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1. Abstract

This is the proceedings of the Workshop on Grid Applications that has been organized jointly by
the Application Developers and Users Research Group (APPS-RG) and the Production Grid
Services Research Group (PGS-RG) of the GGF. It contains the papers that have been accepted
for presentation by the programme committee.
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2. Foreword

The objective of the Application Developers and Users Research Group (APPS-RG) is to facilitate
the exploitation of grid technology by application developers and users. The Production Grid
Services Research Group (PGS-RG) is intended to bring together grid practitioners to document
experiences, identify best practice and develop informational documents. In this workshop, we
aimed at capturing experience with bridging the gap between early adopters of grids and the
more mainstream use of grid technology. Currently, grids are mostly on the early adopter side of
the gap, asking for the move to the more mainstream users. For fostering mature production
environments, incentives for application users are vital. We were seeking to hear experiences
from the following groups:

o Early adopters who would like to become mainstream users,

o Mainstream users who would like to use grids and those who already do,

o Middleware developers and system operators in charge of providing working grid
environments to user communities.

Within the remit of the workshop's subject we gave the following guidelines as to the type of
contributions that we were expecting:

1. user experience with early-adopter and/or mainstream grid applications
2. management approaches for production-quality grid environments

3. techniques for robust (fault tolerant) grid applications and middleware
4. software tools for automatic testing and signaling of error conditions

The major focus is on hands-on experience with existing grid environments, focusing on bridging
the gap between early adoption and production use. This was one of several criteria that were
used to assess the suitability of the contributions.

Bearing in mind the short time frame that was available to announce the workshop, the response
on submitted papers was very positive. From the submissions, the programme committee
selected the 11 papers included in this report. The organizers were very pleased by the
interesting presentations with extended versions of the strongest papers appearing in a special
issue of the Journal of Grid Computing in 2006.

The submissions that were successful fell into two categories;
o Environments, Middleware, and Tools
o Application Experiences

The format of the workshop was to have all talks on a specific area first, then a moderated
discussion session afterwards. The summaries of these discussions are in the Section 6.
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3. Workshop Organizers

The workshop has been organized by the chair persons of the two GGF research groups which
were involved (APPS-RG and PGS-RG):

Thomas Hinke, NASA Ames, USA, Thomas.H.Hinke@nasa.gov

Thilo Kielmann, Vrije Universiteit, The Netherlands, kielmann@cs.vu.nl
Laura McGinnis, Pittsburg Supercomputing Centre, Ifm@psc.edu
Judith Utley, Old Dominion University, jutley@odu.edu

David Wallom, University of Oxford, david.wallom@ierc.ox.ac.uk

4. Programme Committee

Besides the logistics of organizing a workshop, its success can only be guaranteed by the quality
of the submitted papers. To assist with this the following people kindly agreed to review the
submitted papers:

Simon Cox
Thomas Hinke
Thilo Kielmann

University of Southampton, UK)
NASA Ames, USA)
Vrije Universiteit, Netherlands)

Pascal Kleijer NEC, Japan)

Ignacio Martin Llorente (Universidad Complutense, Spain)
Laura McGinnis PSC, USA)

Andre Merzky Vrije Universiteit, Netherlands)
Steven Newhouse OMII, UK)

Judith Utley
David Wallom

Old Dominion University, USA)
University of Oxford, UK)
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Vrije Universiteit, Netherlands and INRIA Sophia Antipolis, France, Pages 130-134.
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6. Discussion Summaries

The following summaries are based on the notes taken in the sessions. They are not intended to
provide certain outcomes or even consensus among the participants. They merely document the
flow of arguments during the discussions.

6.1 Environments, Middleware, and Tools (moderated by Judith Utley)

The discussion was started with the following question.
Do grids help?

The key topic raised by participants was the need for user abstraction from the underlying fabric
of the grid due to its complexity and hence ability to mystify and confuse users. This would be a
very complicated task though and the amount of effort taken should be measured against the
effect of not doing it. It was pointed out also that currently there are many hundreds of application
users that have no idea about grid or whichever underlying infrastructure they are using.

One of the ideas for successful abstraction is the use of portals as they can hide many aspects of
underlying functionality as an alternative to the command line. There have been cases though of
GUI/Portals being developed initially and after trials having to develop a command line interface
afterwards. It is accepted though that even with command line interfaces, the functionality must
be high level. It must also be remembered that there are other user environments that are
frequently requested, batch being the most popular though cycle scavenging is also catching on
fast.

The next section of the discussion was started by the following question.
What is the most useful part/property of grids today?

The first and most obvious advantage provided by the grid is the additional computational power
that is offered. A significant data transport capability though is rapidly becoming another key
advantage as these systems become more and more the norm. This should become just a daily
problem which has a solution. Data discovery of attributes is also very important, and will allow an
additional new advantage which can give significant added value to generated data sets and
hence work done. Another benefit highlighted of the grid is the possibility to have a large
application that could in theory scale successfully across many systems. An example from the
audience suggested that, for example, SDSC users generate large data volumes and an
important capability would be data transfer tools which could make a huge difference.

These responses prompted the question,
Is grid technology expanding?

It was generally thought though, that there are still several areas that need work to ensure that
the very slow uptake currently is accelerated. Current impediments were identified as:
o Hugely specialized administrative load and non-intuitive installations.
o Lack of an easy to use GUI framework to which plug-ins can be attached which can then
help with integration of applications.
o The most deterring factor identified though was ease of use and user interfaces which
are currently non-intuitive for non-grid people.
It was agreed that more documentation and/or tutorials would help though new/better/simpler
technology would be preferable. A model of support described to get around these problems was
described for moving users onto a general purpose grid setup. One example described was
administrators contacting each user on a 1:1 basis and offering direct support to them, ensuring
they experience minimal change, and the grid developer has a significant understanding of users'
work currently and therefore what needs to be changed for successful grid usage.
The scalability of this solution was questioned though as you are left with grid educated users in
the community who then spread the word and this hence creates more social acceptance of grid
within currently skeptical research communities. The other advantage of this method of
interaction is that the quality of the available user documentation increases through the snowball
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effect. This could be summarized as simple usage backed up by social acceptance and good
documentation. The other key point made is that if the grid is the only way that a problem could
be tackled then it will get used. It was then asked whether the current method that all applications
have individual schemes for fault tolerance was because there was nothing better available, or is
application knowledge needed itself? The response was that this could be done by middleware,
but is not always available. An example of middleware that handles failures well was given as
Condor as well as Unicore.

The most promising way that the grid developer community could assist with the uptake of grid
solutions though would be a fully integrated grid solution, i.e. all components that you need to
create a grid, examples of which currently are GAT, (about 60% of necessary components),
Condor (good though not really based upon common standards) and EGEE (though massively
complicated and not ideal for small/medium applications).

It was pointed out that the application layer logic is missing (packaging, no coding, ...) and the
largest impediment for users is that the current method of application assessment (will it work on
a grid?) should be a lot easier!

6.2 Application Experiences (moderated by Thomas Hinke)

This discussion was started with the general question:
Why do applications go on the grid?

From a commercial point of view there are the normal reasons, easily extended computing power
therefore increasing competitiveness and allowing the production of more viable software. This
also allows significantly larger problems to be tackled due to the scalability of the solution.
Therefore the most desirable solution is to construct a general solution for all of these problems in
terms of workflows etc.

The other main reason given for use of the grid was particularly relevant to this problem as more
and more complicated problems are being investigated and so workflows are increasingly
necessary to perform the research. The ease of generalization could be increased if it was in
designers minds, though it is not always feasible. A great problem currently though is the lack of
generalized end-to-end solutions. Without this the approach you need a 'project’ to get an
application using the technology, which can be difficult due to funding constraints. These are two
different things though, grid enabling existing apps and initial application development to go onto
the grid. Diversity of projects make this difficult and so creation of the general solution should wait
until specific solutions have been created. From a cost point of view of course the more general,
the more cost efficient this becomes and since you could arrange for projects that look similar to
use the same methods, therefore a toolkit could be developed of knowledge. The users though
are most comfortable with a core API, but development is application-oriented then this can be
tricky. Designing a set of tools, and using them though does not need to be the same set for
everything. Interoperability of these tools though is the most important factor.

Looking at grids currently does present several different outward faces, some look like traditional
clusters with added heterogeneity and hence putting apps onto these other environments seems
particularly difficult with all applications presented. Creating standards is the easiest way to get
around this. Using a portal or similar tool is also a way in which the underlying lack of standards
can be hidden. Another problem highlighted was the significant difficulty of installation and
configuration and solutions suggested were the use of a packaging toolkit. A suggestion for
packaging is to use RPM. This though would need significant tailoring and is not platform
independent.

One of the major components that are currently missing is accounting. This will become
especially necessary within a commercial environment and increasingly in the academia and
could be seen as a barrier to further uptake of grids. This should be the common layer and unless
we have that we won’t see similarities developing. The other key service that was suggested that
could drive commonality is file transfer.

Would it be possible to package a complete application to move when running?

As it is desirable to have tools available in as many locations as possible, would ‘package and
move’ be viable? It was felt quite strongly that this was possible with the only restriction being a
packaging service available on all resources. Generally, application users expect to be able to
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move a complete environment. One of the only ways that this could be successfully done would
be using virtualization of environments so that this could be stopped and started as well as
ensuring that the presentation to the application developer could remain consistent on all
platforms and locations.

The suggestion was made though that if all systems are located within a single financial domain
then having a single policy for systems so you can install all your services on all your systems.
This solution is sustainable but management becomes severely problematical the larger the
installation. It was pointed out that this was the task of GGF, but its not there yet: should be able
to rely on set of interfaces to be available.

An example given of the problems faced by grid users and developers though is the GridChem
project They have found that they can't rely on all Chemistry departments to install GridChem
software for their users. Another scenario that was described was "l need next week 1000 more
CPUs, find some!” It was suggested that the chance that finding the right services could be very
difficult though. The EU project GRASP was suggested as a possible way around this though the
old issues of data transfer, architecture used etc. are still unresolved and hence subject to
change. Eventually it does all come back to sociological pressures and trust. This cold be dealt
with wider adoption. A key problem also though is that people don't follow standards. It was then
asked can we enforce standards but pointed out that the GGF can only encourage.

What keeps applications from the grid?

It was suggested that grid is currently not simple enough, with no ‘Dummys’ book for grid and
largely a lack of documentation and missing stability. The lack of stability has been one of the
more publicized problems of the grid and, of course, a grid is useful only as long as it works! The
major question was though is there a demand? It was thought that sure the demand was there,
but you can't write the book yet... with the current standards process seeming to slow things
down. It could be better if de-facto standards were made through the user community which could
help, (this works in Java very well) but it must fulfill demand.

There are many applications which don't need Grid, but COULD use it and if we don't make it
trivial for them, they won't use it. We must be careful though as there are some problems that can
be solved by just buying a bigger computer which may end up actually being cheaper. Until this
changes, it is difficult to see grid use expand massively. This does though hint at renting CPU
power which grids promise. One scenario suggested was “l need 10.000 CPUs?“ So it is
necessary to be able to lookup in a registry: "who has 10.000 CPUs able to run GAUSSIAN". The
overriding point where we are at currently though is that Grid software is not at a point where
cost/benefit analysis can be applied. The other major headache that could prevent uptake is
security as well with security requirements that are very diverse etc. When asked how many
applications are using Grid now within the workshop, 10 people responded. It was pointed out
that the SAGA group's work could assist, though a general measure of success was suggested of
the size of projects could be a good metric, there will always be huge ones but the small ones
(~two people) are getting more interesting: if you catch those, you are a success!

6.3 Final Discussion (moderated by Thilo Kielmann)

The final discussion quickly focused on the question: What is the killer application or feature?
What will make my work worth doing? With several features given as examples such as replica
data management and meta scheduling. It is essential that we use the good publicity that could
be generated from these killer features. It was suggested though that grid was still a solution
without a problem (vitamin versus aspirin) with several comments made that bearing in mind this
is GGF14 there is still no clear idea what a grid is. Whenever new users come into the sphere
they are faced instantly by a gigantic number of acronyms, this generates chaos. It is also
currently obvious that there is no single killer application and this should be worked on so that
decision makers (as several members of the audience were) become in favour of Grids? It was
felt that we need to generate business models? One academic model suggested was that bearing
in mind we currently have CampusGrid A, Campus Grid B, Campus Grid C... etc we really need a
common definition of what a campus grid is though it is was suggested that just because there is
a grid on campus it is not necessarily a campus grid. Hence it was proposed that we have more
discussions and a further workshop on this.
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8. Security Considerations
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9. Intellectual Property Statement
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this document or the extent to which any license under such rights might or might not be
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10. Full Copyright Notice
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published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the copyright
notice or references to the GGF or other organizations, except as needed for the purpose of
developing Grid Recommendations in which case the procedures for copyrights defined in the
GGF Document process must be followed, or as required to translate it into languages other than
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The limited permissions granted above are perpetual and will not be revoked by the GGF or its
SUCCESSOrs or assigns.
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This document and the information contained herein is provided on an "AS IS" basis and THE
GLOBAL GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE."

Appendix: Papers contributed to the Workshop

The remainder of this document consists of the papers that had been accepted for presentation at
the workshop.
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Production-Quality Grid Environments with UNICORE

D. Erwin, M. Rambadt, A. Streit, and Ph. Wieder

Central Institute for Applied Mathematics (ZAM)
Forschungszentrum Jiilich (FZJ)
52425 Jilich, Germany

Abstract. The UNICORE Grid technology provides a seamless, secure, and intuitive access to dis-
tributed Grid resources. Since its initial funding in two German-funded research projects, UNICORE
evolved to a full-grown and well-tested Grid middleware system. Today it is used in daily production
at many supercomputing centers.

In this paper we present an overview on the UNICORE production environments at the John von
Neumann-Institute for Computing and within the European DEISA project.

1 Introduction

End of 1998 the concept of “Grid computing” was introduced in the monograph “The Grid: Blue-
print for a New Computing Infrastructure” by I. Foster and C. Kesselman [7]. Almost two years
earlier, in 1997, the development of UNICORE - Uniform Interface to Computing Resources - was
initiated to enable German supercomputer centers to provide their users with a seamless, secure,
and intuitive access to their heterogeneous computing resources. Like in the case of the Globus
Toolkit® [4] UNICORE was started before “Grid Computing” became the accepted new paradigm
for distributed computing. At the beginning UNICORE was developed as a prototype software in
the two German funded projects UNICORE! [1] and UNICORE Plus? [2]. Over the following years,
in various European-funded projects, UNICORE evolved to a full-grown and well-tested Grid mid-
dleware system, which today is used in daily production at many supercomputing centers worldwide
and became a solid basis for research projects like EUROGRID, OpenMolGRID, UniGrids, and
the Japanese NaReGI project. In this paper we present an overview on the usage of UNICORE
for production in the John von Neumann-Institute for Computing (NIC) at the Research Center
Jiilich and in the European DEISA project.

The remainder of this paper is structured as follows. In Section 2 UNICORE’s architecture and
core features are described in more detail. Section 3 gives an overview on the usage of UNICORE
in production and lessons learned. The paper ends with a brief conclusion.

2 The Architecture of UNICORE

Figure 1 shows the layered Grid architecture of UNICORE consisting of user, server and target
system tier [11]. The implementation of all components shown is realized in Java. UNICORE meets
the Open Grid Services Architecture (OGSA) [5] concept following the paradigm of ’Everything
being a Service’. Indeed, an analysis has shown that the basic ideas behind UNICORE already
realize this paradigm [13, 12].

! funded by BMBF grant 01 IR 703, duration: August 1997 - December 1999
2 funded by BMBF grant 01 IR 001 A-D, duration: January 2000 - December 2002
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2.1 User Tier

The UNICORE Client provides a graphical user interface to exploit the entire set of services offered
by the underlying servers. The client communicates with the server tier by sending and receiving
Abstract Job Objects (AJO) and file data via the UNICORE Protocol Layer (UPL) which is placed
on top of the SSL protocol. The AJO is the realization of UNICORE’s job model and central to
UNICORE’s philosophy of abstraction and seamlessness. It contains platform and site independent
descriptions of computational and data related tasks, resource information and workflow specifica-
tions along with user and security information. AJOs are sent to the UNICORE Gateway in form
of serialized and signed Java objects, followed by an optional stream of bytes if file data is to be
transferred.

