7.1 Sequence.. 32
4.7.2 Reverse .. 33
4.7.3 Flow .. 33
4.7.4 Wait... 33
4.7.5 Switch.. 33

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 4

4.8 Component-specific message sets and messages ... 34
5 Reference Resolution ... 34
6 Using the Component Model ... 35

6.1 Scope.. 35
6.1.1 Delegates ... 35
6.1.2 Document Structure ... 36
6.1.3 Flow Control Example ... 37

6.2 Synchronization.. 38
6.2.1 Events.. 38
6.2.2 Synchronization Points... 39
6.2.3 Events and Synchronization Points... 40

6.3 Aggregate System State .. 40
6.4 Controlling Deployments.. 41

6.4.1 Event Handlers .. 42
7 Security Considerations ... 42
8 Editor Information .. 42
9 Acknowledgements .. 43
10 Intellectual Property Statement ... 43
11 Disclaimer ... 43
12 Full Copyright Notice .. 43
References ... 45
Appendix A – Component Object Definitions.. 46
A.1 XML Schema ... 46
A.2 WSDL 1.1... 53

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 5

1 Introduction
Deploying a complex, distributed service presents many challenges related to service
configuration and management. These range from how to describe the precise, desired
configuration of the service, to how we automatically and repeatably deploy, manage and
then remove the service. This document addresses the description challenges, while other
challenges are addressed by the follow-up documents. Description challenges include
how to represent the full range of service and resource elements, how to support service
"templates", service composition, correctness checking, and so on. Addressing these
challenges is highly relevant to Grid computing at a number of levels, including
configuring and deploying individual Grid Services, as well as composite systems made
up of many co-operating Grid Services.

1.1 Notational Conventions
The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in
this document are to be interpreted as described in [RFC 2119].

This specification uses a notational convention, referred to as “pseudo-schemas” in a
fashion similar to the WSDL 2.0 Part 1 specification [WSDL 2.0]. A pseudo-schema uses
a BNF-style convention to describe attributes and elements:

• `?' denotes optionality (i.e. zero or one occurrences),
• `*' denotes zero or more occurrences,
• `+' denotes one or more occurrences,
• `[' and `]' are used to form groups,
• `|' represents choice.
• {any} is a placeholder for elements from some other namespace (like ##other in

the XML Schema).
• An ellipsis, or three consecutive periods, ..., are used in XML start elements to

indicate that attributes from some other namespace are allowed.

Attributes are conventionally assigned a value which corresponds to their type, as defined
in the normative schema.

<!-- sample pseudo-schema -->
<element

required_attribute_of_type_QName="xsd:QName"
optional_attribute_of_type_string="xsd:string"? >
<required_element />
<optional_element />?
<one_or_more_of_these_elements />+
[<choice_1 /> | <choice_2 />]*

</element>

A full XML Schema and WSDL description of all elements and operations are available
in Appendix A of this specification. Sections 4 and 5 of this specification and appendices

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 6

A.1 through A.4 containing the XML Schema (XS) of the component model and the
WSDL component interface are normative specifications. All UML diagrams found are
non-normative, and meant to serve only as illustrations of the CDDLM concepts.

1.2 Namespaces
The following namespaces are used in this document:

xsd http://www.w3.org/2001/XMLSchema
wsa http://schemas.xmlsoap.org/ws/2003/03/addressing
wsbf http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-BaseFaults-1.2-draft-

01.xsd
wsrp http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-

1.2-draft-01.xsd
wsrl http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceLifetime-1.2-

draft-01.xsd
wsnt http://docs.oasis-open.org/wsrf/2004/06/wsn-WS-BaseNotification-1.2-

draft-01.xsd
wstop http://docs.oasis-open.org/wsrf/2004/06/wsn-WS-Topics-1.2-draft-

01.xsd
muws-p1-xs http://docs.oasis-open.org/wsdm/2004/12/muws/wsdm-muws-part1.xsd
muws-p2-xs http://docs.oasis-open.org/wsdm/2004/12/muws/wsdm-muws-part2.xsd
mows-xs http://docs.oasis-open.org/wsdm/2004/12/mows/wsdm-mows.xsd
cdl http://www.gridforum.org/namespaces/2005/02/cddlm/CDL-1.0
cmp http://www.gridforum.org/cddlm/components/2005/02
cmpw http://www.gridforum.org/cddlm/components/2005/02/wsdl
api http://www.gridforum.org/cddlm/deployapi/2005/02

1.3 Definitions
The following terms are defined and used throughout this document. This section is
intended as a brief reference only of these concepts.

Resource – A WS-Resource Framework construct to define an identity, properties and

standard interaction through a Web Service to access a logical object.
Service – A WS-I compliant Web Service
Service Endpoint – The WSDL defined interface of an instantiated Web Service.
Component – The smallest deployment unit within the CDDLM framework.
Language Component – A deployment construct defined within a CDL document which

does not correlate to any underlying object or resource during deployment.
Deployment Component – A deployable resource defined within a CDL document which

will be instantiated during deployment.
Component Delegate – A deployment component which subsumes the responsibility of

the lifecycle of child components from the rest of the Framework.
System – A group of Components defined and named in a CDL deployment document.
Deployment Graph – An internal representation of the relationships among Components.
Portal EPR – The WS-Resource of the Deployment API portal interface.

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 7

System EPR – The WS-Resource of the node selected by the Deployment API to act as
the root of a deployment.

Component EPR – The WS-Resource of a specific Component within a deployment.

2 CDDLM-WG and the Purpose of this Document

The CDDLM WG addresses how to: describe configuration of services; deploy them on
the Grid; and manage their deployment lifecycle (instantiate, initiate, start, stop, restart,
etc.). The intent of the WG is to gather researchers, developers, practitioners, and
theoreticians in the areas of services and application configuration, deployment, and
deployment life-cycle management and to explore the community need for a broader
effort in this area. The target of the CDDLM WG is to come up with the specifications
for CDDML a) language, b) component model, and c) deployment API. This document
represents the component model specification. This specification is derived from the
SmartFrog framework developed at HP Labs, and other industry specifications.

This document describes the component model of the framework. It does not describe
any required component libraries. The design of the system is loose to allow the binding
of attributes to deployment objects to be handled by an individual implementation of the
system. This document serves to outline the requirements for a software object to be
deployable by the CDDLM framework.
This specification is closely related to a set of three specifications that together comprise
service configuration description, deployment, and lifecycle management. All three
specifications are briefly described in the following three paragraphs. For more details
please refer to other two specifications.
2.1.1 Configuration Description Language
The CDDLM Configuration Description Language (CDL) [XML-CDL] is an XML-
based language for declarative description of system configuration that consists of
components (deployment objects) defined in the CDDLM Component Model. The
Deployment API uses a deployment descriptor in CDL in order to manage deployment
lifecycle of systems. The language provides ways to describe properties (names, values,
and types) of components including value references so that data can be assigned
dynamically with preserving specified data dependencies. A system is described as a
hierarchical structure of components. The language also provides prototype-based
template functionality (i.e., prototype references) so that the user can describe a system
by referring to component descriptions given by component providers.
2.1.2 Component Model
The CDDLM Component Model outlines the requirements for creating a deployment
object responsible for the lifecycle of a deployed resource. Each deployment object is
defined using the CDL language and mapped to its implementation The deployment
object provides a WS-ResourceFramework (WSRF) compliant "Component Endpoint"
for lifecycle operations on the managed resource. The model also defines the rules for
managing the interaction of objects with the CDDLM Deployment API in order to
provide an aggregate, controllable lifecycle and the operations which enable this process.

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 8

2.1.3 Deployment API
The Deployment API [CDDLM-API] is the WSRF-based SOAP API for deploying
applications to one or more target computers. Every set of computers to which systems
can be deployed hosts one or more "Portal Endpoints", WSRF resources which provide a
means to create new "System Endpoints". A System Endpoint represents a deployed
system. The caller can upload files to it, then submit a deployment descriptor for
deployment. A System Endpoint is effectively a component in terms of the Component
Model specification - it implements the properties and operations defined by the model. It
also adds the ability to resolve references within the deployed system, enabling remote
callers to examine the state of components with it.

3 Components in the CDDLM Architecture

A prerequisite for understanding this document is to have read the CDDLM language
document(s), which introduce a tree-like representation of configurable components as a
way of describing the pieces of a distributed application. Using the description of the
application, a system definition can be provided to an instance of the CDDLM
Deployment API . It is the responsibility of this instance to realize the deployment
through instantiation and control of CDDLM compliant deployment components. This
basic relationship can be understood from this simple figure:

Figure 1. The CDDLM Deployment Framework.

The CDDLM component model is not intended to be a general purpose model for
systems or application management. It is limited in scope to address the problems of
deploying and managing the deployed state of resources. In the context of CDDLM, a
resource is considered to be the hardware, software and other configurable items required
to execute the distributed application being managed.

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 9

The basic principles of the CDDLM framework are described in the CDDLM Foundation
Document. Additionally, the reader should consult the CDDLM Deployment API
document in order to understand the basic deployment capabilities of the CDDLM
framework.

3.1 Core Concepts and Terminology
3.1.1 Components
The CDDLM component model represents a means to group a hierarchy of services
within a deployment container. This container provides a wrapper for the services to aid
in their deployment and management. In this containment hierarchy there may be a
many-to-many relationship among services and actual instantiated resources. This
hierarchy is not intended to reflect the organization of those managed resources. Its
purpose is to capture the runtime deployment dependencies, operational flow and state of
those resources.

At deployment time, a service will be resolved by the CDDLM implementation to
determine its composition and membership within the active Grid Fabric. The basic unit
of deployment is a component. The service to be deployed and its resource will be a part
of a component which bounds its contents and defines its deployment behavior.

A component has two analogues. A language component is a configurable component
along with its property list as defined in the CDL language document; it is a declaration
of what the user wishes deployed, and how they want it configured. A deployment
component is a code library that provides the implementation of language components
with interfaces and operations defined later in this document. When the CDDLM
infrastructure needs to deploy a service, it must locate and instantiate deployment
components for every language component that it wishes to instantiate. These
deployment components will be moved through their lifecycle and so bring up the
service.

A CDDLM component object is a specific instance of a deployment component. A
deployment component can be instantiated multiple times in the same document or
system, as well as in multiple, separate systems. The component object will correlate to a
component within the system tied to one or more allocated resources. A deployment
component will have one component object for each resource or group of resources that it
is declared to manage.

3.1.2 Deployable Systems
Groups of components can be organized to form a deployable system. A system will be
comprised of one or more components each implementing some portion of a complete
Grid Service or prerequisite, or individually implementing one or more services. Each
service will provide access to its implementation through one or more endpoints, either
WSRF endpoints or standard WS-I endpoints, as defined in the services own WSDL. All
such endpoints will be presumed to be valid Endpoint References (EPRs) as defined by

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 10

the WS-Addressing specification. The relationships between services and components
are modeled in the language and exposed in order to facilitate these compositions.

Figure 2. A Deployable System.

Not all services will be complete software applications. A service endpoint may exist
within a larger set of an application server, for example. A service may also be
dependent upon the configuration of a more fundamental portion of software such as an
operating system or patch. Or there may be a pre-existing service that does not
implement the CDDLM interfaces. In this manner, the CDDLM component model
enables services to be “wrapped” within a component container that is responsible for
implementation of the defined component interfaces.

In many cases, the services that are deployed do not meet the manageability requirements
of its environment. The CDDLM component model allows a component to wrap an
implemented service and provide a level of manageability that otherwise would not exist.
These manageability functions implement CDDLM specific interfaces as well as those
required by the WSDM specifications. Other interfaces could be provided as the
implementation dictates.

Though the conceptual diagram above depicts a system as shown hierarchically, there is
no requirement by CDDLM for components to be explicitly organized in this way. A
system is just a loose confederation of components needed to deploy some set of
endpoints. The following UML diagrams the conceptual relationship of these entities.

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 11

service endpoint

1 *

system

deploymet
component

1

*

resource

deploys

is deployed by
language

component

manageable
interface

{OR}

wraps

implements

*

1
1

0..1 1 *

Figure 3. Component Model Conceptual Diagram.

3.2 Deploying Components
In order to deploy, the CDDLM framework is sent a description of the system in a
supported language through a node implementing the Deployment API. This node is
addressed via a well known WS-Addressing Endpoint Reference (EPR) [WS-A], a portal
EPR. The run time of this node parses the description in preparation to begin the
deployment. As defined in the CDL Language Document, the description will always be
translated to XML-CDL during parsing.