Client

A
Abstract Job Object over SSL
Multi-site jobs

v
UPL over SSL Gateway } | Gateway |
A

A

‘ [ Ns | ’(NJS_‘
(brokering)

Authentication

—

Abstract

T

Incarnation

N @b NJS <> TSI
-abstract
on-abstrac 3 protocol v
TSI TSI TSI
A : A A
proprietary,
CMD
\ 4 \ 4 v
RMS RMS RMS
------------ VSite eeenneeneee VSt - weenneeeeee VSite

(U7 T S S— USite-

Fig. 1. The UNICORE architecture.

The UNICORE client assists the user in creating complex, interdependent jobs that can be
executed on any UNICORE site (Usite) without requiring any modifications. A UNICORE job,
more precisely a job group, may recursively contain other job groups and/or tasks and may also
contain dependencies between job groups to generate job workflows. Besides the description of a
job as a set of one or more directed a-cyclic graphs, conditional and repetitive execution of job
groups or tasks are also included. For the monitoring of jobs, their status is available at each level
of recursion down to the individual task. Detailed log information is available to analyze potential
error conditions. At the end of the execution of the job it is possible to retrieve the stdout and
stderr output of the job. Data management functions like import, export, and transfer are available
through the GUI as explicit tasks. This allows the user to specify data transfer from one target
system to another (e. g. for workflows), from or to the local workstation before or after the execution
of a job, or to store data permanently in archives.
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The previously described features already provide an effective tool to use resources of different
computing centers both for capacity or capability computing, but many scientists and engineers use
application packages. For applications without a graphical user interface, a tool kit simplifies the
development of a custom built UNICORE plug-in. Over the years many plug-ins were developed,
so that plug-ins already exist for many standard scientific applications, as e.g. for CPMD (Car-
Parrinello Molecular Dynamics), Fluent, Gaussian, or MSC Nastran.

2.2 Server Tier

The server tier contains the Gateway and the Network Job Supervisor (NJS). The Gateway controls
the access to a Usite and acts as the secure entry point accepting and authenticating UPL requests.
A Usite identifies the participating organization (e.g. a supercomputing center) to the Grid with a
symbolic name that resolves into the URL of the Gateway. An organization may be part of multiple
Grids offering the same or different resources to different communities. The Gateway forwards
incoming requests to the underlying Network Job Supervisor (NJS) of a virtual site (Vsite) for
further processing. The NJS represents resources with a uniform user mapping scheme and no
boundaries like firewalls between them.

A Vsite identifies a particular set of resources at a Usite and is controlled by a NJS. A Vsite may
consist of a single supercomputer, e.g. a IBM p690 System with LoadLeveler, or a Linux cluster
with PBS as resource management system. The flexibility of this concept supports different system
architectures and gives the organization full control over its resources. Note that there can be more
than one Vsite inside each Usite as depicted in Figure 1.

The NJS is responsible for the virtualization of the underlying resources by mapping the ab-
stract job on a specific target system. This process is called “incarnation” and makes use of the
Incarnation Database (IDB). System-specific data are stored in the IDB describing the software and
hardware infrastructure of the target system. Among others, the available resources like software,
incarnation of abstract commands (standard UNIX commands like rm, cp, ...) and site-specific
administrative information are stored. In addition to the incarnation the NJS processes workflow
descriptions included in an AJO, performs pre- and post-staging of files and authorizes the user via
the UNICORE User Database (UUDB). Typically the Gateway and NJS are running on dedicated
secure systems behind a firewall, although the Gateway could be placed outside a firewall or in a
demilitarized zone.

2.3 Target System Tier

The Target System Interface (TSI) implements the interface to the underlying supercomputer
with its resource management system. It is a stateless daemon running on the target system and
interfacing with the local resource manager realized either by a batch system like PBS, a batch
system emulation on top of e.g. Linux, or a Grid resource manager like Globus” GRAM [6, 9.

2.4 Single Sign-On

The UNICORE security model relies on the usage of permanent X.509 certificates issued by a
trusted Certification Authority (CA) and SSL based communication across ‘insecure’ networks.
Certificates are used to provide a single sign-on in the client. The client unlocks the user’s keystore
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when it is first started, so that no further password requests are handed to the user. All authenti-
cation and authorization is done on the basis of the user certificate. At each UNICORE site user
certificates are mapped to local accounts (standard UNIX uid/gid), which may be different at each
site, due to existing naming conventions. The sites retain full control over the acceptance of users
based on the identity of the individual — the distinguished name — or other information that might
be contained in the certificate. UNICORE can handle multiple user certificates, i.e. it permits a
client to be part of multiple, disjoint Grids. It is also possible to specify project accounts in the
client allowing users to select different accounts for different projects on one execution system or
to assume different roles with different privileges.

The private key in the certificate is used to sign each job and all included sub-jobs during the
transit from the client to sites and between sites. This protects against tampering while the job is
transmitted over insecure internet connections and it allows to verify the identity of the owner at
the receiving end, without having to trust the intermediate sites which forwarded the job.

3 UNICORE-Based Production Environments

3.1 Production System on Jump

Since July 2004 UNICORE is established as production software to access the supercomputer
resources of the John von Neumann-Institute for Computing (NIC) at the Research Center Jiilich.
These are the 1312-processor IBM p690 cluster (Jump) [8], the Cray SV1 vector machine, and a
new Cray XD1 cluster system. As an alternative to the standard SSH login, UNICORE provides an
intuitive and easy way for submitting batch jobs to the systems. The academic and industrial users
come from all over Germany and from parts of Europe. The applications come from a broad field
of domains, e. g. astrophysics, quantumphysics, medicine, biology, chemistry, and climate research,
just to name the largest user communities. In the first five month of 2005 31.51% of the used
CPU-cycles of the Jump system where used by UNICORE jobs, details for each month are in
Table 1.

month ‘used CPU-cycles of UNICORE jobs
January 2005 30.45%
February 2005 30.50%
March 2005 27.07%
April 2005 29.74%
May 2005 39.13%

Table 1. Usage Statistics of UNICORE.

A dedicated, pre-configured UNICORE client with all required certificates and accessible Vsites
is available for download. This alleviates the installation and configuration process significantly.
Furthermore, an online installation guide including a certificate assistant, an user manual, and
example jobs help users getting started.

To provide the NIC-users with adequate certificates and to ease the process of requesting and
receiving a certificate, a certificate authority (CA) was established. User certificate requests are
generated in the client and have to be send to the CA. Since introduction of UNICORE at NIC,
more than 120 active users requested a UNICORE user certificate.
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A mailing list serves as a direct link of the users to UNICORE developers in the Research
Center Jiilich. The list allows to post problems, bug reports, and feature requests. This input is
helpful in enhancing UNICORE with new features and services, in solving problems, identifying
and correcting bugs, and influences new releases of UNICORE available at SourceForge [15].

3.2 DEISA — Distributed European Infrastructure for Scientific Applications

Traditionally, the provision of high performance computing resources to researchers has been the
objective and mission of national HPC centers. On the one hand, there is an increasing global
competition between Europe, USA, and Japan with growing demands for compute resources at
the highest performance level, and on the other hand stagnant or even shrinking budgets. To stay
competitive major investments are needed every two years — an innovation cycle that even the most
prosperous countries have difficulties to fund.

To advance science in Europe, eight leading European HPC centers devised an innovative strat-
egy to build a Distributed European Infrastructure for Scientific Applications (DEISA)? [3]. The
centers join in building and operating a tera-scale supercomputing facility. This becomes possible
through deep integration of existing national high-end platforms, tightly coupled by a dedicated
network and supported by innovative system and Grid software. The resulting virtual distributed su-
percomputer has the capability for natural growth in all dimensions without singular procurements
at the European level. Advances in network technology and the resulting increase in bandwidth
and lower latency virtually shrink the distance between the nodes in the distributed super-cluster.
Furthermore, DEISA can expand horizontally by adding new systems, new architectures, and new
partners thus increasing the capabilities and attractiveness of the infrastructure in a non-disruptive
way.

By using the UNICORE technology, the four core partners of the projects have coupled their
systems using virtually dedicated 1 Gbit/s connections. All other sites will follow in the next step.
The DEISA super-cluster currently consists of over 4000 IBM Power 4 processors and 416 SGI
processors with an aggregated peak performance of about 22 teraflops. UNICORE provides the
seamless, secure and intuitive access to the super-cluster.

The Research Center Jiilich is one of the DEISA core partners and is responsible for introducing
UNICORE as Grid middleware at all partner sites and for providing support to local UNICORE
administrators.

In the following we describe the DEISA architecture. Note, a detailed description of UNICORE’s
architecture and server components can be found in Section 2 and in particular in Figure 1. All
DEISA partners have installed the UNICORE server components Gateway, NJS, TSI, and UUDB
to access the local supercomputer resources of each site via UNICORE. Figure 2 shows the DEISA
UNICORE configuration of the core production environment. For clarity only four sites are shown.
At each site, a Gateway exists as an access to the DEISA infrastructure. The NJSs are not only
registered to their local Gateway, but to all other Gateways at the partner sites as well. Local
security measures like firewall configurations need to consider this, by permitting access to all
DEISA users and NJSs. This fully connected architecture has several advantages. If one Gateway
has a high load, access to the high performance supercomputers through DEISA is not limited. Due
to the fully connected architecture, no single point of failure exists and the flexibility is increased.

The DEISA partners operate different supercomputer architectures, which are all accessible
through UNICORE. Initially all partners with IBM p690 clusters are connected to one large virtual

3 funded by EC grant FP6-508803, duration: May 2004 - April 2009
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Fig. 2. The DEISA architecture of the core production environment.

supercomputer. In a second step other supercomputers of different variety are connected to DEISA,
making the virtual supercomputer heterogeneous. UNICORE can handle this, as it is designed to
serve such heterogeneous architectures in a seamless, secure, and intuitive way.

In December 2004 a first successful UNICORE demonstration between the four DEISA core sites
FZJ (Research Center Jiilich, Germany), RZG (Computing Center Garching, Germany), CINECA
(Italian Interuniversity Consortium, Italy) and IDRIS (Institute for Development and Resources
in Intensive Scientific Computing, France) was given. Different parts of a distributed astrophysical
application were generated and submitted with UNICORE to all four sites.

The experience and knowledge of the researchers, developers, users, and administrators in work-
ing with UNICORE in the DEISA project on a large production platform will be used as useful input
for future developments of the UNICORE technology. A close synchronization with the UniGrids
project [16] is foreseen.

3.3 Lessons Learned

The deployment of new software to be used in production has to offer added value to the users,
otherwise the new software will not be accepted. Hence, users have to be stimulated to use the
software. They have to be encouraged to use Grid technology for applications, computations, data
transfers, and access to resources, to make their applications Grid-aware, and to consider Grid
technology for their daily problem solving.

The obvious prerequisite is that the software provides the necessary functions users require.
However, the beginning of the UNICORE development showed that the sole fulfillment of these
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requirements if not sufficient. Although all requested functions were present, only a small number
of users used UNICORE for their daily work.
The transition from prototype to production requires:

— High quality of the software, especially high reliability and resilience.

— Help for the users to overcome initial hurdles and permanent assistance to users in case of
problems.

— Permanent, 24/7 availability of the infrastructure.

— A long term commitment for continuous development and support.

As soon as the Research Center Jiilich implemented and gave the commitment for these additional
aspects through initiating and supporting the UNICORE@SourceForge [15] initiative, the use of
UNICORE increased significantly as the statistics confirm.

UNICORE and Grid technology in general have made the step away from being used just for
demos towards real work in production environments. The driving forces for this effect in our center
and the DEISA infrastructure are the above described features of the technology. Through the single
sign-on mechanism users do no longer have to remember different account names and passwords for
different machines and projects. The easy-to-use and intuitive graphical client allows users to define
complex workflows with data staging, data- or time-dependencies between sub-jobs and involving
different applications in a more comfortable and sophisticated way as with previously used tools
of the local resource management system. Specifying data dependencies, both data-parallel and
data-sequential jobs can be executed, enabling e. g. workflows of applications, where the output of
one step is used as input for the next step. According to user feedback this feature is very valuable
for applications from quantum computing and bio-molecular science. Once jobs are fully defined
including an appropriate resource assignment, they can be saved for later usage. By re-loading
previously stored jobs in the client, users are able to submit one specific job or workflow multiple
times, only with e. g. different input data or input parameters in order to conduct parameter studies.

A detailed analysis of the jobs shows that the increase in resource consumption of UNICORE
jobs (cf. Table 1) is due to the submission of very large jobs through UNICORE. These jobs are both
large in CPU requirements as well as in run time. Typically the resources are used for parameter
studies with simulation codes. It can be observed that users combine several iterations and steps
(about 20 to 30) within a single UNICORE workflow with data- and/or time-dependencies.

Several projects from various domains of science make use of UNICORE to access the compute
resources at Research Center Jiilich. Among these projects are:

— QCD simulations with light quark flavors (elementary particle physics)

— Finite temperature meson correlation functions (elementary particle physics)

Non-leptonic kaon decays in lattice QCD (elementary particle physics)

Nucleon matrix elements from overlap fermions (elementary particle physics)

Electronic and optical properties of capped silicon and germanium nanocrystallites (material
science)

— Visco-elastic shear flow (fluid science)

Small scale structure of the universe (astro physics)

4 Conclusion

In this paper we presented the usage of UNICORE in production-quality Grid environments. UNI-
CORE — Uniform Interface to Computing Resources — provides a seamless, secure and intuitive
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access to distributed Grid resources. Initially developed in two German projects, the software
evolved from prototype status to a full-grown and well-tested Grid system, which is today used in
daily production at many supercomputing centers in Europe.

At the John von Neumann-Institute for Computing, Research Center Jiilich, many users submit
their batch jobs through UNICORE to the 1312-processor 8.9 TFlop/s IBM p690 cluster, the Cray
SV1 vector machine, and a new Cray XD1 cluster system. Leading European HPC centers joined in
the project DEISA to build and operate a distributed European Grid supercomputing infrastructure
for scientific applications with multi tera-scale performance and production quality, similar to the
TeraGrid project [14]. Within the DEISA project UNICORE is used as the Grid middleware to
connect all sites to the infrastructure.

The future of UNICORE is promising and follows the trend of “Everything being a Service”, as
it follows the Open Grid Service Architecture (OGSA) [5]. In this context, the UniGrids* project
[16] continues previous efforts in integrating the Web Services and UNICORE technology to enhance
UNICORE to an architecture of loosely-coupled components while keeping its “end-to-end” nature.
To this end UNICORE/GS will be developed, which makes UNICORE compliant with the Web
Services Resource Framework (WS-RF) [10].

Since May 2004 the UNICORE software is available as open source under a BSD licence from
SourceForge for download [15]. Numerous contributors from all over the world, e. g. Norway, Poland,
China and Russia checked-in their developments and until April 2005 more than 3100 downloads
of UNICORE were counted.
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Abstract

Manual management of public key credentials can be a significant and often off-putting obstacle
to Grid use, particularly for casual users. We describe the Portal-based User Registration Service
(PURSE), a set of tools for automating user registration, credential creation, and credential
management tasks. PURSE provides the system developer with a set of customizable
components, suitable for portal integration, that can be used to address the full lifecycle of Grid
credential management. We describe the PURSE design and describe how it has been used within
portals for two different systems, the Earth System Grid data access system and the Swegrid
computational grid. In both cases, the user is entirely freed from the need to create or manage
public key credentials, thus simplifying their Grid experience and reducing opportunities for
error. We argue that this capturing of common use cases in a reusable “solution” can be a model
for how Grid ease-of-use can be addressed in other domains as well.

1 Introduction

A typical Grid application requires that a set of users share resources of various kinds in some
controlled manner. To this end, many extant Grid deployments use the public-key infrastructure
(PKI)-based Grid Security Infrastructure (GSI) [10] as a basis for secure user single sign on and
subsequent authentication of users and resources prior to authorization. GSI defines and
implements useful algorithms for authentication and delegation. However, the tasks of creating
and managing the PKI credentials used by GSI can be significant sources of complexity, user
difficulty, and even error (and thus insecurity) in Grid deployments.

These considerations motivate our design of the Portal-based User Registration Service (PURSE),
a set of tools for developing portal-based systems that automate user registration, the creation of
PKI credentials, and subsequent credential management. A typical PURSE-based portal allows a
user to register via a Web page, follow which a credential is created and managed on their behalf,
with subsequent access provided via a username and password. A separate administrator interface
allows a portal administrator to approve requests, revoke credentials, and so forth. By
streamlining and codifying these various steps, PURSE-based systems can significantly reduce
barriers to the integration of new users, overheads associated with credential management, and
opportunities for error—and thus simplify the development of usable Grid applications.

An important PURSE design goal was to support the creation and use of PKI credentials of
varying “quality.” It is often the case that different access control policies are associated with
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different resources and operations. For example, some operations and resources (e.g., write access
to archival storage) may require stringent verification of the identity and/or attributes of a
requestor, while others (e.g., read access to Web pages) require only audit of a weakly
authenticated identity. The definition and enforcement of such policies can be a significant source
of complexity in Grid application deployments, due to the need not only to implement policies
correctly but also to achieve appropriate tradeoffs between operational security and ease of use.
Thus, PURSE mechanisms allow for the automatic creation of credentials following either simple
online registration or stringent identity verification, and for the upload of existing credentials.

The PURSE implementation is not particularly complex, being based on an integration of a
number of existing components, including GSI libraries, the MyProxy online credential
repository, the SimpleCA credential generator, and portal tools. This implementation approach of
integrating existing components to construct a reusable “solution” that addresses an important set
of use cases is one that we hope will be pursued by many other Grid developers.

We have recently become aware of the Grid Account Management Architecture (GAMA\) project
[1, 9], which has produced similar mechanisms in parallel with our PURSE development. GAMA
differs from PURSE in various mostly minor respects: for example, it is hosted on GridSphere
rather than Axis, and does not support uploading of existing credentials, a critical requirement for
all PURSE users to date. We view this parallel evolution as demonstrating the importance of this
technology.

The rest of this paper describes in turn the PURSE system (Section 2), two different PURSE-
based portals (Section 3), and the sample registration portal distributed with PURSE (Section 4).
We conclude in Section 5.

2 System Description

The PURSE user registration system is a collection of Java APIs designed to work as a backend
for a front-end user interface, typically a web portal, to ease registration and credential
management. Driven by user requests through the interface, this Java code stores user contact
information, generates and stores new credentials for users, and allows for subsequent use of
those credentials to access Grid resources. The system has functionality to support credential
renewal and revocation. This functionality can be accessed through a well-defined API and is
easily configurable.

The system is built upon some common tools, as follows:
o A JDBC-compliant database is used to persist user data. (MySQL is currently used.)

e A Certification Authority is used to generate and sign user credentials. Depending on
application requirements, either SimpleCA [6] or an external CA can be used for
generating and signing users credentials.

o The MyProxy server [3, 11] is used to store user credentials
e JavaMail [2] is used to send and receive notifications to the user and CA operator.

2.1 Typical Usage Scenarios

A PURSE user must first register with the PURSE system. This is a one-time event that must
precede any other use of the system. Registration involves three principal steps, as follows.

1. The user accesses the registration page on the portal and enters relevant information (e.g.,
contact information, desired user name, desired password).
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2. PURSE persists the user information and, using the provided contact information, sends an
email back to the requesting user requesting that they confirm the request. This email
typically provides a link that the user can click to confirm the request. This step helps to
prevent registration errors and to verify the legitimacy of the email address.

3. Upon confirmation, the submitted request is sent to the certificate authority (CA) configured
in the PURSE system. The CA operator reviews the information provided by the user, checks
the contact information and decides whether to approve or reject the request based on criteria
of their choosing. If the request is rejected, an email is sent to the user notifying them of the
decision. If the request is approved, then PURSE generates and stores long-term user
credential in the MyProxy server. An email is then sent to the user notifying them that
registration has completed successfully.

In a variant of this scenario, the user may instead supply an existing credential during the
registration process. The same registration and approval process is followed, but following
approval by the CA operator, the user is instructed to upload their existing certificate into the
PURSE MyProxy.

Following successful registration, the user can use the username and password requested during
registration to log in to the portal. The portal then retrieve a short-term credential for the user
from the MyProxy service and uses that credential on behalf of the user to access VO resources as
directed by VO-specific logic in the portal.

The overall system architecture is presented on Figure 1.

Certificate Authority

| enpEnERERE

Web
MyProxy Server Portal

YN

User

Figure 1: Sample Registration Portal Architecture
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2.2 Overview of Registration System APIs

PURSE is structured as a set of building blocks that can be used to create a fully functional web-
based portal for accessing the Grid. The modules are available as “jar” files and can be plugged
into any front-end interface such as an existing portal. We describe the high-level functionality
and APIs for these building blocks in the following.

New user registration

Register user: This step initiates user registration by storing relevant user information, including
requested username and user email address in the backend database. Once the information is
stored, an email is sent to the user requesting confirmation of request.

Process user request: This step is triggered by the user’s confirmation of the request to the
registration system. An email is sent to a configured CA operator email address with instructions
for the CA operator to access the user details.

Accept user: This module is invoked when a CA operator accepts a particular user’s request. The
following steps are performed.

o |f the user wishes to use their own credentials (from an outside CA), the user is sent an
email with a link that, when clicked by the user, downloads a simple java MyProxy client
using Java Webstart that the user can use to upload their credential to the PURSE
MyProxy server.

e If the user does not have their own credentials:

o Either SimpleCA is used to generate a certificate for the user or a certificate
request is sent to an external CA, depending on application requirements.

o Either the configured SimpleCA certificate is used to sign the certificate or a
signed certificate is received from the external CA.

0 The resulting long-term credentials are loaded onto a MyProxy server.
0 The database is updated to set the user’s request status to “accepted.”
¢ In both cases, an email is sent to the user indicating that registration is complete.

Reject user: If the CA chooses to reject the user, this module is invoked. It sends an email to the
user and updates the user request status to “rejected.”

Managing registered user

Revoke user: This module deletes the user from registration system. The user’s credentials are
removed from the MyProxy server and the user’s status in the database is set to “revoked.”

Renewal notice: This operation can be run as a periodic task to send mail to all users whose
credentials are due to expire in some configured timeframe.

Renew user: This operation is triggered by a user attempting to renew membership and sets the
user status in the database to “renew.” If the renewal request is granted, an API to generate new
long term credentials for the user and store them in the MyProxy server is provided.

Tools for registered users
Change password: Allows a registered user to change their password.

2.3 PURSE Setup

Establishing a PURSE-based portal involves two steps. In the first, we develop the portal code or
alternatively integrate PURSE calls into an existing portal. In the second step, we set up the
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backend database used to maintain user information (e.g., MySQL), a SimpleCA certificate
authority (or alternatively configure PURSE to access an existing CA), and the MyProxy server
used to store user credentials. Complete instructions for PURSE installation and testing are on the
PURSE web side [5].

3 Deployment Use Cases

We describe two production deployments that have served both to drive PURSE requirements
and to validate PURSE functionality.

3.1 Earth Systems Grid

PURSE was initially developed for the Earth System Grid (ESG) [8], a U.S. Department of
Energy project to provide online access to climate data. We describe here the ESG production
deployment as an example of how the registration system can be used. The following details are
specific to deploying the Registration System for ESG.

The ESG portal needs to support two different classes of users: a small number of “privileged”
users who can access all ESG data , including the newest data produced by the climate models,
and all other users, who can access only publicly available, previously published data. Privileged
users must be strongly authenticated, while for all other users, the requirement is to have some
weak verification of their identity for the purpose of tracking ESG usage. At the same time, all
users must have valid GSI credentials in order to access the data stored on the ESG various
storage systems, which include NCAR MSS, NERSC HPSS, and GridFTP servers throughout the
ESG grid.

This combination of authentication and authorization requirements spurred the development of
PURSE. The user registration process plus email verification provides sufficient verification of
user identity to satisfy requirements for tracking ESG usage. The ability to upload an existing
credential supports the stronger authentication required for privileged users, who can obtain that
credential from a CA with a stronger authentication policy. Users are then assigned to the
appropriate user groups during registration, based on ESG policy. When a user would like to
access data via the ESG Portal, their request is validated by the portal, which bases its decision on
the user’s group assignment. The number of user groups is configurable and depends on ESG
policy. ESG uses the standard workflow for user registration, described in Section 2.1. ESG has
700 registered users as of May 2005.

Users who wish to see PURSE in action can register with the ESG portal by following the
Registration link from the main ESG site (https://www.earthsystemgrid.org). At the registration
web page, specify in the “Statement of Work” that you are interested in seeing PURSE in action.
Access will be granted with limited access to ESG data.

3.2 Swegrid

Swegrid [7], a distributed computational resource in Sweden, uses the PURSE libraries to
provides a registration system for its users. This system uses PURSE to meet Swegrid
requirements for providing users with a certificate signed by an external (real) CA.

The main difference between the Swegrid and ESG registration system is the workflow for
issuing certificates. In contrast to ESG, the Swegrid portal after registering the user in its local
database sends a notification to the Swegrid registration authority which contains a link, which
can be used by the RA to validate the user's information and to verify their identity against the
papers signed and sent by that user. Upon approving the identity of the user, the RA sends the
confirmation message to the Swegrid portal by replying to the notification email. The portal then
accepts the user and generates a certificate request, which will be sent to the configured external
and trusted certification authority. The CA may also use a similar link to access the local
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information saved on portal database in order to verify the user's identity. Upon approval, CA
signs the certificate and sends it back to the Swegrid portal. The portal receives the signed

certificate from the CA and uploads this to the MyProxy server.

4 Sample Portal User Registration Interface

The PURSE distribution includes code for a simple Sample Registration Portal that may be
adapted to meet specific application requirements. The Sample Registration Portal solicits basic
data from the user, generates a certificate request to the VO operator, (following approval)
generates a certificate and stores it in the MyProxy server, and gives the user an identifier and
password for MyProxy access. A separate administrator interface allows a CA operator to accept

or reject user requests and also to revoke issued certificates.

User registration involves the following steps.

1. The user fills in the Sample Registration Portal’s entry page, shown in Figure 2, to submit

their registration request.

2. The Sample Registration Portal verifies the user’s email by sending the mail in Figure 3(a) to

the provided email address.

3. Following user acknowledgement, the CA operator receives an email notification when a new

account is being requested, as in Figure 3(b).

4. After receiving this notification, the CA operator logs in to a secure web site (Figure 4) and

views the request.

5. After the user’s credentials are generated and uploaded into MyProxy the user receives an

email notification, as in Figure 3(c).

@ PURSE Sample registration portal - Mozilla Firefox B@
File Edit View Go Bookmarks Tools Help
<ZI - =_.j ¥ @ f'—/lj https://purse.globus.org/purse/registration. html ﬁ'VE @ Go LGJ,
PURSE sample registration form
Please fill out the following information
Full Name John Smith
Email Address ismithi@globus.org
Portal user name john
Portal password i
Portal password (again) "

I am a recent hire and will be a

collaborator on the Grand poo-bah

= roject.

Statement of Work e

Talked to Michael who instructed me to fill

this form out.
The registration miformation above is a sample.
Additional user data can be queried for: see javadoc for
org.globus.purse.registration.UsexrData
Dane 192.168.209.154:8443 [

Figure 2: Screenshot of the PURSE sample user registration interface
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(a) Email confirmation step: message sent to user

Date: Thu, 1 Jul 2004 14:25:47 -0600 (MDT)
From: esgport@ucar.edu

To: john_smart@ucar.edu

Subject: ESG Registration

The Earth System Grid (ESG) Portal received a request for a new user account that uses your
email address. Click on the link below to confirm your request (NOTE: you will not be able to
login until you receive an email from the portal administrator indicating your request has been
approved):

Hhttp://www.earthsystemgrid.org/security/confirmRequest.do?token=000000fd-7c62-605c-
ffffdea0-766ad9819840H

If you did not request this account, please inform us at esg-admin@earthsystemgrid.org.
Thank you,

ESG System Administrator

(b) Email sent to CA operator for approval

From: esgport@ucar.edu

Date: July 1, 2004 12:17:07 AM MDT
To: esg-ca@ucar.edu

Subject: ESG Registration

A request has been made for user account on the ESG Portal. You may access the details of
the request by clicking on the following link.

Hhttp://www.earthsystemgrid.org/administration/accountRequestData.do?token=000000fd-
2e0e-5d33-00006ac0-8387f64897beH
(c) Registration confirmation email sent to user

Date: Thu, 1 Jul 2004 14:34:52 -0600 (MDT)
From: esgport@ucar.edu
To:john_smart@ucar.edu

Subject: ESG Registration

Your request for an account with the ESG portal has been approved.

Figure 3: The three emails sent during user registration (based on ESG operational system)
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& PURSE Sample registration vetting - Mozilla Firefox M| =] %
Ele Edit WView Go Bookmarks Tools Help

<}Z| x _ - @ @ https: /fpurse.globus.orgfpursefadmin. jsp?token=00000102-12a2-3b 50-ffff809a-d: ﬂ:\' @ Go _(;,
PURSE User registration vetting page

This is the page where an admin can vet the user'’s vegistered information, and grant/deny the request.

NOTE: This page must be properly protected against non-authorized access, and only accessed across a secure (HTTPS)
session!

Name John Smith
User Name john
Email Address  john_smaart@ucar.edu

1 am a recent hire and will be a collaborator on the Grand poo-bah project.

Peaject Descaption Talked to Michael who instructed me to fill this form out.

Registration Authority decision:
& Accept

CA password: =

3 Reject
Message to the user (optional):

Done 192.168.209.154:8443 24

Figure 4: Screenshot of the PURSE sample administrative interface

5 Summary and Next Steps

PURSE provides a set of tools that can be used to construct Web-based user and administrative
interfaces for user registration, credential management, and Grid access. PURSE automates the
process of obtaining PKI credentials for users; provides for the secure storage of credentials;
allows users to use existing Grid credentials, if available; and provides for Grid access via Web
portals and secure username-password authentication.

In future releases, we plan to work towards simplifying PURSE installation by creating an easy
packaging solution for this system. In addition, we need to adapt the current implementation to
separate the credential repository from the rest of the portal logic, so as to permit hosting of the
credential repository on a secure system.
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Abstract

While diversity plays an important role in evolution and progress, it is also what makes writing
Grid applications to be generally considered a challenging task. The Grid Application Toolkit
(GAT) is promising to simplify this task through a plug-and-play design, which is meant to hide
all diversity related application writing issues from a Grid-unaware application developer. In this
paper, we report our experiences implementing and deploying a parallel MPEG encoder program
as a task farming application using the GAT. While writing a real-world application following a
programming model which is not Grid-specific, we identify those aspects that are made convenient
by the GAT, and those that still remain cumbersome or difficult. Our main observation is that
the GAT indeed simplifies application writing. However, additional services like resource brokerage
are needed for similarly simplified application deployment. Though not acute, there are also some
issues related to incomplete semantics.

1 Introduction

Writing Grid applications is generally considered a challenging task. The Grid Application Toolkit
(GAT) is promising to simplify this task. In this paper, we report our experiences implementing and
deploying a parallel MPEG encoder program as a task farming application using the GAT. We identify
those aspects that are made convenient by the GAT, as compared to distributed technologies, such
as RMI, and those that still remain cumbersome or difficult. Our main observation is that the GAT
indeed simplifies application writing. However, additional services like resource brokerage transparent
to application programmer are needed for similarly simplified application deployment. We also discuss
several semantic issues of the current version of (Java-)GAT.