The output of the parsing stage is the production of an internal representation of the
system. This document will use a (annotated) tree of language components -a deployment
graph - as an exemplary structure. The Deployment API does not require that this graph
be created or maintained. We use this formalism here to describe how the deployment
will interact both within components and in conjunction with the Deployment API.

This graph describes what must be deployed, and what the interdependencies are. Using
the relationships defined in the CDL document, the basic hierarchy that is implicit in the
structure of the document can be transformed into a graph showing the explicit
relationships, ordering and timing of deployment operations and events. This graph can
then be used, conceptually, by the Deployment API to create and enforce these
relationships at deployment-time.

Each system to be deployed is instantiated through the creation of a WS-Addressing
Endpoint Reference to a resource responsible for its operation. This system EPR
represents the aggregate state of the collection of deployed components for a particular
system instance. This EPR provides a WS-ResourceFramework resource with all of its
methods and properties exposed using the WSRF embodiment of the service endpoint.
The complete description of using the system EPR is described in the CDDLM
Deployment API.

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 12

The resource responsible for the system EPR or portal EPR will parse the CDL definition
to map language components to deployment components. The parsing phase produces a
complete XML CDL representation of the deployment graph. All internal use of
documents and languages by the component model are based on the XML CDL
specification, no other languages are supported. The deployment graph will be
segmented and for each deployment component identified a WS-Addressing endpoint
reference, a component EPR, is assigned to each deployment component.

A component EPR is the primary interface to manage a deployment component.
Component EPRs are references to the resource which is an instance of the corresponding
deployment component. This EPR will also rely on the mechanisms defined by the WS-
ResourceFramework. There is no requirement of this component model or by CDDLM
that a component map to only a single resource, or that the address of the component
endpoint correlate in any way to the deployment location of the resource. Thus, the
embodiment of “WS-Addressing Using Reference Properties” MUST be followed. All
message exchanges with a component will include the ReferenceProperties of the WS-
Resource qualified component EPR.

For each deployment component, the framework must then instantiate each component
object. During this instantiation, the component must become able to respond to
operations at its endpoint. The endpoint, once available, is used to transfer the fragment
of CDL relevant to the component object and initialize base properties of the component.
The component must also be notified of the endpoint address of the system EPR for later
use.

Once deployed, the component EPRs are used internally for components to communicate
with the system EPR and with each other. The node responsible for the system EPR is
able to send lifecycle commands to component EPRs and receive lifecycle events. The
system EPR provides endpoint resolution services to components in order to enable this
intercommunication. This resolution service allows components to translate CDL
language references to another component into the EPR of that component. This
resolution interface is described in detail in the Deployment API specification.

3.3 Component Lifecycle
The basic lifecycle of components, and thus the resources being managed, is defined by a
state machine that is implemented by all component objects within CDDLM. The
CDDLM lifecycle is restricted, in that it supports the deployment processes used by the
framework and models only the deployment state of the system, not its operational
characteristics. For example, once a CDDLM component has entered the running state,
CDDLM considers it to be available. In reality, the service that is being deployed can be
operative but have suffered some set of internal failures.

Each deployment component independently represents the state of the deployed resource
which it is managing. The system as a whole must also represent a reasonable depiction
of the overall state of many components. In this state machine, there is no representation

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 13

of transitional state, only of arrival at new states. The core lifecycle is defined by the
states, allowed transitions and operations shown in the diagram in below.

Figure 4. CDDLM Component Lifecycle Model.

The undefined state represents any state in which the component is not known to have an
instance running or instantiated in the system. In the undefined state, the assets of the
component may or may not have been deployed from the rest of the framework. There is
no requirement by the component model that the assets of the system be stored or
removed during any lifecycle operation.

When a component is created, it will make the transition from undefined to instantiated.
During this time, the component and its deployment package will be deployed to the
appropriate system, the component instantiated and any operations will be performed that
are part of the component’s instantiation process. This state also presumes that whatever
activation is required in order for the WSRF resource identifier of the component to be
valid has been performed. Operations on the endpoint reference can now be performed.
As shown in the diagram above, the initialize() and destroy() state change commands are
supported in this state.

The next state of the system is the running state. This state indicates the services
provided by the resources that are being deployed are available for use. As mentioned
earlier, this state does not indicate any information regarding the operational capabilities
of the service, only that it has completed initialization and not failed.

At any time, state actions may not complete correctly or the service itself may fail. In
response to these failures, the component will transition to the failed state. The
component may remain active in the system, but its managed resource is presumed to no
longer be operational.

Once a component is running or has failed, it must be terminated to stop its services. The
terminated state represents a state where a component is no longer running and cannot be

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 14

returned to the running state without redeployment. This state, however, does not
eliminate the resource from the system. Upon invocation of the destroy() command, the
component will return to the undefined state and the corresponding resource becomes
invalid.

In a system with multiple components, the lifecycle of the whole system is defined by the
relationships between the individual component lifecycles. The hierarchy of the system
defines relationships where related components’ lifecycles are linked. The component
model and the CDL language help define explicit semantics for guiding lifecycle
transitions. These transitions are defined in detail in Section 5.3 of this document.

3.3.1 State and State Extension Representation
It is also desired for the lifecycle model to be extensible at the component level. The core
lifecycle described above is required for implementation of CDDLM. However,
CDDLM will enable services to declare service specific lifecycle extensions that are
declared for a particular component and operate within the basic deployment lifecycle
model defined herein. In this way, a service can be deployed and managed simply, but
also define internal states relevant to other services capable of consuming its extended
information.

Figure 5. Extended States.

In the example above, a service is currently known to CDDLM and has been created and
is running. If it is sent a command such as “Refresh Data”, it may externally remain in
the running state. However, internally it may go through several state transitions in order
to execute the command. By declaring these states in a resource property document, its
states can be tracked and understood through the basic component model interfaces.

This extension mechanism does not require the definition of the state machine or state
transitions to the CDDLM framework. This would require implementation of a formal
calculus within the CDL language, and a secondary state machine within the framework.
Instead, the lifecycle model is implemented in the component model using the WSDM
MUWS State capability. This allows the state of the system to be exposed as a WSRF
resource property with a simple and flexible model for extension.

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 15

4 Components

This section describes the model for deployment components within the CDDLM
framework: what they are, how they work, and how they integrate with the framework.
The CDDLM framework requires a concrete object that can be instantiated in order to
perform a deployment action. This object’s purpose is to abstract the basic framework
from the details of the composition of what is to be deployed and its specific, required
deployment steps.

Components are represented in the CDL language using an abstract object model that
most closely resembles languages such as Scheme: any component can have new
attributes added to it dynamically, while the type system is very loose. Furthermore, there
is no split between classes and instances; everything is an instance that can be extended
dynamically.

There also does not exist a mapping between every component instance in the language-
level model and implementation model. That would be neither sensible nor possible.
Instead, any component in the language can be entirely abstract. This has benefit for
providing templates and parameterization. Language components can also be used to
provide higher level behaviors to coordinate deployments. For a list of supported
language component behaviors, consult the CDL Language Specification Document.

4.1 Deployment Components
In the CDDLM system, a CDL document will contain one or more language components.
In order to turn this into a deployment, the framework will need to map these language
components into deployment components. When a create() command is sent to the
Deployment API, the system will parse the CDL document and create a mapping.

At least one of the language components declared in the CDL document MUST map to a
deployment component. Otherwise, no action can be taken during the deployment
phases, as all concrete actions of the framework are performed against the deployment
components of a system. Any component object MAY simply exist to assist with the
deployment and have no actual internal objects to deploy or resources to manage. Each
component object, though, MUST implement the basic interfaces defined in this
specification document.

The parsed CDL document can be walked to identify deployment components and
assemble a deployment graph and actions to perform in order to instantiate components.
For each element that declares an asset location and means to activate the assets, an
object will be created. The runtime will deploy the code contained at the source location,
and attempt to instantiate the object. An example of how this is done with CDL is shown
below.

<cdl:cdl targetNamespace=”http://example.org/webapp-template”>
<cdl:system>
<WebApplication>
 <cmp:CodeBase>http://server/file.jar</cmp:CodeBase>

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 16

 <cmp:CommandPath>com.exns.ApacheDeployer</cmp:CommandPath>
 <port>80</port>
 <hostname>www.example.org</hostname>
</WebApplication>
</cdl:system>
</cdl:cdl>

In this case, the WebApplication corresponds to an ApacheDeployer deployment component
located within the deployment container file.jar at the remote web server location.

Once deployment components have been identified, the processing is very platform
specific. A Java deployment component will be activated within some JVM to become a
component object. An executable will be run on its host. A COM or other object will be
created within some host specific to the platform. It is important that during the
resolution and instantiation process that the CDDLM framework is able to bind the
component to the correct runtime or host. Further parameterization of the host
requirements should be given in the CDL for the component.

There are a base set of component properties that define a deployment component within
a CDL document. Each one of these properties, if declared within the CDL document,
MUST be exposed as resource properties of the component as defined by the WS-
ResourceProperties specification
.
4.1.1 ComponentReference
The component endpoint reference (EPR) SHOULD be specified within the CDL
document. This element definition enables the CDDLM framework to identify a target
resource’s endpoint. During the resolution phase of parsing the CDL document, as
described in the CDL language document, CDDLM MUST identify the target resources
for the deployment and assign them unique endpoint references.

The ComponentReference CDL property is shown in the following XML representation. It
MUST be a direct child of the language component it modifies. It cannot be multiply
defined for a single component.

<ConfigurationElement>
 <cmp:ComponentReference>
 wsa:EndpointReferenceType
 </cmp:ComponentReference>
</ConfigurationElement>

As the component object is responsible for one or more managed resources, its endpoint
reference MUST include the ReferenceProperties child element with a stateful resource
identifier. This will ensure that the component object resource is clearly identified
separately from the resource it is managing.
4.1.2 CodeBase
The component code base is defined as any location of file assets at some URI. It is up to
the Deployment API how to obtain and upload the file(s). Any CDL element which is
declared as part of the system description, a child of the <cdl:system> element, is
potentially a deployment component. If such an element contains the CodeBase property

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 17

as a direct child of the element, that element MUST be considered a deployment
component. If the same element does not contain a CommandPath property to indicate how
to activate the component, an error MAY result.

The CodeBase CDL property is shown in the following XML representation. This property
can be defined as many times as needed to indicate all of the possible sources of
deployment assets.

<ConfigurationElement>
 <cmp:CodeBase>xsd:anyURI</cmp:CodeBase> *
</ConfigurationElement>

4.1.3 CommandPath
The command path is some referenceable path indicating to the Deployment API how
and/or what to instantiate in order to realize this deployment component. This path is
defined as an opaque string as it may be any one of a number of things such as a Java
class path, an executable name, a COM object name or GUID, or any other platform
specific instantiation name.

The CommandPath property can also include sub-elements that can be used as arguments or
other augmentation of the base path. This allows the CDL to declare either a structured
command using path and arguments, or an unstructured opaque string. Both can also be
defined, but if the structured path form is used, the path element is not optional.

The CommandPath CDL property is defined as a cmp:commandPathType element which is
shown in the following XML representation.

<ConfigurationElement>
 <cmp:CommandPath>
 {any}
 <cmp:path>xsd:string</cmp:path>
 <cmp:args>...</cmp:args> *
 </cmp:CommandPath>
</ConfigurationElement>

4.2 Component Delegates
A derived type of component is a component delegate, a deployment component that
manages a set of child components on behalf of the system. Component delegates extend
the basic functionality of a component by aggregating the lifecycle and operations of
components that are declared to be their children. Within the deployment, a component
delegate presents a single endpoint and resource for management. However, internally
all component children MUST still present a full component endpoint for management by
the delegate.

In order to create a component delegate, you will simply declare that the component is a
delegate. There are no attributes or children of this declaration. However, within the
CDL document, a component delegate will need its children defined. Any CDL element
which is identified as a deployment component will have a property list defining the
parameters of the component. The element may also have child elements as part of the

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 18

property lists. Within this hierarchy, if the element is declared as delegate, any child
element which is also a deployment component will be a child of the component
delegate. Within a CDL document, a declaration may look as follows, with a database
server declared as a child of the web server component delegate:

<cdl:cdl targetNamespace=”http://example.org/webapp-template”>
<cdl:system>
<WebApplication>
 <cmp:CodeBase>http://server/file.jar</cmp:CodeBase>
 <cmp:CommandPath>com.exns.ApacheDeployer</cmp:CommandPath>
 <cmp:Delegate/>
 <port>80</port>
 <hostname>www.example.org</hostname>
 <OracleServer cdl:extends=”DBServer”>
 <cmp:CodeBase>http://server/oracle.zip</cmp:CodeBase>
 <cmp:CommandPath>./orainst/install.sh</cmp:CommandPath>
 <username>oracle</username>
 <password>sa</password>
 <tnsname>server.exns.com</tnsname>
 </OracleServer>
</WebApplication>
</cdl:system>
</cdl:cdl>

If a component is declared to be a component delegate, but has no children, it MUST
operate as a standard component. If a component has children, but it itself is not a
delegate, there is no parent-child or other relationship and the component MUST NOT
enforce any such dependency.