1.1 Paper organization

Section 2 presents shortly the real-life application we chose to implement as a Grid programming
experience. It shortly introduces the reader to the history, development and critical issues of MPEG
encoders. We add here a set of remarks from previous experience of implementing the MPEG encoder
with RMI, and introduce GAT as a more appropriate candidate. We then continue in section 3 to a
small preamble on JavaGAT, where we present the part of the JavaGAT API that has been of interest
for our implementation. Section 4 details our MPEG encoder implementation as based on Joinc. A
thorough description of our experience with JavaGAT is then given in section 5.

2 A Parallel MPEG Encoder

The Moving Picture Experts Group (MPEG) is a working group of ISO/IEC charged with the devel-
opment of video and audio encoding standards [13]. MPEG has standardized a family of video and
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audio compression standards for multimedia applications [6], such as MPEG-1, MPEG-2 and MPEG-
4. In fact, MPEG standardizes only the bitstream format and the decoder while giving out the liberty
to encoder implementations as long as they produce bitstreams conforming to the specified bitstream
format. MPEG files are much smaller for the same quality compared to other video and audio coding
formats [15]. MPEG is frequently used for video/audio protocols, partly due to its ability to handle
multimedia over varying bandwidth conditions [16].

As MPEG formats are being widely used, MPEG encoding however remains costly in terms of per-
formance. The encoding process normally requires storage and computational power far beyond what
traditional home computers can provide with satisfactory performance. To illustrate, in order to en-
code a raw DV file, a PC may require 10 GB or more disk space and may take hours to complete.
There is obviously a huge gap between the end users delight and the poor performance of encoders
on a single computer. This gap has led to considerable amount of research and software development
for providing an effective way of doing high performance MPEG encoding. A prevalent solution to
this goal is to have a parallelized MPEG encoder working over a pool of distributed multiprocessors,
especially over Grid [5]. Currently, there are many different approaches in designing such a parallel
MPEG encoder with either fine grain or coarse grain parallelism [8]. A typical design example is based
on Master/Slave model, under which the master dispatches jobs to slaves for data processing and as-
sembles results together in the end. Although the idea of parallel MPEG encoder is straightforward, a
number of intricacies lie can be found in the design, implementation and deployment processes. Even
for advanced developers it remains a very challenging task to implement a parallel MPEG encoder
using distributed resources while using only common programming tools and environments.
Moreover, the trend of parallelizing computational expensive legacy software reaches far beyond the
scope of parallel MPEG encoder only. We need a more common and friendly environment for parallel
programming to alleviate complexity and promote ubiquity. GAT is one candidate for such an envi-
ronment that provides much simplicity. Our experience in developing an MPEG4 encoder using GAT
reveals that it makes parallel programming less challenging in Grid environment, and demonstrates
the feasibility to simplify application of complex parallel programming techniques in developing daily
user applications.

Another candidate environments we considered using is RMI. The following remarks about our RMI
implementation efforts should not be seen as RMI shortcomings. RMI is a very powerful scheme for
distributed programming and this has been the goal of its design team [19]. Our point is that Grid
application programmers would benefit more from an abstraction layer, such as the one provided by
JavaGAT. We tried to implement a customized task farming approach with RMI. The implementation
design was quite simple, as explained in section 2, but the actual code was very cumbersome. We
needed to explicitly write the pre-staging and post-staging of applications files, as well as to manage
submission of tasks over a number of operators that are deployed outside of the application code on
each working site.

Though discovery of deployed operators is possible through environment settings, the step of manu-
ally deploying each remote object that represents an operator must be explicitly dealt with. While
scheduling the jobs is still a problem when using JavaGAT, the actual submission of a job and the
setting of pre-staged and post-staged files for that particular job are wrapped inside API calls. This
is not the case with RMI, where explicit code needs to be written in order to copy the needed files at
the working sites. Also related to task submission we would have needed to devise our own call-back
mechanism to keep track of the state of submitted jobs.

Another issue related to RMI surfaces from the setup of policy files on all participating clusters, as
RMI requires a Security-Manager to be explicitly set up in the remote objects JVM. This would be

david.wallom@ierc.ox.ac.uk 28



GFD-1.068 29-03-06

comparable to credentials needed by the ResourceBroker of JavaGAT, though the policy files are tied
to a rather unfriendly syntax. One could also choose Policy objects rather than files, but then the
problems are moved in the code writing section. On the other hand, using JavaGAT and simple cer-
tificate credentials, one simple script prepares the environment for the whole application to run during
a user-specified amount of time.

3 The (Java-)GAT

3.1 Context

Computing Grids are getting more and more important. While this fame is pushing people to always
come up with smarter functionalities, it also creates interoperability problems. This is maybe the
reason why, today, only few complex Grid application are widely used.

Nowadays, applications written for a given Grid often have to be heavily modified or even rewritten
to be ported on another one. One issue here is that Grid developers have to know the intricate details
of all the resource manager systems (RMS) in order to write portable applications. A second is that
the same application cannot run on different RMS spanning multiple clusters even if their adminis-
trations trust one another. It implies that one cannot simply, blindly, download a Grid application
programmed for a given RMS and execute it on another — it seems that Grid applications are just like
desktop applications 20 years back from now.

To circumvent the situation, some projects have worked on integration facilities for their own sys-
tem [14, 9], while others tried to define more general interface on top of which applications can be
written independent of the underlying RMS [3]. While being an important step forward, two issues
still remain. First if multiple solutions are commonly adopted, even if alleviated, the interoperability
problems will persist. Additionally, none of this solution intend to simplify life of the programmers
and their APIs still remain complicated to learn and use.

This is where GAT (the Grid Application Toolkit) steps in. By providing a generalized and intuitive
interface, GAT will allow the developers to do not even have to know which RMS is present on the
underlying Grid. Even better, GAT will choose at runtime the correct way to access resources.

In this section we will briefly present the concepts behind GAT. We will first introduce the big picture
of the GAT organization, finally we will briefly discuss the subset of the JavaGAT API we used to
program our MPEG encoder.

3.2 GAT Organization

A programmer does not have to know the GAT's internals to write an application on top of it. However,
we firmly believe knowing a bit about GAT's design helps to understand its usefulness. The interested
reader is invited to refer to [1] for further details.

From figure 1 we can see that the GAT layer is split into 3 logical components. The API is the only
piece of GAT the programmer has to know and to deal with when writing Grid applications. Its
function is bound to the strict minimum — it provides the application with calls for essential Grid
operations in a simple and stable way. The GAT engine will decouple applications from the always
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Figure 1: The GAT framework

changing middleware by loading adaptors when needed. The engine is supposed to be very thin, trans-
parently providing an efficient way to link the logic of Grid services with the GATs API.

Finally, the engine chooses adaptors on demand in order to satisfy the capabilities defined by the API
and required by the application (job submission, file transfer etc.).

3.3 JavaGAT API — The Employed Subset
3.3.1 Files

In the context of task farming, we usually have to deal with pre-staged and post-staged files. The
former is the set of files the task needs access to in order to run properly. Examples of such files would
be required libraries, file to be read by the task during execution, or the tasks code. Post staged files
are the set of files which the task produces, and which the master application needs to retrieve after
the task finished.

In order to easily deal with both pre-staged and post-staged files, we used the File interface from
the package org.gridlab.gat.io. Creating an org.gridlab.gat.io.File object is similar to the
mechanisms known from java.io.File, but will provide the same services for a wider variety of file
access protocols. For instance, the file could now be anywhere, as long as the location can be described
by an org.gridlab.gat.URI, and at least one of the adaptors is able to access it. The Gat Engine will
make sure the appropriate adaptors have been loaded and an instance of these adaptors is representing
the file.

The code listed below shows how to obtain a org.gridlab.gat.io.File object for a file, given its
name as a java.lang.String. It first builds the application’s context, an instance of GATContext
(org.gridlab.gat.GATContext). Optionally, an instance of org.gridlab.gat.Preferences may
be obtained, which would be responsible for specifying user preferences when selecting adaptors. If
there are no specified preferences, or the createFile method is invoked with a null value for the
Preferences, the default policy for selecting adaptors is used (note: specifying “any” in the scheme
part of the Files URI will enable the Gat Engine to dynamically determine which adaptor(s) should
be used).
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String fileName = "file";
URI fileURI new URI ("any:///" + fileName);

GATContext context = new GATContext ();

Preferences prefs = new Preferences ();

File file = GAT.createFile (context, prefs, fileURI);
3.3.2 Jobs

As described at the beginning of this subsection, for task farming we also need file retrieval mech-
anisms. Using the org.gridlab.gat.resources.SoftwareDescription, the pre-staging and post-
staging may be expressed with only two lines of code, (assuming the org.gridlab.gat.io.File
preStagedFileList []/postStagedFileList[] have already been populated):

SoftwareDescription sd = new SoftwareDescription();
sd.setPreStaged (preStagedFileList);
sd.setPostStaged (postStagedFileList);

If the applications tasks are designed to use a certain file as standard input and to redirect the
standard output and standard error to some file(s), then one could use the next few lines of code:

sd.setStdin (GAT.createFile (context, prefs, new URI (stdin )));
sd.setStdout (GAT.createFile (context, prefs, new URI (stdout)));
sd.setStderr (GAT.createFile (context, prefs, new URI (stderr)));

Finally and most important, the line of code which indicates the location of the tasks executable:
sd.setLocation (new URI (executableFilePath))

After this setup phase, the task, represented by the SoftwareDescription object, is ready to be
submitted for execution (we refer the reader to section 5.3 for more details about job submission in
JavaGAT).

4 Implementing the MPEG Encoder
4.1 GAT

As specified in section 2, we chose to implement the MPEG encoder using a task farming approach.
Following the ideas provided in the previous section, we decided to use JavaGAT to make its program-
ming and portability easier.

Inspired by the generalization of task farming applications like SETI@home [10] and Boinc [2], the
JavaGAT developers decided to provide a standard similar interface so that the programmer doesn’t
have to know about the distribution process. That layer on top of JavaGAT is named Joinc.

4.1.1 Joinc

In the Joinc programming model, task farming applications are easily expressed by using two classes,
Master and Task. The Master class is designed to be extended by the master object of the application,
hence its abstract methods will be implemented by the application. Task exhaustively describes each
job and its dependencies so that it can be properly executed on a remote machine.
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Figure 2: The MPEG encoder organization

The Master class contains a half dozen of abstract methods which will have to be implemented by the
application programmer. A call to getTask should return a Task object with a unique task identifier,
the file names of the stdin, stderr and stdout, the pre and post-staged files, the name of the class
containing the main method of the task, and finally, the parameters the task accepts. A call to this
method is done right before submitting a task.

totalTasks will return the number of tasks the application will produce and mazimumMachines the
number of machines Joinc can simultaneously use to run the tasks. These functions are called at the
very beginning of the start method to initialized the behavior of the task distribution.

taskDone will notify the application of a task termination, and idle permits to the programmer to do
what ever he wants when there is nothing better to do.

To conclude, the application calls the start method at the very beginning of the execution, then Joinc
takes the control over the application details — the application doesn’t have to deal with GAT at
any moment. It is time to see how we can use this nice interface to write an application and, more
precisely, a parallel MPEG encoder.

4.1.2 The Application

Using figure 2 we will now show step by step how Joinc can be used to parallelize a MPEG encoder.
The remainder of this section will provide the reader with some insights about parallel MPEG encod-
ing while illustrating how to use Joinc to write applications.

The very first thing the encoder does at step 1 is to execute the tool avisplit to divide the raw AVI files

into smaller chunks which can be shipped to the workers. Note that avisplit will create independent
chunks, that means that once the tasks are dispatched among the workers, they will compute without
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having to care about interleaving frames, or any other communication. The encoder will keep track
of the generated chunks names and associate one chunk with one task.

Then the start method is called by the application to let Joinc take control. Joinc subsequently calls
some initialization methods to learn about the encoder settings. At the end of step 2, Joinc knows
the number of tasks it has to submit as well as the number of machines it is allowed to simultaneously
submit tasks to.

Joinc then has to retrieve the next task object from the encoder through the getTask method call
(step 3). This method will initialize the fields of the Task object, so that each worker encodes a part
of the raw file. To do so, Joinc initializes a SoftwareDescripton per task so that GAT can transparently
handle file transfers and job submission at step 4.

Step 5 corresponds to the execution of the worker code by the remote Java virtual machine. One
advantage of Joinc over Boinc is its ability to send a worker jar over the network instead of having to
install the binaries at all sites beforehand. Additionally to these flexibility issues it is also important
to note that this constitutes a method to distribute any kind of computation in a portable way. In our
example, the minimalist worker will just execute the tool mencoder [12], which will encode the chunk
— this is the computing intensive task we want to parallelize. Once done, the now compressed movie
chunk is shipped back to the master (step 6), and Joinc calls the taskDone method (step 7) for this task.

After all the tasks complete, Joinc will simply return control to the application (step 8). This is time
to execute the tool avimerge, which merges all the chunks into the compressed movie (step 9).

5 The Good, The Bad And The Ugly

In this last section we will sum up what the experience of using JavaGAT taught us. While being a
generally positive experience, we also encountered a number of problems or noticed a lack of middleware
facilities when trying to implement more advanced features in our encoder. We first describe what the
use of GAT bought us, and will list those parts we feel are general enough to be part of GAT, and we
then will end with technical issues that should be improved to enhance the programming experience
with GAT.

5.1 The Good

As we have seen in the examples presented in section 3.3, Grid programming becomes easier when
assisted by the JavaGAT API. The details of different approaches to achieve a given operation on a
given object are well hidden inside the adaptors implementing the respective object interfaces. The
GAT engine will dynamically load a set of appropriate adaptors and delegate the requested operation
to them. Though not required, the user is able to specify which adapter should be used for a given
object, through the preferences passed to the GAT engine at instantiation time, as shown below.

Preferences prefs = new Preferences ();
preferences.put ("file.adaptor.name", "gridftp");
File file = GAT.createFile (context, prefs, fileURI);

There is a high degree of flexibility, without diminishing the highest achievable degree of transparency

— more about the limitations on transparency can be found in section 5.3. The benefits of hid-
ing details are best shown in the small code excerpt given below, with the use of context and
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preferences as discussed in section 3.3.1. The intricacies of creating an object that would com-
municate to a RMS are kept from the Grid developer, which only has to create an object with the
org.gridlab.gat.resources.ResourceBroker interface, an action comparable in coding effort with
the creation of a org.gridlab.gat.io.File object.

GATContext context
Preferences prefs
ResourceBroker broker

new GATContext ();
null;
GAT.createResourceBroker (context, prefs);

Another good feature of the JavaGAT design is the availability of different levels of error messages.
While for adaptor writers it is recommended to use the gat.debug system property when testing their
programs, the rest of the users should consider the use of gat.verbose system property for high level
debug purposes.

5.2 The Bad

To us, the functionality in GAT we missed most is its lack of brokerage awareness. Admitting the
fact that Grids will get larger and larger, we think it is a mistake to let the programmer deal with the
brokerage issues. The same remark applies to scheduling, where some very basic default scheduling
policies, like FIFO, would often provide enough functionality for simple load balancing.

At the moment, the only way for the GAT user to have its application automatically scheduled on
multiple clusters is to use the GRMS adaptor [18]. While GRMS provides an optimal transparency to
the programmer, its not fully stable yet and still under development. The cost for this transparency
will then come with poor performances to schedule jobs over an entire Grid — the issue is to know if
using GRMS does not cost more than it buys by taking smart scheduling decisions.

We believe a tradeoff could lie in a distributed flavor of GRMS, possibly making decisions based on
partial knowledge. We could for instance imagine to have a simple brokerage adaptor running at
each GAT application and take decisions based on samples received from an external services like [11]
— please note that this scheme would be quite similar to the ‘Smart Sources’ mechanism used in
peer-to-peer systems to prevent the ‘best’ nodes to be flooded with requests when using a centralized
information system component.

Finally, making GAT aware of its environment would improve its transparency, e.g. by letting it
negotiate with clusters and determine the resource management system they are running. We saw in
section 3 that we have to specify in advance which cluster is using which system. This substantially
complicates the programming when having to submit jobs over heterogeneous resource management
systems. Having GAT performing service discovery would, once again, help the programmer to write
portable Grid applications.