4.3 Systems
Within a CDL document, all of the elements defined by this specification will be applied
as part of normal property lists, as children of CDL configuration or system elements.
This is done to keep the deployment process description within the declaration of the
deployment components themselves. This will allow us to use the standard parsing
features of the CDL language to our benefit. The basic component model as defined thus
far and relationships are characterized in the following diagram.

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 19

«system»

CDDLM

Language Component

Deployment Component Component

Resource Resource Resource

Configuration

Lifecycle

Maintenance

Component Delegate

Component

Resource

Figure 6. Basic Component Relationships.

The attribute inheritance model of CDL implies that components which derive their
configurations from others must be able to override those attributes. Though this implies
some derivative behavior in the language, the component model does not require the
objects to be in a parent-child relationship or have some inherited behavior in its
implementation. Thus there is no requirement for any form of object inheritance or other
object oriented implementation.

A system is simply a bag of elements, component objects. There may be a hierarchical,
peer or other relationship between objects, if deployment dependencies exist. Without
dependencies the CDDLM runtime is free to deploy in any means it chooses. Any
component object not related to another is a peer of all other top level components. Other
than the dependent relationship, there is no other implied constraint between component
objects.

4.4 Component Properties and Operations
Every deployment component managed by the CDDLM framework will support a
common set of properties and operations. There may also be optional sets of messages,
for use between components that have explicit knowledge of each other's message
support. Callers SHOULD be able to poll endpoints to verify that a set of messages is
supported before sending one or more messages from that set.

In addition to the core lifecycle functions, the components will be able to use the
CDDLM framework to access their configuration information, locate other components

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 20

defined in the configuration, and potentially alter the running configuration. These
interfaces will be implemented using the WSRF and WSDM specifications where
appropriate, as well as companion specifications as indicated.

4.4.1 Component Properties
When a component is defined, its CDL property list defines several attributes related to
its configuration. The component MUST expose each of these attributes as a resource
property of the component WS-Resource. In addition to the properties associated with
those defined in the CDL property list, every component has properties and actions for
managing its lifecycle.

4.4.1.1 Identity
Every component must be uniquely identifiable to enable proper construction of and
communication with its WSRF endpoint. The WSDM MUWS defines the Identity
capability to meet this goal. A deployment component MUST implement this property
and declare a unique URI as defined in the WSDM MUWS Part 1 specification. The
WSDM Identity capability defines the ResourceId property for each component.

<muws-p1-xs:ResourceId>xsd:anyURI</muws-p1-xs:ResourceId>

4.4.1.2 ManageabilityCapability
The WSDM MUWS also requires that a compliant endpoint be able to identify the
capabilities it exposes for management. A deployment component MUST implement the
WSDM ManageabilityCharacteristics capability. This is implemented as a list of
ManageabilityCapability(s), each of which contains a URI defining the capability
supported by the component.

<muws-p1-xs:ManageabilityCapability>xsd:anyURI</muws-p1-xs:ManageabilityCapability> *

A component MUST at least return the Identity, State and ManageabiltyCharacteristics
facilities for this property as shown in this XML fragment.
<muws-p1-xs:ManageabilityCapability>
http://docs.oasis-open.org/wsdm/2004/12/muws/capabilities/Identity
</muws-p1-xs:ManageabilityCapability>
<muws-p1-xs:ManageabilityCapability>
http://docs.oasis-open.org/wsdm/2004/12/muws/capabilities/State
</muws-p1-xs:ManageabilityCapability>
<muws-p1-xs:ManageabilityCapability>
http://docs.oasis-open.org/wsdm/2004/12/muws/capabilities/ManageabilityCharacteristics
</muws-p1-xs:ManageabilityCapability>

4.4.1.3 ComponentName
Every component will also have its own unique name which can be created from its own
valid cdl:ref reference. This path name SHOULD be exposed to help uniquely define the
component and provide confirmation of the CDDLM source in message exchanges. This
attribute is defined as shown in this XML representation.

<cmp:ComponentName>cdl:pathType</cmp:ComponentName>

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 21

The component model does not require that this property be set in any particular manner.
4.4.1.4 ComponentDescription
When a component is instantiated, the CDL document may define multiple properties in
its property list. These properties can contain name/value pairs for attributes of the
component or other information such as the control flow elements or events described
later in this document. In order to be instantiated properly, the component must know
these declarations. Through the Deployment API, an implementer of the framework
MUST ensure that after a component has been instantiated, its CDL must be set
appropriately.

An implementer of this component model and the framework MAY choose to pass the
entire CDL document or just the relevant fragment. Thus, every component is
RECOMMENDED to be able to parse a CDL document and extract its corresponding
node. If a component object is a delegate, the descriptor fragment that is passed to the
component MUST include the CDL of the child nodes. The delegate will be responsible
for breaking up and/or passing on the CDL to these nodes.

<cmp:ComponentDescription>{any}</cmp:ComponentDescription>

4.4.1.5 ComponentStatus
Each deployment component MUST expose a state resource property which implements
the MUWS State capability. To satisfy this requirement, a deployment component must
contain muws-p2-xs:State and muws-p2-xs:StateTransition elements. Additionally, a
deployment component may include additional information as an opaque quantity that an
external consumer may be able to process. The ComponentStatus property will be exposed
by every component object of a system.

<cmp:ComponentStatus>
 <cmp:State>UndefinedState|InstantiatedState|InitializedState|
 RunningState|FailedState|TerminatedState</cmp:State>
 <cmp:LifecycleTransition>muws-p2-xs:StateTransition</cmp:LifecycleTransition>
 <cmp:ExtendedState>{any}</cmp:ExtendedState> ?
</cmp:ComponentStatus>

The State element implements MUWS State by defining the lifecycle states of CDDLM
as a list of muws-p2-xs:StateType elements. These elements are listed in the table below.

Element Description
UndefinedState The undefined state.
InstantiatedState State representing the presence of a component instance.
InitializedState State in which a component has been properly initialized.
RunningState Operational state.
FailedState State in which the component has failed either a lifecycle

operation or its operation has failed.
TerminatedState State in which a component instance has been terminated.

As the failed state may have been arrived at due to failures during many parts of the
lifecycle, it is RECOMMENDED that the component take action to ensure the services of

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 22

the resources are not available while in this state, particularly if the transition occurred
from the running state.

The State element follows the MUWS State capability which allows one to create state
extensions according to the rules of MUWS Category Taxonomies. These rules MUST
be followed, particularly that any extension to the state model listed in this document
MUST be declared in a resource property document with a valid QName to identify the
semantics of the extensions. Also, state extensions must be done by declaring a state to
contain the states declared in this component model. A schema using this capability
would define its own sub states as follows this XML Schema fragment.

<xsd:element name=”ApplyingPolicy”>
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:restriction base=”cmp:lifecycleStateType”>
 <xsd:sequence>
 <xsd:element ref=”cmp:RunningState”/>
 </xsd:sequence>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>
</xsd:element>

As an example, the “Appling Policy” sub-state from the example in Section 3 may be
represented by the following XML fragment.

<cmp:ComponentStatus>
 <cmp:State>
 <exns:ApplyingPolicy xsi:type=”cmp:lifecycleStateType>
 <cmp:RunningState/>
 </exns:ApplyingPolicy>
 </cmp:State>
 ...
</cmp:ComponentStatus>

The LifecycleTransition element is defined as a muws-p2-xs:StateTransition element. This
state transition property SHOULD be implemented as defined by WSDM MUWS. The
state TransitionIdentifier SHOULD NOT be used, but instead the PreviousState element
SHOULD be used. An example XML fragment of this property could be as follows.

<cmp:LifecycleTransition>
 <muws-p2-xs:StateTransition Time=”2005-03-01T01:54:30Z”>
 <muws-p2-xs:EnteredState>
 <cmp:RunningState/>
 </muws-p2-xs:EnteredState>
 <muws-p2-xs:PreviousState>
 <cmp:InitializedState/>
 </muws-p2-xs:PreviousState>
 </muws-p2-xs:StateTransition>
</cmp:LifecycleTransition>

The final element, ExtendedState, allows implementation specific information to be
returned as part of the property. A consumer is not required to be able to process this
information.

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 23

4.4.1.6 Notification Properties
The WS-BaseNotification specification requires that a resource that wants to advertise
any notifications to potential consumers MUST implement three properties.

<wsnt:Topic> *
<wsnt:FixedTopicSet>
<wsnt:TopicExpressionDialects> *

The Topic resource property contains a collection of Topics supported by the
component. The set of topics is expressed using one or more wsnt:Topic resource property
element(s). The FixedTopicSet resource property indicates if the collection of Topics
defined in the Topic property can change or are static over time. The final property,
TopicExpressionDialects, indicates the TopicExpression dialects supported by the component
for notifications.

4.4.1.7 Deployment properties
In order to facilitate discovery operations, a deployment component needs to provide
access to its Resource Property document. The basic properties of a component are
declared within the ComponentProperties element. A component MAY additionally support
the WS-MetadataExchange specification to enable dynamic retrieval of a component’s
property declarations. This element is normatively declared in the XML Schema in
Appendix A.

4.4.2 Basic Component Operations
In order to access a component’s attributes and work with its management functions, a
class of operations are exposed to enable these behaviors. These behaviors are expected
to be used both internally by the CDDLM framework and with external systems.
4.4.2.1 WS-Resource Properties
Component properties in the component model can be directly manipulated using the
WS-ResourceProperties specified mechanisms. Each component MUST implement the
GetResourceProperty operation and SHOULD implement GetMultipleResourceProperties to assist
in scalable access patterns.

A component or the system EPR host may choose to alter the value of a component’s
property. This is most likely as the result of some event or decision step in the
deployment process. For completeness, the component SHOULD support each of the
Insert, Update and Delete operations of the WS-Resource.

In order to support enumeration and introspection type operations on the component’s
attributes, a component MAY implement the QueryResourceProperties operation. It is
RECOMMENDED that an implementation supports the XPath 1.0 query expression
dialect at a minimum, additional query expression dialects MAY also be supported.

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 24

Optionally, a component EPR or the system EPR may provide a means to retrieve the
component’s current WSDL which can be dynamically generated to reflect the
component’s current state. That operation is not normatively defined.

Each component object MUST support lifecycle state observation. This interface will
use the WSRF property query ability to retrieve the ComponentStatus property of the
component.

4.4.2.2 State transition operations
During the life of an object, the CDDLM framework will invoke state transition actions
on the object. In order to follow the WSRF recommendations, each object will provide a
separate interface for each state transition request: initialize, run, terminate, and destroy.
An instantiate message is unnecessary, as the create() operation handled by the
Deployment API will have instantiated each component object.

Note that the destroy() operation is a WS-ResourceLifetime operation, not a CDDLM
specific implementation. It is NOT RECOMMENDED to implement scheduled
termination as part of the WSRF implementation for components.

Each of these messages take no parameters in their input, and return no data. If a failure
occurs, a fault of type StateActionFault is thrown. It can also be expected that a component
will transition to the failed state in this event. All of these operations MUST be
performed synchronously. If CDDLM consumers wish to find out more about the state
transition, it must issue a state query request.

Upon invocation of a particular state command, a component may take any appropriate
action and alter its referenced state. If no action is to be taken, the component MUST at
least guarantee transfer to the next state. A component SHOULD NOT report its state as
the next state until the transition is complete. This conservative approach prevents
reporting a successful transition followed by a failure due to problems transitioning to the
requisite state.

4.4.2.3 Maintenance operations
It is often the case that simple maintenance activities can prolong the healthy lifespan of a
long-running service. It is desired to allow CDDLM objects to provide a simple
command execution infrastructure to enable periodic maintenance or cleanup of these
services. This interface will presume that the object is knowledgeable in means to
execute the command. This interface does not replace the use of structured operations
declared additionally by the component, but serves as a simple, well-known interface for
basic tasks.

The RunTask operation will support these maintenance commands. The CDDLM
framework will make no interpretation of the commands contained in the task. Each task
will be a named task for tracking by external infrastructure, as well as provide the basic

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 25

content of the task. Optionally, the task can contain structured content from any derived
namespace.