5.3 The Ugly

As promised in section 5.1, we will try to list some of the limitations of the provided transparency we
stumbled upon while developing our MPEG encoder application. One issue is related to credentials:
As the application is Grid-empowered, the need of valid credentials is critical. Still, validating the
credentials is bothersome action and automating the process would help. We tried to figure out where
the problem actually lies, and it turns out it is not the responsibility of JavaGAT, nor of Globus
credentials management system. In this case, the achievable degree of transparency is dependent on
the Certificate Authority rules for certificate protection. In our case, that CA is run by DutchGrid [4],
and does not allow a certificates pass-phrase to be empty. This is not the case with SSH authorization
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system, which is based on private/public key protocol and which allows for pass-phrases to be empty,
hence allowing the login process to be fully automated. As a conclusion, the limitation on transparency
where credentials are involved is strongly related to credentials specific protection mechanisms, which
are under the strict control of the security component governing the given Grid.

Another issue is related to the main topic of section 5.2: In the current state of JavaGAT where
ResourceBroker adaptors are concerned, the Grid developer which would like to have the application
run on the real Grid and not on the local machine, needs to use the following code excerpt, which may
not be very intuitive:

GATContext context = new GATContext ();

Preferences prefs = new Preferences ();

preferences.put ("ResourceBroker.adaptor.name", "globus");
preferences.put ("ResourceBroker.jobmanager", "pbs") ;
ResourceBroker broker = GAT.createResourceBroker (context, prefs);

While it is true that the overload of dynamically deciding whether the application should run on the
Grid or on the local machine is not worth the transparency gain, a compromise could still be made.
The user should be able to indicate that the application needs to be gridified in a more abstract
fashion, e.g. by using:

GATContext context = new GATContext ();

Preferences prefs = new Preferences ();

preferences.put ("ResourceBroker.type", "remote");

ResourceBroker broker = GAT.createResourceBroker (context, prefs);

In JavaGAT, to create the incarnation of a Joinc task (Job), the user has not only to provide the de-
scription of the software representing the task, but also a description of possible run-time environments
for this task. This is achieved by specifying a org.gridlab.gat.resources.ResourceDescription
(a set of software and hardware run-time requirements), or a org.gridlab.gat.resources.Resource
(representing a specific resource). Once the JobDescription object has been created it can be used
to obtain as many Jobs for the task as the user would like to have. The Job object is returned by the
broker after successfully submitting a job that meets the JobDescription specifications.

Map attribs = new Map Q);

attribs.put ("machine.node", "fs0.das2.cs.vu.nl");
ResourceDescription rd = new HardwareResourceDescription (attribs);
Job j = broker.submitJob (new JobDescription (sd, rd));

Finally, a rather technical issue was raised by the gridlab.gat.resources.Job.getJobID method.
Though the return value is a “globally unique identifier for the physical job corresponding to this in-
stance” [7], it is no longer available after the Job object state changed to something different than
Running or Submitted. When many jobs need to be monitored, as is the case of our MPEG encoder
implementation, the globally unique identifier might prove a better way to select finished jobs from a
list of all submitted jobs, rather than using the jobs object reference. Again, this is a technical issue,
but following the definition of a globally unique identifier as given in [17], one might wonder why the
job IDs cannot be retrieved from the job object in any given state of the job.

6 Conclusion and future work

In this contribution we discussed our experience writing a Grid-parallel MPEG encoder using the Java
version of GAT. After having briefly introduced what an MPEG encoder is and in which context it
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can be distributed, we talked about the general issues GAT is supposed to solve, and further explained
how GATSs design team chose to address these issues. We finally came to the main point of this paper
by showing to what extend GAT simplifies application development.

We then presented the approach we chose to parallelize and implement the MPEG encoder. By intro-
ducing an additional layer between the application and GAT we showed that it is possible to completely
hide the distribution from the user, while at the same time making Grid programming portable and
straightforward. As an example we gave some insights about a previous experience we had with using
RMI for parallelizing the same application. However, distributed programming schemes have their
own applicability and our point is not that RMI should be generally replaced by GAT, but merely
that Grid programming without Grid-awareness is better served by GAT.

The overall conclusion after working with JavaGAT is optimistic. Though there are bad and ugly
things to be considered, neither of them seems to be insurmountable. In our opinion, it is just a mat-
ter of further development and real-world user feed-back to make the JavaGAT a truly transparent
and flexible Grid application development toolkit.

We are now planning to port our MPEG encoder application on the worlds first “virtual city super-
computer”, the Almere Grid testbed in the Netherlands. While still only few information are available
about the project, there would already be more than 2.000 machines connected through the 100 Mbit /s
fiber network built across the city. This would be an incomparable environment to introduce one of
the very first Grid application useful for users.
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Abstract

In this paper, a task parallel application is implemented with Ninf-G which is a GridRPC system, and
experimented on, using the Grid testbed in Asia Pacific, for three months. The application is programmed
to run for a long time and typical fault patterns were gathered through tens of long executions. As a
result, unstable network throughput was determined to be one of the biggest reasons for faults. Then,
an important point for application developers is stressed, reminding them to avoid serious decline of
task throughput during operations for faults, by timeout minimization for fault detection, background
recovery and duplicate task assignments. This study also issues a steer for design of the automated
fault-tolerant mechanism in a higher layer of the GridRPC framework.

1. Introduction

Recently, much has been expected of the Grid computing infrastructure in terms of large-scale com-
putation for scientific discovery. A user will always have reasons to use a remote computer, but the Grid
offers hope for scientists to be able to finish several-years-computation in several weeks. In addition, the
Grid middleware technology that the Globus Toolkit[1] represents is being developed and matured based
on past research. Indeed, various experiences on development and evaluation of Grid-enabled applica-
tions, such as a climate simulation[2], solving Einstein’s equations[3], and etc., have been reported and
they showed the possibility of the Grid as a ready and realistic infrastructure to be used by real science.
There is, however, still a severe problem caused by unreliability of the Grid towards making the Grid a
infrastructure for large-scale scientific applications.

Sudden faults and scheduled/unscheduled maintenance of networks, machines and software interrupt
the promise of long running applications. For example, it is usual that a hard disk on a computing
node in a cluster composed of more than 100 nodes will crash at least once in several months. A
Grid-enabled application should be fault-tolerant and it is expected to have capabilities to detect faults
appropriately and cope with the faults without terminating the entire execution of the application. In
order to implement fault-tolerant applications, there is a need to develop applications and advanced
middleware to overcome the instability of the Grid, but few discussions about what kinds of faults will
happen and how middleware and applications can cope with those faults.

Several researches on fault-tolerant mechanisms have been reported, however the proposed scheme
could be applied to a specific category of applications or immature for use by real applications. For ex-
ample, Condor[4] implements checkpointing and process migration, however they are practically usable
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Table 1. Major APIsand the corresponding error codes

API | Possible fault detected | Error code

grpc_function_handle_init() DNS query failure GRPC_SERVER_NOT_FOUND
Server machine is down. GRPC_SERVER_NOT_FOUND
Network to server is down. GRPC_SERVER_NOT_FOUND
Globus-gatekeeper is not running. GRPC_SERVER_NOT_FOUND
GRAM invocation fails at authentication. GRPC_OTHER_ERROR_CODE

grpc_function_handle_destruct() | - -

grpc_call() TCP disconnection during data transfer GRPC_COMMUNICATION _FAILED
RPC failure to disconnected server GRPC_OTHER_ERROR_CODE

grpc-call_async() TCP disconnection during data transfer GRPC_COMMUNICATION _FAILED
RPC failure to disconnected server GRPC_OTHER_ERROR_CODE

grpc_cancel() - -

grpc_wait_any() TCP disconnection (for nonblocking data transfer) | GRPC_SESSION _FAILED
Hearbeat has timed out. GRPC_SESSION_FAILED

only to a single job submission. Several works on fault-tolerant MPI have been reported[5, 6], however
they are still in the research phase and still immature for use by real applications.

In this research, we investigated how to make Grid-enabled applications fault-tolerant. We have de-
veloped a task-parallel application with Ninf-G which is a GridPRC system[7], and made experiments
on, using the Grid testbed in Asia Pacific, for three months. Our application implements simple fault-
tolerant mechanism in order to run as long as possible. Through a long-term experiment, we analyzed
fault patterns that actually happened and improve fault-tolerant functionality in the cost of fault detection
and recovery operation, towards future support by the higher library of the GridRPC. In this paper, we
summarize several notes in developing an application that needs a long run, and also indicate what func-
tions middleware should offer. In Section 2, we will give an overview of the GridRPC and the Ninf-G
library. Section 3 describes the implementation of a fault-tolerant application with Ninf-G. Details of
the long-term experiment, experimental results and insight gained through the experiment are described
in Section 4. Section 5 describes related works and Section 6 gives summary and future works.

2. Ninf-G design for fault-tolerance

Ninf-G is a reference implementation of the GridRPC. In this section, the basic concept of developing
the GridRPC application, which has the fault-tolerance, using the Ninf-G, is introduced.

2.1 Overview of GridRPC

GridRPCJ8], which is an RPC mechanism tailored for the Grid, is an attractive programming model
for Grid computing. The programming model is that of standard RPC plus asynchronous, coarse-grained
parallel tasking, in practice there are a variety of features that will largely hide the dynamic, insecure,
and unstable aspects of the Grid from programmers. The GridRPC API has been proposed for standard-
ization at the GGF (Global Grid Forum, http://www.gridforum.org) since 2003, in order to make the
compatibility between several RPC-functional Grid systems.

Ninf-G[7], which is currently Version 2 and built on the Globus Toolkit Version 2, provide the
GridRPC-based programming model to develop task-parallel applications easily. This work is per-
formed with Version 2.2.0 of Ninf-G released on September 10, 2004. So far, a climate simulation[2]
and a replica exchange Monte-Calro simulation[9] have been implemented to evaluate the basic perfor-
mance and scalability of Ninf-G. However, there has been no deep analysis of fault-tolerant application
development.
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Figure 1. Connection between client and server of Ninf-G

Basically, GridRPC is a client-server model and it is assumed that some server processes are running
on a remote resource to execute a specific routine. In developing a task-parallel application, both client
and server programs are implemented separately and the client program calls the GridRPC function to
carry out the remote routine. This paper describes ”server” as a Ninf-G server process and “client” as a
Ninf-G client process. Those terms don’t indicate a specific machine or computer resource.

Regarding the GridRPC programming and the Ninf-G behavior, a client creates several function han-
dles each of which represents a mapping from a function name to an instance of that function on a
particular server. A TCP connection between client and that server is established at this moment. After-
wards, all RPC calls using that function handle will be executed on the server specified in that binding.
In the case of asynchronous RPC, the client can wait for a specific RPC using the Session ID given in
the asynchronous call function. The Session ID is an identifier representing a particular asynchronous
call and it can be utilized to cancel the call or check the status of the RPC. At the end of the program,
all handles are released to end each server with the TCP disconnection. The client keeps those TCP
connections during this flow, such as that shown in Figure 1. The connection must be established and
maintained normally so that the application works. In other words, any faults will be detected on the
client by looking at the status of all connections to the servers.

2.2 Fault-tolerance and GridRPC API

For application drivers, scheduled/unscheduled interruption for networks and machines cannot be
avoided on the Grid environment when running their applications. An application program should con-
tinue to be processed in spite of that interruption, or it could be restarted midway. Although the middle-
ware is expected to support applications that can do those things without complex operations required of
the users, it has not been available at the production level, as described in Section 1. On the other hand,
the GridRPC standard provides a primitive API set, and fault-tolerant functions should be supported in
higher APIs. According to the GridRPC design, the primitive API detects any faults appropriately, and
informs the application program rapidly. Specifically, the called GridRPC API should return a corre-
sponding error code. In the case of that the error code will not be back, the heartbeat function provided
by Ninf-G will be useful for an application program to avoid the deadlock.

2.3 Error handling

Table 1 shows major GridRPC APIs and the error codes that will be returned in encountering er-
rors for the Ninf-G client. Discussion of the error codes is on-going at one of the working groups of
GGF, but Ninf-G provides them based on the draft. As Table 1 shows, different kinds of faults corre-
spond to the same error code, and it is impossible to know what happened or why the fault happened
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just by reading the error codes. Because the error codes only show the status of the system, appli-
cation developers can describe how their program should work, based on that status. For example,
GRPC_COMMUNICATION_FAILED means there is a disconnection between client and server on the
RPC route. After the error occurred, the handle is invalid until the client recreates the handle as it is
programmed. The application developer of Ninf-G should describe in the client program when the client
restarts the server, or where it does so.

2.4 Heartbeat function

Ninf-G provides a heartbeat function that sends a small packet periodically from server to client, in
order to avoid disconnection by firewall software because there is no packet communication for a certain
period of time. This function is also utilized to check if the server works without errors. If many packets
are dropped on the network, this function will prevent the client from waiting for incoming data and
being blocked forever.

An application user should set a timeout value to close the TCP connection if no packets arrive within
the timeout seconds. If timeout has occurred, grpc_wait_any() would be returned with the GRPC _SES-
SION_FAILED code and the server handle would be invalid.

3. Implementation of TDDFT with fault-tolerance

A sample program reviewed in this study implements a TDDFT (Time-Dependent Density Functional
Theory) equation[10]. TDDFT is a molecular simulation method in computational quantum chemistry,
and it treats multiple electrons excitation directly, using techniques from quantum mechanics. An orig-
inal program of TDDFT contains a hotspot to be processed in parallel using hundreds of CPUs, and
the hotspot is iterated thousands of times to get an accurate result. This iteration requires a long-time
execution. In our implementation, therefore, the hotspot is divided into several tasks that are executed
in parallel. Figure 2 shows the simple flow of our TDDFT calculation. The flow consists of 1) Con-
figuration of input data and parameters, 2) Multiple-tasks execution in parallel, using Ninf-G and 3)
Calculation of the sequential part. 1) is only performed in the first loop and then 2) and 3) are repeated
as times as a user wants.

In the Ninf-G application, a user should have responsibility for creating a server handle which is
related with the server that the user wants to use. This insists on user-level implementation to manage
the servers to which a task is assigned and to handle down servers for fault tolerance. For the long run
of TDDFT, simple server management and task assignment methods are implemented including fault
discovery and recovery operation, which are explained in this section.

3.1 Ninf-G server management and task assignment

As shown in Figure 2, each task of 2) must be processed after 1), which includes reading input data
about molecules and setting given parameters. In this paper, the first RPC is named the ”initialization
method,” and the second RPC is named the “main method.” An array generated by the initialization
method is maintained and can be referenced by the main method; that is a feature of the remote object
provided since Ninf-G version 2. In particular, TDDFT requires the same initialization on all servers,
before performing the main method. The simple flow of a TDDFT process is to initialize an array on all
servers and then submit one task to them. A server that has finished the task will be given another task
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by the client. All tasks in each time step must be complete before the next step. On the basis of the flow,
our program implements status management of all Ninf-G server processes as shown in Figure 3.

a) The status of a spawned server process is ”Invoking.”

b) The status moves from ”Invoking” to ”Idle” after completion of the initialization method.
¢) A task is assigned to the ”Idle” server and its status is ”Busy” during calculation.

d) The status returns to ”Idle” after a task has finished without error.

3.2 Fault discovery and the recovery operation

In this paper, our motivation to implement fault tolerance is to enable a long-time execution on the
real Grid. To achieve this goal, the client should not stop at any faults and the server which suffered the
faults should be restarted when it becomes available again. Those two points are least requirements for
our experiment and they are implemented in the application program.

When faults happen, the TCP connection between client and server is closed and the server process
automatically exits. In the client, an appropriate error code is returned by the GridRPC system as de-
scribed in Section 2.3. Therefore the client is programmed to change the status of the server which
returns the error to "Down.” Any tasks will not be assigned to "Down” server any more.

For the server process to be restarted by the client, the client is programmed to destroy the server
handle and create it after the fault is solved. Subsequently, the initialization method is called because
the remote-object function is utilized in this case. When those processes are completed, the status of the
server moves to "Idle.” Since this TDDFT program requires the same initialization method on all servers
and the calling parameters are static, it is possible to register the initialization method so that it is called
again at recovery time.