<cmp:taskActionRequest>
 <cmp:taskName>xsd:string</cmp:taskName>
 <cmp:taskContents>{any}</cmp:taskContents>
</cmp:taskActionRequest>

All tasks will execute synchronously and in response to a task command, a response
MUST be generated. A fault is NOT expected to be transmitted from this request, unless
it is a fault of the communications or security infrastructure. The result of the task
follows that of the input with the addition of an OPTIONAL integer status code.

<cmp:taskActionResponse>
 <cmp:taskName>xsd:string</cmp:taskName>
 <cmp:taskStatusCode>xsd:integer</cmp:taskStatusCode>
 <cmp:taskOutput>{any}</cmp:taskOutput>
</cmp:taskActionResponse>

4.5 Faults
All of the operations defined in the component model may return faults as an indication
that an error has occurred. All faults are based on the WS-BaseFaults specification.
Faults are raised in response to errors at resource endpoints or in the communication
infrastructure or other portions of the distributed system. Faults can be transmitted in
response to operations on the component endpoint or sent as part of notification events.
Service implementations may also implicitly raise SOAPFault faults, as that is inherent in
most implementations.

4.5.1 Fault Categories
There is a base fault DeploymentFault, from which all other faults are derived. This fault
class directly overrides the WS-BaseFault fault type. It adds extra information useful for
debugging and managing distributed systems. This items are reflective of the lessons
learned in web services development [Loughran02], namely that extra information such
as hostname and process is essential for locating which process among many has failed
on a clustered system.

All interfaces must declare that they raise these DeploymentFault instances, rather than list
the specific faults. This is to provide forward extensibility. If an implementation has a
fault state whose meaning matches that of the predefined fault, the predefined fault
MUST be thrown. If this predefined fault has standard elements for embedded fault
information, the implementation SHOULD fill them in. The implementation MAY add
implementation-specific data within the ExtraData element of the fault, to supplement this
information. This extra data MUST not add new types to the XML namespaces of this
deployment data. The XML schema and semantics of this extra data should be
documented.

If an existing fault type is not suitable, implementations MAY create new fault types. If
an implementation creates new fault types, these MUST extend the existing fault types

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 26

which operations are declared as throwing, which effectively means that they must
extend DeploymentFault. These new faults MUST NOT change the XML schemas of
CDDLM, and they MUST be in a new namespace. The new faults and XML content
SHOULD be publicly documented.

If an implementation adds new operations or properties at the existing endpoints, these
new operations MAY raise whatever faults they see fit, within the constraints of the WS-
BaseFault specification. Again, the implementation must not add new types to the
CDDLM namespaces.
4.5.1.1 Transport faults
Transport faults will inevitably be raised as the appropriate fault for the system. For
example, the Apache Axis SOAP client raises AxisFault faults for all SOAP events,
wrapping stack trace and even HTTP Fault data within the fault as DOM elements.
Microsoft .NET WSE has a similar fault class.
4.5.1.2 Relayed Faults
Relayed faults are those received by the far end and passed on. They may be WS-
BaseFault Faults; HTTP error codes, SOAP faults, native language faults wrapped as
SOAPFaults, or predefined deployment faults. WS-BaseFault uses fault nesting for
relaying faults; however, all faults must be a derivative of WS-BaseFault. This is
addressed by defining a new WS-BaseFault derivative, a WrappedSOAPFault. This type is
actually an extension of DeploymentFault. This fault can nest any received SOAPFault,
with an element containing the received XML data. Well-known elements in this fault
data (such as the Apache Axis stack trace and HTTP fault code) should be copied into
any fields in the main fault that fill the same role.
4.5.2 Fault Security
Sites offering deployment services, may, for security reasons, wish to strip out some
information, such as stack trace data. Implementations should provide a means to enable
such an action prior to transmitting faults to callers.

Host name and process information may be viewed as sensitive, yet again, this is
exceedingly useful to operations. Implementations may provide a means to disguise this
information, so that it does not describe the real hostname or process ID of a process, but
instead pseudonyms that can still be used in communications with any operations team.
4.5.3 Internationalization
The WS-BaseFault specification makes no statement upon which language error
descriptions are described. If an implementation can return descriptions in one language,
it must use xml:lang attributes to indicate the language of a description. Multiple
descriptions, in different languages may be included. The client application should
extract the description(s) whose language is the nearest match to that of the client.

4.5.4 DeploymentFault
This type represents any fault thrown by a component or the deployment infrastructure.
All endpoint operations MUST declare that they throw this fault, and must not explicitly
declare any derivative faults that they may throw.

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 27

Element Type Description
Host xsd:string Hostname or pseudonym.
Process xsd:string Any process identifier suitable

for diagnostics.
ExtraData unboundedXMLAnyNamespace Extra fault data.
Component xsd:string Path to component raising the

fault.
Stack stringListType Optional stack trace.

Implementations SHOULD include a component reference if it is known.
Implementations SHOULD also include hostname and process information. Process
information may be a low-level identifier (such as an operating system process ID), or it
may be some application specific identifier. Its role is merely to distinguish which
process amongst many in a load-balanced implementation raised the fault.

4.5.5 Component Faults
Most faults thrown by components are of the type ComponentFault which does no extension
of the base DeploymentFault. The one exception is the fault thrown due to errors in state
transition operations.

When a lifecycle state transition action is invoked, the system may fail to properly
achieve the next state. As defined by that action, it will generate a StateActionFault to
indicate failure of the action. In addition to the failure, the fault will indicate the
extended state information that would normally be part of a status query directly inline
within the fault. The fault may also include other data as defined by the DeploymentFault.
This fault is defined by the following XML representation.

<cmp:StateActionFault>
 <wsbf:Timestamp>xsd:dateTime</wsbf:Timestamp>
 <wsbf:OriginatorReference>
 wsa:EndpointReferenceType
 </wsbf:OriginatorReference> ?
 <wsbf:ErrorCode dialect="anyURI">xsd:string</wsbf:ErrorCode> ?
 <wsbf:Description>xsd:string</wsbf:Description> *
 <wsbf:FaultCause>wsrf-bf:BaseFault</wsbf:FaultCause> *
 <cmp:ExtendedState>{any}</cmp:ExtendedState>
</cmp:StateActionFault>

4.6 Events
During the course of a deployment, many different lifecycle events will occur.
Components are able to notify and receive notifications for these events, as well as
forward these events to the Deployment API or other registered listeners. The CDL
document can further describe the deployment process by declaring deployment events
and event handlers.

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 28

Any deployment component in the deployment graph is a candidate for generating and
receiving events. If the root of the deployment graph is specified as the recipient, the
system EPR will be notified.

4.6.1 Event Interfaces
The WS-BaseNotification specification defines interfaces for producers and consumers of
events. Components may be both producers and consumers simultaneously. It is
RECOMMENDED that all components implement both the NotificationProducer and
NotificationConsumer interfaces of WS-BaseNotification. An implementer MAY choose
not to support events, but should realize that the developed component will not be able to
be generally used outside of the specific deployment scenario it was created for.

These WS-BaseNotification interfaces require the implementation of the Notify,
Subscribe and GetCurrentMessage operations. Documentation on these operations can
be found in [WS-BF] and its accompanying WSDL.

4.6.2 Event Format
The implementation of the following events MUST be done using the WSDM Event
Format, which extends the WS-BaseNotification specification Additional notification
mechanisms MAY also be used without restriction. The component model requires that a
component MUST create a notification subscription for each event defined. As described
in the Deployment API, there can be no guarantee of fault tolerant event subscriptions.
Implementations of the Component Model MAY choose to include WS-Policy or other
metadata to inform components how to renew subscriptions in the event of failures.

All events used by the Component Model are represented by a WSDM ManagementEvent
[MUWS]. Each event is uniquely defined by an event identifier that defines the type of
the management event and the resource which is the source of the event. The Component
Model event information is added as sub-elements of the WSDM event.

4.6.2.1 Lifecycle Events
The lifecycle event used by the Component Model is an implementation of the WSDM
State Capability event. Within the core MUWS event, the resource identifier and
endpoint address are accompanied by an event identifier and a timestamp of the event.
The event identifier is a URI which uniquely defines the type of event being transmitted,
defined as http://www.gridforum.org/cddlm/components/2005/02/events/Lifecycle.

The Component Model defines the event message to contain a cmp:LifecycleTransition
element as its “message content” defined by MUWS. This provides an indication of the
lifecycle transition which has occurred to the consumer of the event. The message
content MUST also contain a muws-p2-xs:Situation element. The only situation category
supported by this specification is the cmp:LifecycleSituation declaring a change in CDDLM
lifecycle state has occurred.

An example event would appear as in the following XML fragment.

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 29

<muws-p1-xs:ManagementEvent>
 <muws-p1-xs:ReportTime>2005-03-01T01:56:00Z</muws-p1-xs:ReportTime>
 <muws-p1-xs:EventId>http://www.gridforum.org/cddlm/components/2005/02/events/Lifecycle
 </muws-p1-xs:EventId>
 <muws-p1-xs:SourceComponent>
 <muws-p1-xs:ResourceId>xsd:anyURI</muws-p1-xs:ResourceId>
 </muws-p1-xs:SourceComponent>
 <muws-p2-xs:Situation>
 <muws-p2-xs:SituationCategory>
 <cmp:LifecycleSituation/>
 </muws-p2-xs:SituationCategory>
 </muws-p2-xs:Situation>
 <cmp:LifecycleTransition>
 <muws-p2-xs:StateTransition Time=”2005-03-01T01:54:30Z”>
 <muws-p2-xs:EnteredState>
 <cmp:RunningState/>
 </muws-p2-xs:EnteredState>
 <muws-p2-xs:PreviousState>
 <cmp:InitializedState/>
 </muws-p2-xs:PreviousState>
 </muws-p2-xs:StateTransition>
 </cmp:LifecycleTransition>
</muws-p1-xs:ManagementEvent>

Events can be derived from this event type as defined by the WSDM MUWS
specification, which allows both attributes and elements to be added to the main lifecycle
event element. This is done through implementing an event specific instance of the muws-
p2-xs:Situation element and extending its categorization.

In order to register for a Component Model event, a potential subscriber MUST use the
WSDM StateCapability topic. The Component Model does not define any CDDLM
specific topic for lifecycle events. These topics are defined as described in WS-Topics
[WS-T] and WSDM MUWS [MUWS].

4.6.2.2 Property Change Events
When a property of a deployment component changes, it can notify any listeners of the
change. There is no Component Model specific event defined. The property value
change specification provided by WS-ResourceProperties [WS-RP] describes a detailed
notification event to be used in this case to support transmission of the old and new
element values.

4.6.3 Event Registration

Within the CDL document declaring components, event notifications will also be
declared. All event declarations will take the same form. A deployment component will
contain a CDL property that declares which event to register a notification for and the
target of the notification. The component model requires that a deployment component
MUST support the automatic registration of these event handlers at the time of
component instantiation.

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 30

If it is desired to notify more than one component of the occurrence of a specific event,
the property MAY be multiply defined with different target components. All target
components MUST be deployment components or component delegates. They MUST
NOT be language components or deployment components that are children of component
delegates.

In the event of component failures, any restarted components SHOULD ensure that prior
event registrations are restored.

4.6.3.1 OnInitialized
When a component transitions to the initialized state, it can notify one or more
components that this has occurred. The target attribute will be declared using the CDL
reference attribute. This reference is an XPath expression as defined in the CDL
Language specification. This expression can be used to find the endpoint reference of the
target component, using reference resolution as defined in Section 6.

In addition to notification, the component can also execute a state operation on the
remote component. This state operation is indicated by use of one of the process attribute
properties other than the “notify” attribute value. Additionally, this notification can be
cancelled by indicating a value of the property to be false.

<cmp:OnIntialized process=”initialize|run|terminate|destroy|notify”

target=”cdl:ref”>
[true|false|null]
</cmp:OnInitialized>

4.6.3.2 OnRunning
When a component has begun the running state, it can notify one or more components
that this has occurred.

<cmp:OnRunning process=”initialize|run|terminate|destroy|notify”

target=”cdl:ref”>
[true|false|null]
</cmp:OnRunning>

4.6.3.3 OnFailed
When a component has failed, it can notify one or more components that this has
occurred.

<cmp:OnFailed process=” initialize|run|terminate|destroy|notify”

target=”cdl:ref”>
[true|false|null]
</cmp:OnFailed>

4.6.3.4 OnTerminated
When a component has terminated, it can notify one or more components that this has
occurred.

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 31

<cmp:OnTerminated process=” initialize|run|terminate|destroy|notify”

target=”cdl:ref”>
[true|false|null]
</cmp:OnTerminated>

4.6.4 Property Change Notifications
During the lifecycle of a component, it may be necessary to respond to other changes in
the deployment, outside of lifecycle events. The WSRF structure allows consumers to
register for notifications of changes in the properties of a stateful resource. We will
enable this notification to be setup in the CDL document using the following syntax.

<cmp:OnChange property=”xsd:QName” ?

 notify=”cdl:ref”>

This will enable a component to notify an element at the cdl:ref destination of the specific
property change. If the property attribute is not used, then the component will register for
notifications for all properties defined for the component.

4.6.5 Fault Notifications
A component may also wish to be notified that a fault was thrown by another component
or deployment operation. It may subscribe for this notification by using the following
syntax in the CDL Language

<cmp:OnFault notify=”cdl:ref”

faultName=”xsd:QName” ?
faultType=”xsd:QName” ? >

The fault handling can optionally be scoped by including the fault name or the fault type
in the handler’s declaration

4.7 Control Flow
Many deployments follow simple rules, such as deploy these components in order. Or,
deploy these components in any order you see fit. In order use a declarative means of
creating our deployment description and retaining a simple syntax, we will add a few
basic process elements. Basic flow control will allow an implementation to make simple
decisions based on the state of deployment components or attributes. We will choose to
use a very small subset of standard control primitives to aid in this task

The following sections describe the definition and syntax of these introduced constructs.
The syntax borrows heavily from WS-BPEL and other languages for process control. It
is not a complete calculus, nor does it need to be. It is minimally defined with only the
operations necessary for simple control of deployment. For a discussion of complex
deployment scenarios, plus consult Section 5.

When a system is defined, all top level objects are implicit children of a root system node
in the graph, which can be equated to the system EPR. When a flow control element is

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 32

applied, it will be done as a child of a property node or the cdl:system declaration which
will make this a child of the root system object. When applied, a flow control element
will apply to all children of the node applied to.

As an example, if we wish to have several components deployed in order, we can use the
<cmp:sequence> element defined below. As this node is declared at the root of the
cdl:system structure, it will encapsulate the other declared elements within its control
body.

<cdl:cdl

targetNamespace=”http://example.org/webapp-template”>
<cdl:system>
<cmp:sequence lifecycle=”initialization”/>
<WebApplication>
 <cmp:CodeBase>http://server/file.jar</cmp:CodeBase>
 <cmp:CommandPath>ApacheDeployer</cmp:CommandPath>
 <port>80</port>
 <hostname>www.example.org</hostname>
</WebApplication>
<Database>
…
</Database>
<TransactionMonitor>
…
</TransactionMonitor>
</cdl:system>
</cdl:cdl>

All flow control elements depend on lexical order and hierarchy of the declared
cdl:system to apply their control functions. A <cmp:sequence> element as used above uses
the lexical order of the declaration to order the deployment. By default, without the
presence of a flow control element, an implementer of CDDLM is free to apply any
policy to ordering component operations. Once a flow control declaration has been
made, it applies to all nodes in the graph that are peers or children of the element in
which it is declared, effectively setting a scope of policy. That policy can be changed on
more restrictive scopes, such as through redefinition on one of a node’s children, but
cannot be redeclared as a child of the same element. An implementer of CDL SHOULD
ignore any redeclaration. For a comprehensive discussion of deployment scope, please
consult Section 5.1.

4.7.1 Sequence
The sequence operator defines a structure for a deployment operation to be done in
sequential order. As elements are defined in the CDL document, their lexical order will
be used to define this deployment order. A sequential operation MUST be done as a
synchronous, blocking operation. As one element is being initialized, the system MUST
wait for initialization to complete before initialization of the next element.

The sequence operator also allows a value to be defined. This value is either a boolean
value indicating whether to apply the operator or not, or a null value equivalent to a true
definition.

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 33

<cmp:sequence lifecycle=”initialization|execution|termination">
[true|false|null]
</cmp:sequence>

4.7.2 Reverse
The reverse operator defines a structure for a deployment operation to be done in the
reverse of sequential order. This element will synchronously execute the deployment
operation in the reverse of the declared lexical order.

<cmp:reverse lifecycle=”initialization|execution|termination">
[true|false|null]
</cmp:reverse>

4.7.3 Flow
It is often not important what order operations are taken. The flow operator allows the
deployment process to be executed concurrently, irrespective of order of declaration.
Once all of the elements declared within the scope of the flow have completed their
operation, that segment of the operation is considered complete. Thus, the flow operator
does not imply that this operation can be done at any time during the deployment, only
that its elements do not require ordered, synchronized operation.

<cmp:flow lifecycle=”initialization|execution|termination">
[true|false|null]
</cmp:flow>

4.7.4 Wait
Many times it is important to have some portion of a deployment delay while another
continues. The wait operator allows a portion of the deployment process to be paused for
a fixed period of time, or until some absolute time. Within the scope of a sequence, it
will delay all pending elements of the sequence. Within a flow, it will pause the
execution of all elements lexically declared after the wait element.

<cmp:wait lifecycle=”initialization|execution|termination”

(duration=”xsd:duration” | until=”xsd:dateTime”) />

4.7.5 Switch
The switch operator is designed to be used to control branches of execution. The switch
operator allows a choice to be made based on some property of the deployment graph.
The condition element must be a valid XPath calculation on declared properties returning
a boolean value. The switch operation transfers execution of the deployment process to
the node referred in the matching case. It does not allow one component to be executed
instead of another. It is ONLY for changing the flow of execution. All component
objects declared in a CDL document MUST be operational.

<cmp:switch lifecycle=”initialization|execution|termination”>
 <cmp:case condition=”bool-expr”> +
 <cdl:ref ref=”cdl:ref”/>
 </cmp:case>
 <cmp:otherwise>

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 34

 <cdl:ref ref=”cdl:ref”/>
 </cmp:otherwise>
</cmp:switch>

4.8 Component-specific message sets and messages
Any other message can also be processed by the same endpoint. When the extra messages
are to be used between component instances, it is prudent to probe for the class of the
destination endpoint before sending messages, particularly a long set of messages. It is
RECOMMENDED that a component implement the WSDM
ManageabilityCharacteristics capability in order to provide this type of discovery. This
WSDM capability defines the ManagementCapability resource property.
Note that the notion of change is different in an XML based infrastructure than classic
compile-time binding. Changes to existing messages may not be significant from a
backwards compatibility perspective, if the recipient can still provide the semantics that a
caller expects. However, a caller built against a recent version of a component may
encounter problems when calling an older version. For this reason, it is critical to add
new URIs for message sets whenever the WSDL or supported payload of a message
changes in a way that could break systems in such a way.

Components SHOULD NOT change their set of supported interfaces during their life, as
this prevents users of a component relying on the results of this call for any period of
time.

5 Reference Resolution

Many properties in the CDL Language use the cdl:ref attribute to define their target
location. Once a component is deployed, this reference must be translated into an actual
resource identifier. A component reference will translate into a component EPR. A
property reference will translate into its component owner’s EPR and the attribute
resource name under that EPR.

If a component property is set to a CDL reference, that property should be flagged by the
component. Before the property is used, the component MUST retrieve the value of the
property. Currently, the only available means to perform this translation is for a
component to execute the resolve() function of the system EPR as defined in the
Deployment API. Once a component retrieves the EPR of the destination, it can make a
request to that EPR for the resource property of the target endpoint.

Once the property value is retrieved, it MUST be substituted for the reference. The
component also MUST block whatever step it is about to perform and wait for the
reference resolution process. It is RECOMMENDED that a component scan its property
list before taking any deployment action that would require the use of the property. If it
is unknown when the property is used, the component SHOULD retrieve this value when
the component is initialized.

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 35

This process requires that the system EPR is able to handle the scale of potential
resolution requests. Also, each component must have some way to discover the system
EPR. We have not defined these mechanisms here.

6 Using the Component Model

Each component object within a deployment will transition through several states during
its operation. The CDDLM framework must be able to coordinate those transitions as
well as provide an assessment of the system’s state through aggregation of the states of
the individual components that comprise the system. This section of the document
provides comprehensive semantics for defining the state of a deployment, rules for using
the component model, and examples for use.

6.1 Scope
The properties contained in a CDL configuration document typically imply very little
about the form of a deployment, rather they describe the elements to deploy. As
described earlier, by default all components are top level peers of each other. Some of
the syntax elements described in the prior chapter can be used to change this behavior
and create deployment dependencies which will force order to the deployment.

6.1.1 Delegates
If a component is a delegate, then the deployment structure begins to form as a delegate
implies a parent-child relationship among subcomponents. In the diagram below, the
independent components, Components A and B, and the component delegate, Component
C, exist at the top level of the graph. Components D and E in the diagram are children of
Component C.

Figure 7. Deployment Scope.

When a component is declared as a delegate, its children are removed from scope of other
components not declared as children of the delegate. This restricts further dependencies
that are created within the graph to only exist between components in the same relative

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 36

scopes. If Component B in the diagram had a dependency on Component E, it MUST
declare the dependency on Component C and trust that the delegate would enforce the
desired behavior. In this sense, Component C becomes responsible for the aggregate
lifecycles and dependencies of the objects it is a delegate for.

These dependencies includes lifecycle events and notifications, but not properties or
property change notifications. If Component B needed a property value from Component
D, it would not have to ask Component C for that value. But, it is an error for
Component B to register for a lifecycle event on Component D. Further, if a flow control
element were applied to this scenario, such as a sequence, Components A, B, and C
would activate sequentially, but this flow element has no bearing on the process used to
activate Components D and E. Only Component C has authority to activate those
components.

There is no restriction on the depth of delegation allowed in this model. If a component
is declared to be a child of a component delegate, it may also be a delegate itself, further
responsible for its own children. Each level of delegation provides a more restrictive
scope in which to apply the rules of deployment. Implicitly, if Component E in the above
diagram were to have its own children F and G, Component D would not be allowed to
imply any dependencies upon F or G, only through D itself.

The lifecycle of component delegates and their children are shared such that they appear
to be identical to other components and the system. Whenever a delegate is created, its
children MUST be created at the same time, in the order of definition within the CDL
document. The delegate will not complete the creation action until all of its children have
done so. This same rule applies to initialization and execution of the delegate. However,
when the delegate fails or is terminated, its children MAY be acted upon asynchronously,
allowing the delegate to notify failure or termination right away. The delegate SHOULD,
though, propagate the failure or termination as with creation, in the lexical order of
definition.

6.1.2 Document Structure
When the CDL document is created, the property lists may declare components all at one
level as children of the cdl:system element, or may have some other lexical hierarchy. In
the first case, the deployment graph would look like a simple list ‘(A B C D E), where the
second would appear to be a tree or nested list ‘(A ‘(‘(B C) D) E). In the strict syntax of
CDL, property lists are trees and would require intermediate nodes to represent as this
nested list, this syntax is used solely to show scope in a condensed fashion.

When flow control elements are added to the document, this hierarchy becomes
important. In the first example, if a sequence element were declared as a child of the
system element, the deployment would proceed as A->B->C->D->E. If the sequence
element were declared as a child of one of the other elements, the deployment would
happen at random, as the default behavior of the system is to deploy children of the
system element as if a flow element were present.

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 37

This is due to the scope of application of the flow control element. When a flow control
element is used, it applies to the children of the element it is declared upon. In the second
example, if a sequence element were declared as a child of element A, then both the
sequences A->B->C->D->E and E->A->B->C->D would be valid.

By applying flow control elements further into the tree, successively more restrictive
scopes can be created. It is possible to redeclare a flow control element on a child
element of a node where one was already declared. In the second example, declaring a
flow element as a child of element A instead of a sequence element will not change the
random order policy effected by the cdl:system node, but will instead mark a scope of
flow control that may be used by other elements. This declaration would also ensure that
if this element were imported into another CDL configuration document, it would enforce
its desired behavior, rather than be at the whim of the declaration in the new document.

6.1.3 Flow Control Example
To understand the application of flow control and scope, we will look at an example
deployment descriptor. In this example, a system is being deployed which contains an
instance of the MySQL database, Apache Tomcat, and a web application JPetstore that
requires a language configuration script to be run within the database in order to
configure the application. In this example, the <cmp:sequence> element ensures that the
four components are deployed and initialized in the declared order.

<cdl:system>
 <cmp:sequence lifecycle="initialization"/>
 <mysql/>
 <confLanguage/>
 <tomcat/>
 <jpetstore/>
</cdl:system>

When the deployment is terminated, there is no order specified for this portion of the
lifecycle. If it is desired to terminate in the reverse order of the deployment, we can
simply add a <cmp:reverse> element to the system definition. But, if we want to destroy
confLanguage before mysql and jpetstore before tomcat, more precise control is needed
over the order of the termination sequence. Instead, a deployment event can be used to
enforce the desired order. An event such as <cmp:OnTerminated> allows definition of the
exact sequences or simplify notify other components of events.