A recovery operation is implemented to check the status of all servers every hour, find a handle array
whose handles are all invalid, and recreate the handle array. The handle array is a set of handles on
compute nodes which belong to the same cluster. The design of the handle array is based on the fact that
the Ninf-G client requests the server process using GRAM (Grid Resource Allocation Manager) of the
Globus Toolkit, and that the Globus gatekeeper also submits the server invocation to a local job manager,
such as PBS or LSF. Because GSI (Grid Security Infrastructure) authentication of GRAM takes a certain
overhead, the client will ask for multiple-servers invocation with one request with GRAM. Several nodes
that are running a server managed by the same GRAM request will not be released even if one of them is
down. The batch system is not suitable to restart only some Ninf-G servers among the servers managed
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by one server handle array, because normal servers will also be restarted in vain. The recovery interval
should be considered when figuring the cost of this operation.

4. Experiments
4.1. PRAGMA routine-basis experiment and its testbed

A developed TDDFT application was experimented as a PRAGMA routine-basis experiment. The
Pacific Rim Application and Grid Middleware Assembly (PRAGMA)[11] is an institution-based orga-
nization, consisting of twenty-seven institutions around the Pacific Rim who are dedicated to building
sustained collaborations and to advancing the use of Grid technologies in applications among a com-
munity of investigators working with leading institutions around the Pacific Rim. Applications are the
focus of PRAGMA and are used to bring together the key infrastructure and middleware necessary to
advance application goals.

Asia Pacific Partnership for Grid Computing (ApGrid)[12] is an open community encouraging collab-
oration. As of the end of May 2005, 49 organizations from 15 economic were participating in ApGrid.
PRAGMA and ApGrid have been collaboratively building Grid testbed in Asia Pacific region.

PRAGMA routine-basis experiment was initiated in May 2004 and its purpose is to learn require-
ments and issues for testbed operations and developments of Grid-enabled applications through exercise
with long-running sample applications on an international Grid testbed. PRAGMA routine-basis ex-
periment was contacted by San Diego Supercomputer Center (SDSC) and TDDFT application is one
of the applications used in the routine-basis experiment. One of our interests in this experiment is to
watch actual fault patterns and discuss how to implement more appropriate fault-tolerance than tentative
implementation. The experiments continued for 3 months, from June 1 to August 31 in 2004. For the
routine-basis experiment, we provided a dedicated testbed which includes computational resources from
AIST (Advanced Industrial Science and Technology, Japan), SDSC (San Diego Supercomputer Cen-
ter, USA), KISTI (Korea Institute of Science and Technology Information), KU (Kasetsart University,
Thailand), NCHC (National Center for High-performance computing, Taiwan), USM (University Sains
Malaysia), TITECH (Tokyo Institute of Technology, Japan), NCSA (National Center for Supercomput-
ing Applications, USA), UNAM (Universidad Nacional Auténoma México) and BIl (Bioinformatics
Institute, Singapore).

4.2 Results of the long run

The client program achieved a total of 906 hours (about 38 days) execution time during the experi-
ment. The maximum number of sites that ran the Ninf-G server at the same time was 7 and the maximum
number of CPUs was 67. The longest execution started at 20:00 JST on July 7, 2004 and continued un-
til 16:00 JST on August 4, for a total of 164 hours (about 7 days). The execution environment of the
longest run used 59 servers spread over 5 sites, as shown in Table 2. The Ninf-G client ran on the AIST
node and it started the servers on remote sites using the server handle array. Throughput in Table 2 was
measured by sending a 1 MB message from the AIST node to the remote-site node using TCP before
the experiment. This TDDFT execution was able to divide the parallel part into 122 tasks in each loop.
4.87 MB of data was transferred from the client to the server on each RPC and 3.25 MB of data was
transferred from the server to the client, as the result of the calculation.

Figure 4 shows the history of the live servers without the NCHC site. The reasons that the client
recognized the server as ”Down” are as follows: 1) Data transfer failed at low network throughput, 2)
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Figure 5. Transition of task throughput

The TCP connection was closed without notification to the client, and 3) The node was down because
of heat problem or disk error. 1) and 3) were detected within short time by the TCP disconnection but
2) was only detected by the heartbeat timeout. Reasons identified as "Down” servers were 67% for 1),
31% for 2), and 2% for 3) during the longest run.

Figure 5 shows the task throughput per hour. The reason that the task throughput was zero at 130
hours after start is that a boot request for the servers was queued for about 5 hours. As the execution
time of one task was short, most tasks were processed on the AIST resource. If one of the remote sites
was unavailable due to a fault, the task throughput tends to be higher. Nevertheless, the task throughput
decreased during the time that the number of live servers was changing. Two reasons are considered
as reasons for this problem. One is that the client program waits for all of the unfinished tasks each
loop to be completed, and the resubmission caused by the fault might be the bottleneck. In addition,
fault detection with the heartbeat takes from 300 to 400 seconds. The other reason is that the recovery
operation for the "Down” server is sequentially executed while task submission is pending. The solution
is described in Sections 4.3, 4.4, and 4.5.
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Figure 6. Transition of network throughput

4.3 Stability of the network on the testbed

The KU node encountered faults more frequently than the SDSC node even when network throughput
did not differ very much. Therefore, we investigated the details and the reason for the TCP disconnection.
Figure 6 shows the network throughput of the AIST-SDSC path and the AIST-KU path every 20 minutes.
The throughput of the AIST-KU path changed dynamically, and was sometimes very poor.

During 20 hours of TDDFT execution with 1 client on AIST, 4 servers on AIST and 4 servers on
SDSC, the frequency of TCP retransmission from the client to the servers was 0.014 %. The same
measurement with 1 client on AIST, 4 servers on AIST and 4 servers on KU showed 0.11 % as the
retransmission ratio. The 8 times higher value also indicates that the TCP disconnection between AIST
and KU was caused by an unstable network.

4.4 Improvement of fault detection

When the TCP socket was closed normally by a data transfer error of data transfer, etc., Ninf-G
can detect the fault instantly. However, the detection will be delayed by at least the timeout seconds
when the fault can only be found by the heartbeat timeout. But, if a user sets too small a number as
the timeout value, a small delay will be judged as a fault and a normal connection may be terminated.
We experimented how many seconds the heartbeat might be delayed by, in order to set an appropriate
heartbeat timeout value.

Table 3 shows the receive intervals of the heartbeat with the program execution on 4 servers each on
AIST, SDSC and KU. The servers on AIST and SDSC send a heartbeat packet every 60 seconds. The
servers on KU send it every 80 seconds. If the client has not received any data or heartbeat by the time
the interval has passed 5 times, that is, no data for 300 or 400 seconds, the RPC operation will be judged
to be a heartbeat error. However, the heartbeat uses the same connection as the data transmission, so the
heartbeat will not be received during data transmission. Instead of that, data arrival will be treated as a
heartbeat reception. For this reason, the appropriate timeout value depends on how many seconds data
transmission takes on average, and at the maximum, such as shown in Table 3.

In our experiment, the heartbeat, from SDSC and KU were delayed but the longest heartbeat arrival
interval was shorter than the longest data transmission plus the heartbeat sending interval. Therefore,
the total timeout seconds to give-up the RPC seems better to be set slightly longer than the longest data
transmission, and shorter than the longest data transmission plus the heartbeat sending interval. On the
other hand, it is effective that the heartbeat sending interval is shorter, and the allowed count of the
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Table 4. Cost of therecovery operation [sec]
Table 5. Cost of the background recovery [sec]

[ AIST | SDSC | KU

1) Server halt 0.00709 | 0.00465 | 0.854 No fault 215.62
2) Server check 0.556 2.37 1.67
3) Server restart 4.83 10.6 2.80 Background recovery | 216.26
7) Initialization | 6.74 367 | 481 Foreground recovery | 263.35
Total time 12.1 16.6 53.5

heartbeat sending interval passed is large, in order to save on the cost of timeout wait.
4.5 Improvement of recovery operation

4.5.1 Recovery cost

From the results in Figure 5, it is revealed that the recovery cost affects task throughput. It is important
to estimate the recovery cost appropriately and to minimize the cost by adjusting the timing or frequency
of the operation. The cost of each recovery procedure was measured on 3 sites, AIST, SDSC, and KU
and summarized in Table 4.

First of all, it is necessary to restart the server by releasing the server handle. In the case of starting
the servers using the handle array, even not ”"Down” servers are also restarted. The release of the handles
to halt the server is shown in 1) in Table 4. 2) is used to request the globus gatekeeper to start the servers
again. The client tries to get access to the globus gatekeeper, pass authentication, and request to the local
scheduler. After all of these tasks are done, the server starts normally and notifies this to the client in 3).
4) is an operation used to call the initialization method to the server after 3). The cost of 4) depends on
the particular application. The total cost includes operations 1) to 4).

The results shown in Table 4 represent the best value obtained out of 3 trials. The difference among
3 sites comes from divergence of processor speed, network performance, configuration of the local job
manager and Globus, and etc. More cost to restart the KU servers might be required, depending on
the network throughput. 3) and 4) take more time than 1) and 2) but those are server-side operations.
The client should be processing other things while 3) and 4) are going on so that the costs of 3) and
4) are hidden from the client. If the recovery failed due to continuous network problems, etc., an error
will occur in 2). 2) can be summed up as many retries of the recovery, but it can also be hidden by
background operations with thread programming.

4.5.2 Background recovery

On the basis of the discussion in the last section, the background recovery was implemented with one
thread that performs operations 1) to 4). For evaluation purposes, 2 sets of 6 servers were started on the
AIST node to avoid unstable network performance and heterogeneity of computer performance. One of
the sets was halted in the first loop during task processing, and the recovery operation was done after
the loop. The foreground recovery process sequentially performs 4) for each server and waits for the
recovery before the sequential part of TDDFT. The background recovery is moving on to the sequential
part of TDDFT while the recovery is being tried. Table 5 shows how many seconds the calculation took
for the sum of the first loop and the next. It was found that the background recovery took almost the
same time as execution without the halt.
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4.6 Discussion

In this fault-tolerant application development for a long run, the fault detection is implemented by
catching the error code of the GridRPC API. Then, subsequent process is cancelled, a failed job is re-
submitted to another server, and an affected server is recognized as "Down” on the error condition.
Nevertheless, it is not possible to detect the situation that a client freezes by waiting for unreceived
packets for all time. The heartbeat function is necessarily enabled in execution to exit the trouble. In
the experiment on the ApGrid/PRAGMA testbed, most faults were caused by decline of the network
throughput. We learned the following points from our long-run experiment in order to make a sophisti-
cated fault-tolerance mechanism into the development and execution of the GridRPC based application:

e The heartbeat function is useful to detect the fault on an unstable network. To improve usability
of this function, it is expected to configure the timeout value automatically because the best value
IS not easy to be determined statically and easily.

e In case that the initialization method takes time, the cost of the server recovery will be large and
processed in background. This issue is obvious but users should care more when a task requires
initialization. In addition, the cost of the initialization method depends on the application.

e There is no method to determine how long the fault might continue. Periodic trials of the recovery
cost a certain time, but it is revealed that the cost will not be large as a proportion of the total time.
Naturally, a background trial is expected in implementation of the higher-level of GridRPC API.

e There is an issue with how some ”Down” servers can be treated by the same handle arrays as other
normal servers, and can be restarted. A tradeoff exists between the restart cost of normal servers in
vain, and no use of the servers that can be used at this restart. This should involve some functions
of the local scheduler.

e When the remaining tasks are few, duplicate task assignment is very effective because failure of
the final task increases waiting time due to the need for recalculation. Our results showed serious
decline of task throughput without duplicate assignment.

5. Related work

There are other middlewares such as Condor MW/[13] and Ninf-C[14] based on Condor, that imple-
ment a similar function to RPC. They achieve the checkpoint and the task migration at the middleware
level, and an on-going-task can be restarted from some midpoint on another server. Netsolve[15], an-
other implementation of GridRPC, provides automatic resubmission of a failed task to another server but
no restart from a midpoint. In contrast to those middleware suites, Ninf-G does not provide a specialized
information server that can treat a Ninf-G task. Ninf-G is designed such that fault-tolerance and server
management should be implemented in the application level or in the higher middleware. Our work is
important from the viewpoint of discussing fault-tolerant application development using the primitive
GridRPC API. This will bring higher functionality of the GridRPC.

The faults we met in this experiment depend on the current Ninf-G that attempts to keep the TCP con-
nection between client and server. The reason for keeping the connection is to obtain better performance
for fine-grained task parallel processing. This paper does not focus on the issue of the long establishment
of a TCP connection. NetSolve, which does not keep the connection, will not have an effect on the client
program so much as against a network fault. However, the discussion about the failure of the heartbeat
or data transmission is still necessary. The lessons learned from our experiment are useful for long-run
applications to save costs in fault detection and server recovery.
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6. Conclusion and future works

In this paper, several important points to be considered in the development and execution of a task-
parallel application that can be run for a long time on the Grid have been discussed. Our client program
was simply implemented with consideration to the error handling of the GridRPC for fault detection and
management of the Ninf-G server to assign a task or to recover down servers. The recovery operation
supported the remote object, too. Through the routine-basis experiment, typical fault patterns and ratio
were inspected. Then our tentative implementation was improved for efficient resource utilization. In
particular, minimizing of timeout-based detection, background recovery, and duplicate task assignment
in advance were rewarding. However, they are plainly complicated in implementation and could be
reproduced by several application users. They should be implemented in middleware and the result in
this paper is a signpost to the design of a higher-level interface of the GridRPC and an increase in its
functionality. In the new interface, we plan to design an easier function to submit multiple tasks one
time over the primitive GridRPC APIs, including automatic and quick server recovery.

In addition, this paper raises an issue of faults at remote side, while the client is a single point of
failure and it is assumed that users choose a reliable machine to run their clients. As our future works,
restart of the client, rollback and resubmission of the task which was interrupted by client’s fault, should
be designed in the higher layer over the GridRPC.
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Abstract

DMOVER is a combination of three highly portable scripts and a network optimization
specific to the Pittsburgh Supercomputing Center (PSC). DMOVER provides users with
a queue-oriented means for initiating large, parallel, inter-site data transfers that is
expected to be familiar to all mainstream HPC users. lIts flexibility enables users to
effectively manage a parallel, load-balanced transfer of hundreds of files between
dozens of file servers. It provided these highly-desirable features at a time when they
were not present in other standardized grid services and which remain elusive on some
platforms. Performance measurements consistently indicate that file transfers remain
disk-rate-limited and that the DMOVER strategy of maintaining parallel streams is a
highly efficient means for aggregating available resources.

1. Introduction

The Extensible Teragrid Facility' (ETF) is a massive collection of high-performance
computing, networking and storage resources woven together by a software
infrastructure designed to extend its functionality and ease of use to the current
generation of scientific researchers. This substantial task has turned out an
interconnected web of authentication & authorization, data transfer, job management
and accounting software that can still confuse even informed users. Many developers
within the ETF community have rededicated themselves to eliminating this confusion,
redesigning some interfaces or providing additional tools to ease the learning curve for
users in the hopes that this will deliver the promises of grid computing to mainstream
users. “DMOVER™ is one such effort at the Pittsburgh Supercomputing Center (PSC)
directed at facilitating large, inter-site, parallel data transfers.

1.1. Problem Summary

Data migration is a recurring challenge for most ETF users. Despite the presence of a
high-performance network and file transfer middleware, moving thousands or even
hundreds of files across the ETF network can still be a slow or tedious process for
mainstream users — those with a lower tolerance for instability or infrastructural
complexity. Such users are perceived to be dependent upon resources and utilities
delivering exceptional performance (in this case, aggregate bandwidth) exactly as
advertised every time. This is an obvious challenge to the resource administrators and
middleware and system software developers.

Furthermore, a recent survey of Hierarchical Storage Management (HSM) utilization at
PSC revealed that over 93% of data stored in our HSM are transferred in “sessions”
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involving 10 or more files. In such sessions the average number of files was 378, with
an average file size of 93 MB. So if we are to adequately address the problem of
transferring real datasets it must be in a context of facilitating transfers with large file
count and moderately large files.