<cdl:system>
 <cmp:sequence lifecycle="initialization"/>
 <mysql/>
 <confLanguage>
 <cmp:OnTerminated process="terminate" target="/mysql"/>
 </confLanguage>
 <tomcat/>
 <jpetstore>
 <cmp:OnTerminated process="terminate" target="/tomcat"/>
 </jpetstore>
</cdl:system>

This CDL indicates that the initialization should occur sequentially, but the termination
has dependencies. confLanguage and jpetstore can be terminated in whatever order, but

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 38

the system should wait for confLanguage to notify the mysql component when it has
successfully terminated, and wait for jpetstore to notify tomcat. If either jpetstore or
confLanguage fail to terminate, the CDDLM system should take action to resolve the
failure.

6.2 Synchronization
Most operations of a deployment are done asynchronously. However, several of the
properties contained in a CDL configuration document imply the need for synchronicity
or wait states. Due to this, the basic hierarchy defined in the document can be modified
further to reflect the order required by synchronization.

6.2.1 Events
Using events, one can declare that once Component A is running, it should instruct
Component B to begin running. This can allow a deployment to be ordered and walked
through its transitions in a simple and declarative manner. One could also instruct
Component B that in the event it fails, it should notify Component A of this state
transition. Then Component A could invoke some behavior such as a restart of
Component B, or termination of itself and/or Component B.

Using this approach, we can create a deployment graph that is not singly linked, such as
in a parent-child relationship like delegation. Each deployment action and event can
independently link one component to one or more dependent components. If we were to
expand the diagram from above to include this event example, it would appear as follows.
This diagram is simple, but shows that the evolving graph has a chance to exhibit cyclic
behaviors.

Figure 8. Deployment Event Structure.

The notification event is defined to be performed asynchronously, with no expectation
from Component B that Component A will take any specific action. However, it is

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 39

known, a priori, that once Component A is running, it will inform Component B to run.
An implementation of the component model MUST enforce this behavior. This requires
that Component B waits for Component A to enter the running state and that no other
deployment process tells Component B to execute.

As an example, if Components A, B and C were to be declared as children of a flow
element, they would by default initialize concurrently. If Component B were declared to
initialize Component C after it has initialized, then Components A and B would be
initialized concurrently, but Component C would only be initialized after B has initiated
the action.

Applying a sequence control flow element is functionally equivalent to declaring an event
handler chain among the processes involved in the sequence. It is not required in an
implementation of the component model to realize this structure in that fashion.
However, one must recognize that if a sequence operation is declared and a CDL
declaration inserts a notification within the sequence, the sequence will still continue in
its own manner. If the consumer of the event causes other parts of the graph to change
state, the implementer must recognize that state change events may not fire on those
portions of the graph at the expected interval. Thus, the implementation of the sequence
should be made resilient to this case.

6.2.2 Synchronization Points
It is often not important what order operations are taken. The flow operator allows the
deployment process to be executed independent of its lexical declaration. A flow
operator, as all other flow control elements, implies a synchronization point at the end of
its scope. If a node has children that are declared with the flow operator, the node will
still synchronize to its peers if necessary even if its children are executing concurrently.
Thus, the completion of a deployment command is a guarantee of synchronization.

As an example, a CDL document may declare a deployment as follows (note that most of
the declaration has been omitted for simplicity):

<cdl:cdl

targetNamespace=”http://example.org/sync-template”>
<cdl:system>
<cmp:sequence lifecycle=”initialization”/>
<ComponentA/>
<ComponentB>
 <cmp:flow lifecycle=”initialization”/>
 <ComponentD/>
 <ComponentE/>
</ComponentB>
<ComponentC/>
</cdl:system>
</cdl:cdl>

In this case, the sequence operator defines that all children of the cdl:system node should
be executed in order. This operator is overridden by the flow operator applied to
Component B. This creates a scope encompassing Components’ B, D and E. It implies

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 40

that Component A must initialize before B before C. Components B, D and E can be
initialized in any order, but only after Component A has completed its initialization.
Finally, Component C can only initialize after Components B, D and E.

If instead, the subscope of Component B were modified with a sequence operator,
Component B would not be considered initialized until after Component E had completed
its initialization. This defines a synchronization point at the scope of the flow control
operator rather than at the component itself. Similarly, the switch and wait operators
create synchronization points at the node which they are declared.

6.2.3 Events and Synchronization Points
It is important to recognize that deployment events and the defined control flow
primitives together could potentially cause indeterminate or “spaghetti” control
directives. Control flow primitives as discussed above define a scope with an implicit
synchronization point. If a deployment event is declared between elements that cross
these scopes, it MUST NOT alter the order implied by the target scope. Within a scope, a
deployment event defines or redefines ordering as described earlier.

As an example, a CDL document may declare a deployment as follows:

<cdl:cdl

targetNamespace=”http://example.org/event-template”>
<cdl:system>
<cmp:flow lifecycle=”initialization”/>
<ComponentA/>
<ComponentB>
 <cmp:sequence lifecycle=”initialization”/>
 <ComponentD/>
 <ComponentE/>
</ComponentB>
<ComponentC>
 <OnInitialized process=”initialize” target=”/ComponentB/ComponentE”/>
</ComponentC>
</cdl:system>
</cdl:cdl>

In this case, the basic deployment is unordered. However, when Component C has
initialized, it must initialize Component E. Component B’s declaration specifies that
Component D and Component E must be initialized in order. Thus, to ensure the proper
ordering, and not violate scope, Component C must notify Component B to initialize,
which will then initialize Components D and E. This creates an ordering to the root flow
operator such that Component A and Component C can be initialized in any order, but
Component B must be initialized after Component C.

6.3 Aggregate System State
Though the aggregate state of the deployment components is reflected in the system state,
each component within the system is NOT REQUIRED to exist within the same state.
Deployments may be constantly in flux, with components failing during the operations of
the system. The system MAY respond to the failure(s) without affecting the state of the

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 41

whole, but the following recommendations should be followed. If all components are in
a particular state, the system MUST report its state similarly. If the system is
transitioning to a state, such as from instantiated to initialized, the system SHOULD
report its state as the prior state, instantiated, until all components have reached the new
state, initialized.

The system MUST also invoke actions in a coordinated fashion for all components. If
two components are defined in a system then both must be initialized before they are run
and so on. If the objects fail to transition to the same states, then the framework
SHOULD coordinate their termination. Thus, if an object fails to initialize, the system
SHOULD report its state as failed as well. The CDDLM framework MAY, however,
choose to reset and resume deployment for the failed portion of the task, or fail the entire
deployment phase. It is important to note that the specific state of the system can only be
determined by querying the system EPR. Any use of component states by entities outside
of the CDDLM framework or the system EPR is undefined.

If deployment event notifications are declared such as OnFailed events, the framework
MAY wait to observe the results of the event propagation. If the events are declared in
the CDL document as process steps rather than as events, such as <OnFailed
process=”terminate”>, the framework SHOULD wait for the actions to propagate.

CDDLM also enables component delegates to aggregate the lifecycle of other
components. Using this aggregation, the main component represents a single instance of
lifecycle state to the system, the sub components being opaque to the system in this
regard. A component delegate MAY manage transitions of its children in any way it sees
fit. For example, a delegate could choose to automatically restart a failed child node, but
not need to indicate the failure to the system. The delegate itself, though, MUST follow
the semantics of a deployment component itself with respect to the rest of the system. In
this way, a delegate can be used to encode complex rules or interdependencies between
components but still enforce the basic semantics of the component model.

6.4 Controlling Deployments
With effective use of just events and delegation, many complex deployment scenarios
could be accommodated. However, the goal of the component model is to enable loosely
coupled, scalable patterns for deployment. Events are an important tool for deployment,
but may lead to significant extra effort to manage and maintain. For example, if we
wanted to deploy our example system by deploying some components A then B then C,
we would need to declare two events. That is, one less than the number of components to
deploy. If we had a deployment with hundreds of components, the event system would
be unwieldy at best.

Using delegation, one could create a complete structure for a deployment. However, in a
large deployment, this will tightly couple components’ behavior. Further, much of the
rules describing how to react to deployment events will be lost within the components
themselves. By creating a chain of parents and children, there is a potential for the
relationships to restrict the form of the deployment and cause unwanted side effects. It is

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 42

recommended to use delegation sparingly. There are many cases, though, in which the
delegation model will help with deployment.

6.4.1 Event Handlers
In order to handle more complex deployment scenarios, components can be defined
whose sole purpose is to handle events. This allows a component to take responsibility
for handling an event and determining itself how to respond to state transitions. These
components should either be defined outside of the scope of a deployment process flow,
or have simple internal state transitions of its own. These globally scoped event handlers
can then be used as utilities to handle more complex operations such as restart on failure,
or immediate termination on failure.

As an example, a component may define a notification to be sent to another component in
the event that it fails. This component will remain in the failed state until the event
handler chooses its course of action. The event handler MAY choose to perform an
internal action to reset or fix the resource, in which case the component MUST transition
back to the state it was in prior to failing. Otherwise, the event handler should perform
its actions and forward the event to the system.

7 Security Considerations

For security, the CDDLM Component Model relies on the security provided by the CDL
specification for securing the description of a deployment. Web Services security
mechanisms, including transport-level security and SOAP Message Security are
presumed to be used in order to secure the connections between components and EPRs.

The components themselves are responsible for performing actions within a trusted host.
It is important that proper trust is established between host nodes in the deployment.
Operations may require elevated permissions in order to perform. The component nodes
MUST ensure that those rights cannot be usurped or delegated. The maintenance action
task listed is most susceptible to security issues, as it may be possible to use this
command to run arbitrary programs on remote nodes.

8 Editor Information
Stuart Schaefer
Softricity, Inc.
27 Melcher Street
Boston, MA 02210
Email: sschaefer@softricity.com

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 43

9 Acknowledgements
The authors of this document would like to acknowledge the contributions, assistance and
support of the following people and their respective companies: Dejan Milojicic, Steve
Loughran, Jun Tatemura, Takashi Kojo, Peter Toft, Patrick Goldsack, Julio Guijarro,
Vanish Talwar, Sandro Rafaeli, and Bryan Murray.

10 Intellectual Property Statement

The GGF takes no position regarding the validity or scope of any intellectual property or
other rights that might be claimed to pertain to the implementation or use of the
technology described in this document or the extent to which any license under such
rights might or might not be available; neither does it represent that it has made any effort
to identify any such rights. Copies of claims of rights made available for publication and
any assurances of licenses to be made available, or the result of an attempt made to obtain
a general license or permission for the use of such proprietary rights by implementers or
users of this specification can be obtained from the GGF Secretariat.

The GGF invites any interested party to bring to its attention any copyrights, patents or
patent applications, or other proprietary rights which may cover technology that may be
required to practice this recommendation. Please address the information to the GGF
Executive Director.

11 Disclaimer

This document and the information contained herein is provided on an “As Is” basis and
the GGF disclaims all warranties, express or implied, including but not limited to any
warranty that the use of the information herein will not infringe any rights or any implied
warranties of merchantability or fitness for a particular purpose.

12 Full Copyright Notice

Copyright (C) Global Grid Forum (2006). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its implementation
may be prepared, copied, published and distributed, in whole or in part, without
restriction of any kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or references to the
GGF or other organizations, except as needed for the purpose of developing Grid
Recommendations in which case the procedures for copyrights defined in the GGF

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 44

Document process must be followed, or as required to translate it into languages other
than English.

The limited permissions granted above are perpetual and will not be revoked by the GGF
or its successors or assignees.

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 45

References
[RFC2119] Bradner, S. Key words for use in RFCs to Indicate Requirement Levels.

IETF RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt?number=2119.
[Loughran02] Loughran, S. Making Web Services that Work. HP Laboratories,

TR-HPL-2002-274, 2002. http://www.hpl.hp.com/techreports/2002/HPL-2002-
274.html.

[Loughran04]Loughran, S. WS-RF and CDDLM . CDDLM Working Group document,
2004. https://forge.gridforum.org/projects/cddlm-wg/document/WS-
RF_and_CDDLM/en/1.

[CDDLM] Milojicic, D., et al. Configuration, Description, Deployment and Lifecycle
Management (CDDLM) Foundation. http://forge.gridforum.org/projects/cddlm-
wg/document/CDDLM_Foundation_Document/en/1.

[XML-CDL] Tatemura, J. XML Configuration Description Language Specification.
CDDLM Working Group Draft, 2004. http://forge.gridforum.org/.

[CDDLM-API] Loughran, S. Deployment API Draft. CDDLM Working Group Draft,
2004. http://forge.gridforum.org/.