1.2.  Solution Summary

DMOVER? is fundamentally an integration effort unifying three readily available
resources on “LeMieux™, PSC’s 3000+ processor ETF computing resource. First,
DMOVER uses the batch scheduling system to allocate both dedicated file servers and
Application GateWay (AGW) nodes (see Section 3.4). Second, it uses the standardized
grid file transfer tools (e.g. globus-url-copy) to transfer files resident within
LeMieux’s global parallel scratch file systems. And third, it uses a transparent
communication library called Qsockets to redirect TCP-based traffic from the default
Ethernet network to the Quadrics QSNet-based computational interconnect and to the
ETF network via the AGW nodes. DMOVER executes these transfers in parallel,
managing a user-definable number of transfer streams until all designated files are
transferred.

2. Problem Details

At PSC we were motivated by the expressed concerns of a particular user who had a
clearly specified need: to transfer terabytes of data from PSC to the San Diego
Supercomputing Center (SDSC) in a timely manner. (Transfer rates at the time, he
complained, were typically of order 1-83 MB/s—more characteristic of an scp client than
of any high-performance tool). If we failed to establish an effective channel then this
user would simply not compute at our site. So we were motivated to write our own
solution both to raise the performance and to “lower the bar”, making it likely that this
user would use our solution in this case and perhaps others.

We first surveyed the grid middleware tools at our disposal, listed following.

e The globus—url-copy* client even in recursive mode was clearly inadequate,
due to the observed deficiency of single-stream bandwidth and the high file count
involved. Other grid data transfer clients (e.g. gsincftp), while providing a
slightly different interface, deliver no better performance.

e “Striped GridFTP”®’, a protocol for sending parts of a single file in parallel via
multiple 3"-party transfers, was not yet available at that time. At present it is still
not available for Tru64 UNIX due to a reliance upon the Globus Toolkit V4.08,
which does not exist yet for that OS. Nevertheless, the unsuitability of this
protocol to the transfer of large file counts is confirmed by the command line
switch required to activate it (“-big”, pertaining to file size).

e The uberftp® client supports a parallel mode which is expected to be effective
for 3"-party transfers but of limited usefulness for direct transfers (client-based
upload/download). The parallel streams in this case are implemented in such a
way that each file is divided in <N> parts (where <N> is specified on the
command line) but all transfers terminate at the client’s host. This inherently
limits the total aggregate bandwidth to the network connection of the client host,
although it may benefit cases in which single-stream bandwidth has lower hard
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limits.

e Reliable File Transfer (RFT) has also been only recently deployed. It is
generally well-suited to the parallel transfer of large numbers of files, and the
administrator-configured number of parallel streams by default is of order 12 to
15. However, it relies on the presence of 3"-party GridFTP servers for accessing
all of the storage in question. As noted above, this alternative is unavailable
within LeMieux, since it is running Tru64 UNIX.

10,11

If users are forced to write their own “helper scripts” or other tools in order to use our
middleware they will simply not adopt it.

3. Solution Details

We resolved to build a light-weight parallel aggregation layer over globus-url-copy,
to at least utilize its authentication scheme and tunable options. Our aggregator, now
known as DMOVER, incorporated the following components at the PSC site:

1. Parallel file servers: LeMieux contains a pool of 64 file servers that export a
global parallel file system. At present 16 of these are dedicated to a reserved
“DMOVER” queue for allocation by the scheduling system.

2. QSNet'%: LeMieux is interconnected by a high-performance Quadrics network
called “QSNet”, which routinely delivers DMA transfer rates of order 250 MB/s
per NIC. The Application GateWay (AGW) nodes, HSM cache nodes, and
Rachel (rachel.psc.edu) are also on the PSC QSNet.

3. Application GateWay (AGW) nodes'®: PSC maintains a scalable number
(currently 16) AGW nodes dedicated to relaying network traffic between the ETF
network and PSC’s internal QSNet. Each node has interfaces on the ETF
network, the PSC LAN, and the PSC QSNet. Because there are a finite number
of AGW nodes, we have configured these nodes are a scheduled resource,
allocated by our batch scheduling system.

4. Qsockets': Developers in PSC’s networking group have created the “Qsockets”
system, which unites a Qsockets server that serves as a data router and a client
process via the QSNet. Qsockets provides a client library that intercepts normal
TCP socket function invocations in legacy binaries running on LeMieux compute
nodes and relays them over the QSNet to the Qsockets server resident on an
AGW node. The server then passes the traffic on to the ETF network or
whatever external network is most appropriate. In this way processes within
LeMieux gain virtual interfaces to the ETF network.

Our solution requires a user to do three things:
1. Acquire the proper grid credentials (no different than for normal grid operations)
2. Specify source and destination by changing a few (4-6) lines in a batch script
3. Queue a job to a dedicated DMOVER queue (via the same queuing system with
which they are already familiar)

The scheduling system itself allocates the requisite number of AGW nodes for parallel,

multi-stream transfers. The DMOVER suite expands the source specification into a list
of target files, builds the command lines, and launches multiple transfer streams in
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parallel, keeping a fixed number of streams running through the AGWs at all times until
all transfers are completed. Below are details describing each of the components.

DMOVER consists of a trio of scripts: a batch script, a process manager and a transfer
agent (command line wrapper). This solution required no modifications or additions to
any other existing elements at any site.

3.1. The Batch Script

The first script in the trio is the DMOVER batch script (e.g. dmover.pbs). A user
submits this script to the scheduler (OpenPBS) to initiate a transfer. The advantage of
this approach is that batch scripts are highly familiar to all HPC users. This eliminates
the usage barrier of interface style. Figure 1 below shows a sample job script that a
user could queue to initiate DMOVER transfers to SDSC via 4 parallel streams.

#PBS -1 rmsnodes=4:4
#PBS -1 agw_nodes=4

# root of the file(s)/directory(s) to transfer
export SrcDirRoot=$SCRATCH/mydata/

# path to the target sources, relative to SrcDirRoot
export SrcRelPath="*.dat"

# destination host name

export DestHost=tg-c00l.sdsc.teragrid.org,
tg-c002.sdsc.teragrid.org,tg-c003.sdsc.teragrid.org,
tg-c004.sdsc.teragrid.org

# root of the file(s)/directory(s) at the other side
export DestDirRoot=/gpfs/uxl123456/mydata/

# run the process manager
/scratchal/dmover/dmover_process_manager.pl
"S$SSrcDirRoot" "$SrcRelPath" "SDestHost" "S$DestDirRoot"
"SRMS_NODES"

Figure 1: Sample DMOVER job script.

Number of Streams

Note first that the user specifies the number of streams for the transfer by setting both
the number of nodes to use from the dedicated pool of file servers (rmsnodes=4:4)
and the number of AGW nodes (agw_nodes=4). These directives are for the
scheduling system, thus are prefixed with the “4PBS —-1”" resource specification. Per-
stream performance is optimal when using one process per node (e.g.
“rmsnodes=4:4") as compared to sending multiple streams from the same file server
(e.9. “rmsnodes=1:4", representing a request for 1 node on which 4 processes will
run). Furthermore, performance is best when the number of AGW nodes reserved
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matches the number of transfer streams. (See Section 5 below for a more thorough
discussion of number of streams and performance.)

Source Path

The “srcDirRoot” specifier identifies the absolute root path to the files to be
transferred. This is a convenience that may or may not help the user in specifying
“SrcRelPath”. The “SrcRelPath” variable specifies the files and/or directories to be
transferred relative to “SrcDirRoot” by name or by wildcard. In the case where there
is a single directory tree to be transferred this is a straightforward process. But the
value of SrcRelPath is expanded in the DMOVER process manager script by UNIX
glob, which may in general match a large number of files and/or directory trees. The net
result is that the process manager converts this information into a list of file targets to be
transferred.

Destination Host

The destination is specified as a hostname string. In general that string can be a
comma-separated list of valid hostnames. This was preferable over using some DNS-
based host aliases because earlier versions of globus-url-copy would abort
transfers in the case where the gethostbyname () invocation returned a server that
was down as the first entry in the IP list. By allowing users to specify only servers that
are up and available we enabled them to avoid known potential problems if they so
choose.

This understated feature is of extreme relevance to bridging the gap between “early-
adopters” and “mainstream users”. There is often a disconnect between the tools used
by these respective groups — one arcane version for early adopters and one “simple”
version for mainstream users. The latter is often “simpler” because it is completely
different, and many of the control interfaces are removed or obscured.

In this case we provide one single field for specifying a destination host. It can either be
something “simple”, like a single DNS-based host alias (e.9. tg-
gridftp.psc.teragrid.org) or it could be a list of selected server names (e.g. tg-
c001.sdsc.teragrid.org, tg-c002.sdsc.teragrid.org,...). But in either
case the vehicle is the same, and the user can specify as little or as much detail as
desired. This strategy effectively bridges the complexity gap by allowing either case,
growing with the users as they grow their experience.

The next script level, the DMOVER process manager, will use a round-robin scheme to
utilize all of the available hosts in turn for each successive transfer, thus achieving a
basic level of load-balanced parallelism.

3.2. DMOVER Process Manager

As noted above, the process manager (dmover_process_manager.pl) parses and
expands the values of the source and destination variables the user specifies in the
batch script, building a list of specific transfers from these values. It then spawns an
independent transfer for each case, launching a fixed number of transfers in parallel.
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As earlier transfers finish the process manager selects another transfer from the list of
remaining targets and starts it. Although the process manager itself runs on one of the
OpenPBS “mom” nodes (currently configured as the LeMieux login nodes) the transfers
are initiated remotely on the dedicated file servers allocated to the DMOVER queue.

This mode of launching many parallel transfers simultaneously is precisely what many
users have been missing. This is contrasted with striped transfer, which is typically only
advantageous for small numbers of very large files. To clarify, if all other transfer
characteristics are equal, parallel streams will generally out-perform striped streams for
cases where the number of files is much larger than the number of servers. And, as
noted in the introduction, the average number of files transferred in a typical “session” is
an order of magnitude greater than the number of file servers available at any site.

3.3. DMOVER Transfer Agent

Each of the parallel transfers is a single execution of the DMOVER transfer agent
(dmover_transfer.sh). The transfer agent merely executes the Globus transfer
client of choice (currently globus-url-copy). It uses the source and destination
arguments supplied by the process manager and supplies these and other proper
defaults to the file transfer client. But before it executes the Globus transfer it modifies
the LD preload path (_RLD_LIST) to allow the otherwise “normal” TCP socket
operations of the transfer client to be redirected over Qsockets, described in detail
below. Using this technique we have benchmarked single-stream memory-only
transfers across the ETF using globus—-url-copy at roughly 1 Gb/s, or the theoretical
maximum per-stream bandwidth for the hosts available.

The encapsulation of the final execution command line in the transfer agent script also
provides a place for advanced users to optimize their transfer. For example users could
select an alternative grid file transfer client (e.g. gsincftp) or customize their
command line parameters to suit their needs by either modifying the provided script or
substituting their own in the process manager.

3.4. AGWs and Qsockets on LeMieux

“LeMieux” is the largest compute resource on the ETF today. Its architecture leverages
the high speed QSNet interconnect between nodes, but does not inherently provide for
large bandwidths to remote hosts. Instead of connecting each compute node to the
ETF network directly our design team introduced the concept of Application GateWay
(AGW) nodes.

AGW nodes have network interfaces both on the ETF network (2 x 1 GigE NICs per
node) and on the PSC QSNet network (1 QSNet NIC per node). The two-to-one
matching between GigE and QSNet NICs led to a natural division of each AGW node
into two “virtual” nodes, one serving each GigE interface. Each virtual node is equipped
with a Qsockets “Qserver” that routes traffic from the PSC QSNet network (e.g. from
LeMieux) to the ETF in a seamless manner. This configuration is so successful that an
AGW node has no difficulty filling each of its GigE pipes from the QSNet, as described
below. On the LeMieux side, Qsockets provides a client library that intercepts TCP-
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related system functions. In the case of setup/tear-down or ioctl functions, Qsockets
merely passes these to the AGWs as requests over a QSNet-based RPC protocol. In
the case of send operations the data is transferred over the QSNet to the AGW and
from there routed to the ETF (and the converse for receive operations). In this manner
processes running on LeMieux compute nodes can behave programmatically just as
though they were directly connected to the ETF. This is all achieved without modifying
any source or compiled code in the target application.

The efficiency and effectiveness of this strategy were proven during the “Bandwidth
Challenge” during the SC’04 conference in November of 2004. In preparation for
SC’04, PSC established a team whose purpose it was to design an end-to-end science
demonstration suitable for the Bandwidth Challenge. The strategy of this team was to
use a real scientific application that was instrumented to write its checkpoint data to a
remote file server over a TCP connection. That much of the application had been
created years prior as part of a simple checkpoint-recovery demonstration. For the
Bandwidth Challenge, this application was redirected to transmit data not merely over
Ethernet but over a combination of the QSNet and a custom 40 Gb/s link to the SC’'04
show floor without changing any networking code in the application, but merely by
setting the LD preload path as described above. Using this configuration that team
sustained a write bandwidth of over 31.1 Gb/s end-to-end: from 32 LeMieux compute
nodes, over 16 QSNet / dual GigE-connected AGW nodes, to 7 10GigE-connected file
servers on the SC’'04 show floor. This clearly demonstrates the high performance (high
aggregate bandwidth) and low overhead (31.1 Gb/s over 32 GigE links on only 16
nodes) of the Qserver routing protocol on the AGW nodes.

4. Portability

The queue and process elements described above are completely portable. Every
super-computing site has a scheduling system that can facilitate remote execution of
multiple transmission streams on specialized nodes. Furthermore, the DMOVER scripts
are written in Perl and Bourne shell, which is certainly accessible at all high-
performance computing sites. The only non-portable aspect of this system is the
AGW/Qsockets layer, which is a custom interconnect feature. Other sites have
addressed their networking needs differently, for example by connecting compute nodes
directly to the WAN. So the AGW/Qsockets layer does not require portability. If the
DMOVER scripts were run at other sites mainstream users could simply comment out
the AGW/Qsockets-related lines and run as at PSC.

Whether users would want to import DMOVER to a non-PSC site remains a valid
question. Without DMOVER the only parallelism available to mainstream users is the
number of GridFTP servers that have been configured by the site administrators. With
DMOVER users have only to queue a DMOVER transfer job to a valid execution queue
and they can utilize as many parallel streams as are available on that compute
resource. This constitutes a perfectly reasonable utilization of HPC resources and a
mainstream user’'s compute allocation.
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5. Performance

Below (Figures 2a and 2b) are performance measurements recorded for DMOVER
transfers involving 32 files of size 2 GB (blue diamonds), 100 files of size 200 MB (red
squares) and 300 files of size 100 MB (green triangles) from PSC (/scratchb?2) to
SDSC (/gpfs). These represent two reasonable test cases and a typical user storage
scenario (as noted in Section 1.1), respectively. The transfers were performed varying
the number of streams, and the bandwidths are reported as a function of number of
streams. Figure 2a is a plot of the average per-stream bandwidth and Figure 2b is a
plot of the bandwidth aggregated over all streams. At the time of testing the compute
resource LeMieux was fully loaded. Thus the values represent a typical case for
mainstream user activity. Indeed these results are consistent with lower values
observed in other more optimal circumstances.
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Figure 2: a) Average, per-stream bandwidth and b) aggregate bandwidth of DMOVER
transfers for three file sizes, as labeled.

First we observe the trends in the data. In all cases we observe that the per-stream
bandwidth for larger files is greater than that for smaller files. In fact, our 2GB test case
achieves roughly double the bandwidth of the 100MB “average user” case. This
exposes the extent to which the protocol overhead requires longer transfers to amortize
the per-stream setup cost. We further observe that the per-stream bandwidth
decreases with increasing number of streams. Thus the upward pressure to minimize
aggregate transfer times is clearly at odds with the downward pressure of the scalability
of the parallel transfers.