[WS-A] Box, D., et al. Web Services Addressing. W3C Member Submission, August
2004. http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/

[WS-RP] Graham, S. et al. Web Services Resource Properties 1.2. OASIS Working
Draft, March 2005. http://docs.oasis-open.org/wsrf/2005/03/wsrf-WS-
ResourceProperties-1.2-draft-06.pdf

[WS-N] Graham, S. et al. Web Services Base Notification 1.2. OASIS Working Draft,
June 2004. http://docs.oasis-open.org/wsn/2004/06/wsn-WS-BaseNotification-
1.2-draft-03.pdf.

[WS-BF] Tuecke, S. et al. Web Services Base Faults. OASIS Working Draft, March
2005. http://docs.oasis-open.org/wsrf/2005/03/wsrf-WS-BaseFaults-1.2-draft-
04.pdf.

[WS-T] Vambenepe, W. Web Services Topics 1.2. OASIS Working Draft, July 2004.
http://docs.oasis-open.org/wsn/2004/06/wsn-WS-Topics-1.2-draft-01.pdf.

[MUWS] Vambenepe, W. Web Services Distributed Management: Management Using
Web Services (MUWS 1.0) Part 1. OASIS Committee Draft, December 2004.
http://docs.oasis-open.org/wsdm/2004/12/cd-wsdm-muws-part1-1.0.pdf.
Vambenepe, W. Web Services Distributed Management: Management Using
Web Services (MUWS 1.0) Part 2. OASIS Committee Draft, December 2004.
http://docs.oasis-open.org/wsdm/2004/12/cd-wsdm-muws-part2-1.0.pdf.

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 46

Appendix A – Component Object Definitions

A.1 XML Schema

<?xml version="1.0" encoding="utf-8"?>
<xsd:schema xmlns="http://www.gridforum.org/cddlm/components/2005/02"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:s12="http://www.w3.org/2003/05/soap-envelope"
xmlns:cdl="http://www.gridforum.org/2004/12/CDDLM/XML-CDL/1.0"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/policy"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing" xmlns:wsbf="http://docs.oasis-
open.org/wsrf/2004/06/wsrf-WS-BaseFaults-1.2-draft-01.xsd" xmlns:wsrp="http://docs.oasis-
open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.xsd" xmlns:wsrl="http://docs.oasis-
open.org/wsrf/2004/06/wsrf-WS-ResourceLifetime-1.2-draft-01.xsd" xmlns:wsnt="http://docs.oasis-
open.org/wsn/2004/06/wsn-WS-BaseNotification-1.2-draft-01.xsd" xmlns:wstop="http://docs.oasis-
open.org/wsn/2004/06/wsn-WS-Topics-1.2-draft-01.xsd" xmlns:muws-p1-xs="http://docs.oasis-
open.org/wsdm/2004/12/muws/wsdm-muws-part1.xsd" xmlns:muws-p2-xs="http://docs.oasis-
open.org/wsdm/2004/12/muws/wsdm-muws-part2.xsd"
targetNamespace="http://www.gridforum.org/cddlm/components/2005/02" elementFormDefault="qualified"
id="components">
 <!-- === -->
 <xsd:annotation>
 <xsd:documentation>

 This is the XSD describing the types of the CDDLM Component Model

 Version: 1.0

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
 NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 RFC 2119.
 http://www.ietf.org/rfc/rfc2119.txt

 </xsd:documentation>
 </xsd:annotation>
 <!-- === -->
 <!-- BASE TYPES -->
 <!-- === -->
 <xsd:complexType name="unboundedXMLOtherNamespace">
 <xsd:sequence>
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- low level type: XML with no validations, namespace = ##any -->
 <xsd:complexType name="unboundedXMLAnyNamespace">
 <xsd:sequence>
 <xsd:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- low level type: XML with no validations, namespace = ##any -->
 <xsd:complexType name="unboundedXMLAnyNamespaceWhitespacePreserved">
 <xsd:sequence>
 <xsd:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"
xml:space="preserve"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:simpleType name="void">

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 47

 <xsd:restriction base="xsd:string">
 <xsd:length value="0"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="booleanOrNull">
 <xsd:union memberTypes="xsd:boolean void" />
 </xsd:simpleType>
 <!-- === -->
 <!-- list of [string] -->
 <!-- === -->
 <xsd:complexType name="stringListType">
 <xsd:annotation>
 <xsd:documentation>
 This is a type representing a list of strings
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="item" type="xsd:string" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- === -->
 <!-- STATE MODEL -->
 <!-- === -->
 <xsd:complexType name="lifecycleStateType">
 <xsd:complexContent>
 <xsd:extension base="muws-p2-xs:StateType"/>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="UndefinedState">
 <xsd:annotation>
 <xsd:documentation>Undefined state.</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:restriction base="lifecycleStateType"/>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="InstantiatedState">
 <xsd:annotation>
 <xsd:documentation>State representing the presence of a component instance.</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:restriction base="lifecycleStateType"/>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="InitializedState">
 <xsd:annotation>
 <xsd:documentation>State in which a component has been properly initialized.</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:restriction base="lifecycleStateType"/>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="RunningState">
 <xsd:annotation>
 <xsd:documentation>Operational state.</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:complexContent>

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 48

 <xsd:restriction base="lifecycleStateType"/>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="FailedState">
 <xsd:annotation>
 <xsd:documentation>State in which the component has failed either a lifecycle operation or its operation has
failed.</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:restriction base="lifecycleStateType"/>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="TerminatedState">
 <xsd:annotation>
 <xsd:documentation>State in which a component instance has been terminated.</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:complexContent>
 <xsd:restriction base="lifecycleStateType"/>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="LifecycleTransition" type="muws-p2-xs:StateTransitionType">
 <xsd:annotation>
 <xsd:documentation>A representation of the state transition that has occured.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <!-- === -->
 <!--PROPERTIES -->
 <!-- === -->
 <xsd:simpleType name="lifecycleProcessEnum">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="initialization">
 <xsd:annotation>
 <xsd:documentation>Apply the process during the intialization phase of the
deployment.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="execution">
 <xsd:annotation>
 <xsd:documentation>Apply the process during the transition to the execution phase.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="termination">
 <xsd:annotation>
 <xsd:documentation>Apply the process during the termination phase of the
deployment.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="eventProcessEnum">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="intialize">
 <xsd:annotation>
 <xsd:documentation>Execute the intialization operation.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="run">
 <xsd:annotation>
 <xsd:documentation>Execute the run operation.</xsd:documentation>

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 49

 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="terminate">
 <xsd:annotation>
 <xsd:documentation>Execute the terminate operation.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="destroy">
 <xsd:annotation>
 <xsd:documentation>Destroy the remote component.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 <xsd:enumeration value="notify">
 <xsd:annotation>
 <xsd:documentation>Notify the remote component.</xsd:documentation>
 </xsd:annotation>
 </xsd:enumeration>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="terminationRecordType">
 <xsd:annotation>
 <xsd:documentation>
 Termination Record
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="timestamp" type="xsd:dateTime"/>
 <xsd:element name="message" type="xsd:string" minOccurs="0"/>
 <xsd:element name="extraData">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="commandPathType" mixed="true">
 <xsd:annotation>
 <xsd:documentation>A command path can contain a command and a list arguments.</xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="path" type="xsd:string"/>
 <xsd:element name="args" type="xsd:anyType" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="componentStatusType">
 <xsd:annotation>
 <xsd:documentation>This is the status of a deployed component.</xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="State" type="lifecycleStateType"/>
 <xsd:element ref="LifecycleTransition"/>
 <xsd:element name="ExtendedState" type="unboundedXMLAnyNamespace" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- === -->
 <!--COMPONENT ELEMENTS -->
 <!-- === -->
 <xsd:element name="ComponentReference" type="wsa:EndpointReferenceType">
 <xsd:annotation>
 <xsd:documentation>Every component will be accessible via its WS-RF EPR.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 50

 <xsd:element name="CodeBase" type="xsd:anyURI">
 <xsd:annotation>
 <xsd:documentation>Location of the component file assets.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="CommandPath" type="commandPathType">
 <xsd:annotation>
 <xsd:documentation>The location or object within the assets of the component to use in activating the
component.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="Delegate" type="booleanOrNull">
 <xsd:annotation>
 <xsd:documentation>A component which controls other components.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="ComponentStatus" type="componentStatusType"/>
 <xsd:element name="ComponentName" type="cdl:pathType"/>
 <xsd:element name="ComponentDescription" type="unboundedXMLAnyNamespace"/>
 <xsd:element name="ComponentProperties">
 <xsd:annotation>
 <xsd:documentation>The WSRF Resource Property document fragment of a component.</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="muws-p1-xs:ResourceId"/>
 <xsd:element ref="muws-p1-xs:ManageabilityCapability"/>
 <xsd:element ref="ComponentName"/>
 <xsd:element ref="ComponentDescription"/>
 <xsd:element ref="ComponentStatus"/>
 <xsd:element ref="wsnt:Topic" maxOccurs="unbounded"/>
 <xsd:element ref="wsnt:FixedTopicSet"/>
 <xsd:element ref="wsnt:TopicExpressionDialects" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <!-- === -->
 <!-- DEPLOYMENT OPERATORS -->
 <!-- === -->
 <xsd:complexType name="flowControlType">
 <xsd:simpleContent>
 <xsd:extension base="booleanOrNull">
 <xsd:attribute name="lifecycle" type="lifecycleProcessEnum" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <xsd:element name="sequence" type="flowControlType">
 <xsd:annotation>
 <xsd:documentation>A sequential deployment operator.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="reverse" type="flowControlType">
 <xsd:annotation>
 <xsd:documentation>A reverse sequential deployment operator.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="flow" type="flowControlType">
 <xsd:annotation>
 <xsd:documentation>A deployment operator for creating concurrent deployment
processes.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="wait">
 <xsd:annotation>

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 51

 <xsd:documentation>A deployment operator for blocking a deployment process for a period of
time.</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="duration" type="xsd:duration"/>
 <xsd:attribute name="until" type="xsd:dateTime"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="switch">
 <xsd:annotation>
 <xsd:documentation>A deployment operator for branching deployment processes.</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="case" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="otherwise"/>
 </xsd:sequence>
 <xsd:attribute name="lifecycle" type="lifecycleProcessEnum" use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="case">
 <xsd:annotation>
 <xsd:documentation>A branch of a deployment process.</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:all>
 <xsd:element ref="cdl:ref"/>
 </xsd:all>
 <xsd:attribute name="condition" type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="otherwise">
 <xsd:annotation>
 <xsd:documentation>A default branch of a deployment process.</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:all>
 <xsd:element ref="cdl:ref"/>
 </xsd:all>
 </xsd:complexType>
 </xsd:element>
 <!-- === -->
 <!-- DEPLOYMENT EVENTS -->
 <!-- === -->
 <xsd:complexType name="eventRegistrationType">
 <xsd:simpleContent>
 <xsd:extension base="booleanOrNull">
 <xsd:attribute name="process" type="eventProcessEnum" use="required"/>
 <xsd:attribute name="target" type="cdl:pathType" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <xsd:element name="OnInitialized" type="eventRegistrationType">
 <xsd:annotation>
 <xsd:documentation>Notify a component that the source has achieved the initialized
state.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="OnRunning" type="eventRegistrationType">
 <xsd:annotation>
 <xsd:documentation>Notify a component that the source has achieved the running
state.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 52

 <xsd:element name="OnFailed" type="eventRegistrationType">
 <xsd:annotation>
 <xsd:documentation>Notify a component that the source has entered the failed state.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="OnTerminated" type="eventRegistrationType">
 <xsd:annotation>
 <xsd:documentation>Notify a component that the source has entered the terminated
state.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="OnChange">
 <xsd:annotation>
 <xsd:documentation>Notify a component that a property of the source has changed.</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="property" type="xsd:QName" use="optional"/>
 <xsd:attribute name="notify" type="cdl:pathType" use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="OnFault">
 <xsd:annotation>
 <xsd:documentation>Subscribe to a component to be notified of the occurence of a named
fault.</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="notify" type="cdl:pathType" use="required"/>
 <xsd:attribute name="faultName" type="xsd:QName" use="optional"/>
 <xsd:attribute name="faultType" type="xsd:QName" use="optional"/>
 </xsd:complexType>
 </xsd:element>
 <!-- === -->
 <!-- OPERATION MESSAGES -->
 <!-- === -->
 <xsd:element name="initializeRequest" type="void">
 <xsd:annotation>
 <xsd:documentation>Request to move a component to the initialized state. Valid only if the component is in
the instantiated state.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="initializeResponse" type="void"/>
 <xsd:element name="runRequest" type="void">
 <xsd:annotation>
 <xsd:documentation>Request to move a component to the running state. Valid only if the component is in the
initialized state, or it is already running.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="runResponse" type="void"/>
 <xsd:element name="terminateRequest" type="void">
 <xsd:annotation>
 <xsd:documentation>Request to move a component to the terminated state. Valid only if the component is in a
state from which it can enter the terminate state, or it has already terminated.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="terminateResponse" type="void"/>
 <xsd:element name="taskActionRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="taskName" type="xsd:string"/>
 <xsd:element name="taskContents" type="unboundedXMLAnyNamespace" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="taskActionResponse">

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 53

 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="taskName" type="xsd:string"/>
 <xsd:element name="taskStatusCode" type="xsd:integer" minOccurs="0"/>
 <xsd:element name="taskOutput" type="unboundedXMLAnyNamespace" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <!-- === -->
 <!-- FAULTS -->
 <!-- === -->
 <xsd:complexType name="DeploymentFaultType">
 <xsd:annotation>
 <xsd:documentation>Base fault for all CDDLM faults</xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="wsbf:BaseFaultType">
 <xsd:sequence>
 <xsd:element name="Host" type="xsd:string" minOccurs="0"/>
 <xsd:element name="Process" type="xsd:string" minOccurs="0"/>
 <xsd:element name="ComponentName" type="cdl:pathType" minOccurs="0"/>
 <xsd:element name="Stack" type="stringListType" minOccurs="0"/>
 <xsd:element name="ExtraData" type="unboundedXMLAnyNamespace" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="ComponentFault" type="DeploymentFaultType"/>
 <xsd:complexType name="StateActionFaultType">
 <xsd:annotation>
 <xsd:documentation>Fault to indicate a state transition action has failed.</xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="DeploymentFaultType">
 <xsd:sequence>
 <xsd:element name="ExtendedState" type="unboundedXMLAnyNamespace" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="StateActionFault" type="StateActionFaultType"/>
 <!-- Wrapped SOAP Fault -->
 <xsd:complexType name="WrappedSOAPFaultType">
 <xsd:annotation>
 <xsd:documentation>SOAP Fault Fault</xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="DeploymentFaultType">
 <xsd:sequence>
 <xsd:element name="SoapFault" type="s12:Fault"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="WrappedSOAPFault" type="WrappedSOAPFaultType"/>
</xsd:schema>

A.2 WSDL 1.1

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions xmlns:cmpw="http://www.gridforum.org/cddlm/components/2005/02/wsdl"
:wsdl="http://schemas.xmlsoap.org/wsdl/" :soap="http://schemas.xmlsoap.org/wsdl/soap/"
:soapenc="http://schemas.xmlsoap.org/soap/encoding/" :xsd="http://www.w3.org/2001/XMLSchema"

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 54

:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing" :wsbf="http://docs.oasis-
open.org/wsrf/2004/06/wsrf-WS-BaseFaults-1.2-draft-01.xsd" :wsrp="http://docs.oasis-
open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.xsd" xmlns:wsrpw="http://docs.oasis-
open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-01.wsdl":wsrl="http://docs.oasis-
open.org/wsrf/2004/06/wsrf-WS-ResourceLifetime-1.2-draft-01.xsd" xmlns:wsrlw="http://docs.oasis-
open.org/wsrf/2004/06/wsrf-WS-ResourceLifetime-1.2-draft-01.wsdl":wsnt="http://docs.oasis-
open.org/wsn/2004/06/wsn-WS-BaseNotification-1.2-draft-01.xsd" xmlns:wsntw="http://docs.oasis-
open.org/wsn/2004/06/wsn-WS-BaseNotification-1.2-draft-01.wsdl":muws-p1-xs="http://docs.oasis-
open.org/wsdm/2004/12/muws/wsdm-muws-part1.xsd"
targetNamespace="http://www.gridforum.org/cddlm/components/2005/02/wsdl">
 <!-- === -->
 <wsdl:documentation>

 This is the WSDL Describing the Component Model API for CDDLM
 deployment components.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
 NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 RFC 2119.
 http://www.ietf.org/rfc/rfc2119.txt

 </wsdl:documentation>
 <!-- === -->
 <!-- COMPONENT MESSAGES -->
 <!-- === -->
 <wsdl:message name="initializeRequest">
 <wsdl:part name="initializeRequest" element="cmp:initializeRequest"/>
 </wsdl:message>
 <wsdl:message name="initializeResponse">
 <wsdl:part name="initializeResponse" element="cmp:initializeResponse"/>
 </wsdl:message>
 <wsdl:message name="runRequest">
 <wsdl:part name="runRequest" element="cmp:runRequest"/>
 </wsdl:message>
 <wsdl:message name="runResponse">
 <wsdl:part name="runResponse" element="cmp:runResponse"/>
 </wsdl:message>
 <wsdl:message name="terminateRequest">
 <wsdl:part name="terminateRequest" element="cmp:terminateRequest"/>
 </wsdl:message>
 <wsdl:message name="terminateResponse">
 <wsdl:part name="terminateResponse" element="cmp:terminateResponse"/>
 </wsdl:message>
 <wsdl:message name="taskActionRequest">
 <wsdl:part name="taskActionRequest" element="cmp:taskActionRequest"/>
 </wsdl:message>
 <wsdl:message name="taskActionResponse">
 <wsdl:part name="taskActionRequest" element="cmp:taskActionRequest"/>
 </wsdl:message>
 <wsdl:message name="StateActionFault">
 <wsdl:part name="fault" element="cmp:StateActionFault"/>
 </wsdl:message>
 <!-- === -->
 <!-- COMPONENT ENDPOINT -->
 <!-- === -->
 <wsdl:portType name="ComponentEndpoint" wsrp:ResourceProperties="cmp:ComponentProperties">
 <!-- =========== WSRF Property Messages ============== -->
 <wsdl:operation name="GetResourceProperty">
 <wsdl:input name="GetResourcePropertyRequest" message="wsrpw:GetResourcePropertyRequest"/>
 <wsdl:output name="GetResourcePropertyResponse" message="wsrpw:GetResourcePropertyResponse"/>
 <wsdl:fault name="ResourceUnknownFault" message="wsrpw:ResourceUnknownFault"/>
 <wsdl:fault name="InvalidResourcePropertyQNameFault"
message="wsrpw:InvalidResourcePropertyQNameFault"/>

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 55

 </wsdl:operation>
 <wsdl:operation name="GetMultipleResourceProperties">
 <wsdl:input name="GetMultipleResourcePropertiesRequest"
message="wsrpw:GetMultipleResourcePropertiesRequest"/>
 <wsdl:output name="GetMultipleResourcePropertiesResponse"
message="wsrpw:GetMultipleResourcePropertiesResponse"/>
 <wsdl:fault name="ResourceUnknownFault" message="wsrpw:ResourceUnknownFault"/>
 <wsdl:fault name="InvalidResourcePropertyQNameFault"
message="wsrpw:InvalidResourcePropertyQNameFault"/>
 </wsdl:operation>
 <wsdl:operation name="SetResourceProperties">
 <wsdl:input name="SetResourcePropertiesRequest" message="wsrpw:SetResourcePropertiesRequest"/>
 <wsdl:output name="SetResourcePropertiesResponse" message="wsrpw:SetResourcePropertiesResponse"/>
 <wsdl:fault name="ResourceUnknownFault" message="wsrpw:ResourceUnknownFault"/>
 <wsdl:fault name="InvalidSetResourcePropertiesRequestContentFault"
message="wsrpw:InvalidSetResourcePropertiesRequestContentFault"/>
 <wsdl:fault name="UnableToModifyResourcePropertyFault"
message="wsrpw:UnableToModifyResourcePropertyFault"/>
 <wsdl:fault name="InvalidResourcePropertyQNameFault"
message="wsrpw:InvalidResourcePropertyQNameFault"/>
 <wsdl:fault name="SetResourcePropertyRequestFailedFault"
message="wsrpw:SetResourcePropertyRequestFailedFault"/>
 </wsdl:operation>
 <wsdl:operation name="QueryResourceProperties">
 <wsdl:input name="QueryResourcePropertiesRequest"
message="wsrpw:QueryResourcePropertiesRequest"/>
 <wsdl:output name="QueryResourcePropertiesResponse"
message="wsrpw:QueryResourcePropertiesResponse"/>
 <wsdl:fault name="ResourceUnknownFault" message="wsrpw:ResourceUnknownFault"/>
 <wsdl:fault name="InvalidResourcePropertyQNameFault"
message="wsrpw:InvalidResourcePropertyQNameFault"/>
 <wsdl:fault name="UnknownQueryExpressionDialectFault"
message="wsrpw:UnknownQueryExpressionDialectFault"/>
 <wsdl:fault name="InvalidQueryExpressionFault" message="wsrpw:InvalidQueryExpressionFault"/>
 <wsdl:fault name="QueryEvaluationErrorFault" message="wsrpw:QueryEvaluationErrorFault"/>
 </wsdl:operation>
 <!-- =========== NotificationProducer Specific ============== -->
 <wsdl:operation name="Subscribe">
 <wsdl:input name="SubscribeRequest" message="wsntw:SubscribeRequest"/>
 <wsdl:output name="SubscribeResponse" message="wsntw:SubscribeResponse"/>
 <wsdl:fault name="ResourceUnknownFault" message="wsntw:ResourceUnknownFault"/>
 <wsdl:fault name="SubscribeCreationFailedFault" message="wsntw:SubscribeCreationFailedFault"/>
 <wsdl:fault name="TopicPathDialectUnknownFault" message="wsntw:TopicPathDialectUnknownFault"/>
 </wsdl:operation>
 <wsdl:operation name="GetCurrentMessage">
 <wsdl:input name="GetCurrentMessageRequest" message="wsntw:GetCurrentMessageRequest"/>
 <wsdl:output name="GetCurrentMessageResponse" message="wsntw:GetCurrentMessageResponse"/>
 <wsdl:fault name="ResourceUnknownFault" message="wsntw:ResourceUnknownFault"/>
 <wsdl:fault name="InvalidTopicExpressionFault" message="wsntw:InvalidTopicExpressionFault"/>
 <wsdl:fault name="TopicNotSupportedFault" message="wsntw:TopicNotSupportedFault"/>
 <wsdl:fault name="NoCurrentMessageOnTopicFault" message="wsntw:NoCurrentMessageOnTopicFault"/>
 </wsdl:operation>
 <!-- =========== NotificationConsumer Specific ============== -->
 <wsdl:operation name="Notify">
 <wsdl:input message="wsntw:Notify"/>
 </wsdl:operation>
 <!-- =========== Lifecycle Operations ============== -->
 <!-- WS-RF Resource Lifetime: ImmediateResourceTermination -->
 <wsdl:operation name="Destroy">
 <wsdl:input name="DestroyRequest" message="wsrlw:DestroyRequest"/>
 <wsdl:output name="DestroyResponse" message="wsrlw:DestroyResponse"/>
 <wsdl:fault name="ResourceUnknownFault" message="wsrlw:ResourceUnknownFault"/>
 <wsdl:fault name="ResourceNotDestroyedFault" message="wsrlw:ResourceNotDestroyedFault"/>
 </wsdl:operation>

GFD-R-P.065 March 26, 2006

cddlm-wg@ggf.org 56

 <!-- initialize a component -->
 <wsdl:operation name="Initialize">
 <wsdl:input name="initializeRequest" message="cmpw:initializeRequest"/>
 <wsdl:output name="initializeResponse" message="cmpw:initializeResponse"/>
 <wsdl:fault name="StateActionFault" message="cmpw:StateActionFault"/>
 </wsdl:operation>
 <!-- run a component -->
 <wsdl:operation name="Run">
 <wsdl:input name="runRequest" message="cmpw:runRequest"/>
 <wsdl:output name="runResponse" message="cmpw:runResponse"/>
 <wsdl:fault name="StateActionFault" message="cmpw:StateActionFault"/>
 </wsdl:operation>
 <!-- terminate a component -->
 <wsdl:operation name="Terminate">
 <wsdl:input name="terminateRequest" message="cmpw:terminateRequest"/>
 <wsdl:output name="terminateResponse" message="cmpw:terminateResponse"/>
 <wsdl:fault name="StateActionFault" message="cmpw:StateActionFault"/>
 </wsdl:operation>
 <!-- maintenance operation -->
 <wsdl:operation name="RunTask">
 <wsdl:input name="taskActionRequest" message="cmpw:taskActionRequest"/>
 <wsdl:output name="taskActionResponse" message="cmpw:taskActionResponse"/>
 </wsdl:operation>
 </wsdl:portType>
</wsdl:definitions>