The aggregate bandwidth measurements are perhaps more encouraging. Even for the
highest number of streams shown we do not appear to have reached a plateau or a
point of diminishing returns for increasing stream count, despite the loss in efficiency.
So we clearly demonstrate that users can easily achieve several hundred MB/sec
aggregate with DMOVER by selecting the appropriate number of streams for their file
Slze.
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We continue by analyzing the host and network configuration underlying these results.
At the sending side the number of hosts and associated GigE interfaces was matched
to the number of streams, up to a maximum of 16. At the receiving side, the maximum
was 12. Since the highest per-stream bandwidths observed up to 12 streams represent
only 20-30% of the available network bandwidth to each host, the limitation is clearly not
in the network. Furthermore, since (at least for cases with 12 or fewer streams) the
transfer clients at each end are running on separate hosts we know that the processes
cannot be adversely impacting one another. And yet the observed per-stream
bandwidth clearly decreases with increasing stream count, even below 12. We
conclude that the predominant bottleneck is in the parallel file systems at one or each
end. To isolate this further (e.g. identify the limitations at each end) we would have to
use the same transfer tool (globus—-url-copy) to run device-only copies (e.g. from
/dev/zero 10 /dev/null). This feature is not yet supported by globus-url-copy
for file:// type transfers. Device-only transfers between servers, however, have
been benchmarked in excess of 110 MB/sec—wire speed for GigE-connected hosts.

Various groups have created ongoing ETF network and GridFTP diagnostics that
continually monitor the performance of the network. One such effort is the PSC
“SpeedPage”.’® This tool has indeed measured point-to-point single-stream bandwidths
in excess of 90 MB/sec for some sites and file systems. This further supports the
conclusion that investment in high-performance parallel file systems will make the
greatest difference in inter-site GridFTP transfers.

6. User Experience

While the SC’'04 Bandwidth Challenge well-established the efficiency and effectiveness
of Qsockets for routing high throughput traffic from legacy applications, this is not
sufficient to demonstrate its usefulness in the context of grid computing. The ultimate
measure of the success of grid computing is the number of users and applications that
use it to succeed in tasks that they could not have otherwise accomplished. The
original incentive to create the DMOVER framework was the expressed need of an
experienced user who wanted to migrate large amounts of data (of order Terabytes) in
large numbers of files (of order thousands) from PSC to SDSC. Furthermore, he
wanted to do this with regularity — not merely once or as a proof of concept. This
motivated us to create an infrastructure to achieve substantial throughput from end-to-
end between file servers at opposite ends of the country using Globus tools.

The resulting product is DMOVER, as described above. After using it himself our target
user observed that this tool got him “past the Globus roadblock”. He transferred
Terabytes of data from PSC to SDSC at roughly 200 MB/s aggregate. So the
parallelization model of DMOVER was precisely what enabled this user to achieve this
level of aggregate performance.

7. Conclusions

DMOVER is a tool for initiating load-balanced parallel file transfers between sites on the
ETF network. It achieves scalable aggregation of parallel streams thereby achieving a
high effective bandwidth for large file-count transfers. Furthermore, this file-wise mode
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of parallelism is expected to be most applicable to typical user scenarios within the ETF
community. DMOVER is an invaluable bridge between the raw grid services and the
needs of mainstream users. Although the Globus ToolKit (GTK) incorporates similar
functionality in RFT'® even that utility is limited by administrative configurations (having
sufficient GridFTP servers running wherever your data is staged) and code portability
issues (GTK is not available on all platforms). If there are few or no servers running in
such a location that they can effectively serve the file system of interest then
mainstream users would be forced to resort to some other file transport system like
DMOVER. Fortunately, with the portability and simplicity of DMOVER this should
remain a viable option for mainstream users for the foreseeable future.
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Abstract

GeneGrid is a collaborative industrial R&D project initiated by the Belfast e-Science
Centre, under the UK e-Science Programme, with commercial partners involved in the
research and development of antibodies and drugs. GeneGrid provides a platform for
scientists, especially biologists, to access their collective skills, experiences and results in
a secure, reliable and scalable manner through the creation of a ‘Virtual Bioinformatics
Laboratory’. It enables the seamless integration of a myriad of heterogeneous
applications and datasets that span multiple administrative domains and locations across
the globe, and present these to the scientist through a simple user friendly interface. This
paper presents how the grid services of GeneGrid are involved in the integration of
bioinformatics applications as well as in the creation and execution of in silico
experiments. A real use case scenario is also presented, involving the identification of
novel members belonging to a protein family, for demonstrating the capabilities of
GeneGrid. Experiences from the adoption of standards such as OGSA and the integration
of third party programs, are also presented.

1. Introduction

Genome sequencing and post-genomic technologies such as microarrays, are
creating an explosion in the number of biological datasets to be managed, integrated
and analysed, pushing bioinformatics to the forefront of disciplines that need huge
computing power and highly collaborative environments. The emergence of grid
computing technologies has opened up an unprecedented opportunity for biologists to
integrate data from multiple sources, in spatially distant locations, which can be
seamlessly analysed leading to a greater chance of knowledge discovery.
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GeneGrid is a UK e-Science industrial project with the involvement of companies
interested in antibody and drug development. The aim of GeneGrid is to provide a
platform for scientists to access their collective skills, experiences and results in a secure,
reliable and scalable manner through the creation of a “Virtual Bioinformatics Laboratory’
[1]. GeneGrid accomplishes the seamless integration of a myriad of heterogeneous
resources that span multiple administrative domains and locations and provides the
scientist an integrated environment for the streamlined access of a number of
bioinformatics and other accessory programs through a simple interface. It allows
biologists to create, execute and manage workflows that represent bioinformatics
experiments. Such workflows automate and hence accelerate the experiments, preventing
errors that usually creep in because of manual interventions.

This paper presents the architecture of GeneGrid and its implementation based on the
existing international standards. Experiences from developing Open Grid Services
Architecture (OGSA) [2] based grid services using Globus Toolkit for the integration of
bioinformatics applications and databases as well as the use of GeneGrid in the creation
and execution of in silico experiments are discussed.

2. GeneGrid Architecture

GeneGrid consists of a number of cooperating Grid services developed based on the
OGSA and using Globus Toolkit ver 3 (GT3). GeneGrid services may be categorised
logically into different components, namely Workflow Management, Resource
Monitoring & Service Discovery, Data Management, Application Management and the
Portal, which are discussed below.

2.1. Application Integration

Access to the bioinformatics applications available on various resources is provided by
the GeneGrid Application Manager (GAM) [3, 4]. GAM achieves this integration through
two types of OGSA-based grid services: GeneGrid Application Manager Service Factory
(GAMSF) and the GeneGrid Application Manager Service (GAMS).

GAMSF is a persistent service, which extends the standard interfaces or Port Types,
like GridServiceFactory of the Open Grid Services Infrastructure (OGSI) [5] to integrate
one or more bioinformatics applications to the grid, and exposes them to the rest of the
GeneGrid. The primary function of GAMSF is to create transient instances of itself called
GeneGrid Application Manager Services (GAMS) which facilitate clients to interface with
the applications.

Any client wishing to execute a supported application will first connect to the GAMSF
and create an instance - the GAMS. This newly created GAMS then exposes to the client
the operations which allow the client to execute the supported application as an extension
to the operations provided by the OGSA Grid Service interface. Each GAMS is created by
a client with the intention of executing a given application, and after completion of this
task the GAMS is destroyed. Currently GeneGrid integrates a number of bioinformatics
applications including BLAST [6], TMHMM [7], SignalP [8], ClustalwW [9] and HMMER
[10]. In addition, GAM also integrates a number of custom programs developed to link the
tasks in a workflow. Figure 1(a) gives an overview of the components that provide the
GAM functionality.
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2.2. Database Management

The GeneGrid Data Manager (GDM) is responsible for the integration and access
of a number of disparate and heterogeneous biological datasets, as well as for
providing a data warehousing facility within GeneGrid for experiment data such as
results [11]. The data integrated by the GDM falls into two categories. 1). Biological
data consisting of datasets available in the public domain, e.g. Swissprot [12], EMBL
[13] etc. and proprietary biological data private to the companies. 2). GeneGrid data
consisting of data either required by, or created by GeneGrid, such as workflow
definitions or results information.

GDM has used OGSA-DAI (http://www.ogsadai.org) as the basis of its
framework, enhancing and adapting it as required, such as for providing access to
flat file databases. GDM consists of two types of services, replicating those found in
OGSA-DAI. The GeneGrid Data Manager Service Factory (GDMSF) is a persistent
service configured to support a single data set. The main role of the GDMSF is to
create, upon request by a client, transient GeneGrid Data Manager Services (GDMS)
which facilitate interaction between a client and the data set (Figure 1b).

- -~

e |- S T

)

Figure 1. A client accessing (a) an application, e.g; BLAST on another resource through
GAMS and (b) a database e.g: Swissprot through GDMS

-

2.3. Workflow Management

GeneGrid Workflow Manager (GWM) is the component of the system responsible
for the processing of all submitted experiments, or workflows, within GeneGrid
(Figure 2). As in the case of GAM, there are two types of services in the GWM. The
first, the GeneGrid Workflow Manager Service Factory (GWMSF) is a persistent
OGSA-based grid service. The main role of the GWMSF is to create GeneGrid
Workflow Manager Services (GWMS), which will process and execute a submitted
workflow across the resources available. Each GWMS is a transient grid service
which is active for the lifetime of the workflow it is created to manage. The main
roles of this service are to select the appropriate resources on which to run elements
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of the workflow, as well as to update the GeneGrid Status Tracking and Result &
Input Parameters (GSTRIP) Database with all status changes. GWMS gets
information on resources, databases, GDM services and GAM services through the
GeneGrid Application & Resources Registry (GARR).

2.4. Resource Monitoring & Service Discovery

GARR is the central service in GeneGrid that mediates service discovery by
publishing information about various services available in GeneGrid. A lightweight
adaptor present on all the resources called GeneGrid Node Monitor (GNM) updates
the GARR with the status of the resources, such as load average and available
memory. In addition GNMs may also be configured to advertise details of the
services deployed on the resources, such as service name, type, location and the
database or application they integrate.

2.5. Portal

The GeneGrid Portal provides a secure central access point for all users to
GeneGrid and is based upon the GridSphere product [14]. It also serves to conceal
the complexity of interacting with many different Grid resource types and
applications from the end users’ perspective, providing a user friendly interface
similar to those which our user community is already familiar with. This results in a
drastically reduced learning curve for the scientists in order to exploit grid
technology.

Submission and execution of a

workflow containing a BLAST task.
The client will first connect to the
GWMSF to create a GWMS

XML\ instance, before forwarding the

HDDﬁ workflow XML to the newly created

| GARR GWMS. The GWMS identifies the
BLAST task within the workflow

S '

" and queries the GARR for the

location of all suitable GAMSF. The
GWMS will then submit the task
XML to the most appropriate GAM

XML for execution. The GWMS will also
%H O find the location of the GDMSF
GDMSF serving the GSTRIP database from
= the GARR in order to submit
e updates as to the status of this
] BLAST task.
GSTRIP

Figure 2. Workflow management by the GeneGrid Workflow Manager (GWM)
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3. GeneGrid Component Integration

GeneGrid Environment (GE) is the collective name for the core distributed
elements of the GeneGrid project, which allow the creation, processing and tracking
of workflows. Contained within the GE is at least one GeneGrid Portal, at least one
deployment of both the GARR and the GWMSF, an implementation of each of the
GeneGrid Workflow Definition Database (GWDD) and the GSTRIP database, as
well as at least one GDMSF configured to each of these databases. All instances of
any factory services mentioned above may also be considered elements of the GE.
By allowing users to access a GE, we create a Virtual Organisation (VO), and hence
each GE may be considered as a single installation of GeneGrid.

Bioinformatics applications and datasets are exposed to the GeneGrid Environment by
GAMSF and GDMSF respectively. These GAM and GDM services make up the
GeneGrid Shared Resources. Each GAMSF and GDMSF advertises its existence and
capabilities to a GE via GNM on their hosting nodes registering with the GARR. It is
possible for GNM to register with many GARR services across multiple GE allowing the
resources to be shared between multiple organisations. Therefore, organisations have
complete control over what resources, if any, they wish to share with other GeneGrid
organisations, forming dynamic virtual organisations.

4. GeneGrid Operation

Standard GeneGrid operation is workflow driven with scientists interacting with the
system via the GeneGrid Portal to both generate and track workflows.

4.1 Workflow Creation

Having created GDMS for accessing both the GSTRIP and the GWDD, and having
uploaded the Master Workflow Definition Document, the GeneGrid Portal is ready to
create and submit new workflows. Users interact with the Portal to select required tasks,
and fill out web based forms as presented by the Portal in order to generate a new
Workflow XML document. The Portal will also upload information to the GSTRIP
database as it is provided by the user. Once the user is happy with the workflow they have
created, they may submit it for processing. The Portal will then connect to the GARR to
retrieve the location of the GWMSF, and request it to create a GWMS instance. This
newly created service is then sent the workflow XML for processing.

4.2 Workflow Execution

Having received the Workflow XML, the GWMS will proceed to break the workflow
into its constituent tasks. The GWMS will connect to the GARR to find the locations of
suitable GAM or GDM services capable of executing any tasks ready for execution. Tasks
which rely upon the results of others are placed in a queue until such time as the
information upon which they are dependant becomes available. The GWMS will also
update the record for each task, and hence the workflow, within the GSTRIP database as
appropriate.
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4.3 Usability

GeneGrid development has seen a strong emphasis placed upon making the use of
Grid technology as easy as possible for biological scientists. Currently, to perform an
involved bioinformatics experiment with publicly available web sites would be a long
tedious task with the user being asked to take a very “hands-on” approach at all times.
This hands-on approach can be both time consuming and error prone. GeneGrid has
automated this process considerably. Users may create a complex experiment from a
single standard interface. As the linking of tasks together is automated, this considerably
reduces the time required by the scientist to sit at a terminal! This point is emphasised
further when we consider the recycling of experiment workflows by the end user to run
the same experiment repeatedly with different input data each time. The absence of the
need for manual intervention also reduces considerably the amount of errors that may
“creep” into the process. Such automation has required the development of a number of
custom “linker” applications for transforming the results of one application or database
operation into something which can be understood by another. However, the GeneGrid
Portal is designed to intuitively include such linker tasks into the workflow, allowing the
scientists to concentrate on the applications and database with which they are familiar.

5. Use Cases

Scientists from the partner companies have tested the GeneGrid prototype by way
of executing workflows which are biologically relevant. Such use cases have proved
invaluable in providing feedback to the developers leading to bug fixes and further
improvements. The use cases also set new requirements which led to the evolution of
GeneGrid to a robust and versatile system. One such use case for the identification of
novel protein family members is described briefly here.

Siglecs are a family of cell surface proteins belonging to the large
Immunoglobulin superfamily, with a number of characteristic features shared among
the members. They are involved in cell—cell interactions and signalling functions in
the haemopoietic, immune and nervous systems [15]. The effort in this case study is
to find new members of this promising family among the genomes using GeneGrid.

5.1 Use Case Workflow

In order to run such an experiment with existing technologies and resources would
be a tedious time consuming task with quite a high risk of error. The scientist would
take a known siglec sequence as the input for BLAST to find alignments, and when
the results were available, extract all the accession numbers of interest to obtain the
protein sequences. Each accession number would then have to be queried on line
against the SwissProt database, with the resulting sequence being passed by the
scientist into TMHMM. At this point, the experiment has forked from one
experiment to multiple parallel experiments which must be tracked, and depending
upon the BLAST configuration in the first step, the scientist could be tracking the
progress of sequences numbering into the hundreds! The resulting TMHMM files
must then be examined by the researcher, and if the file is of interest, the sequence
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used as input must be forwarded to SignalP, and again, the resulting files checked for
success.

Using GeneGrid the scientist may create the experiment described above as a
single workflow by supplying all the required input parameters. GeneGrid will
automatically execute each task within the workflow once all the required data for
that task becomes available. GeneGrid simplifies the experiment further by
automatically including linker tasks on demand which are used to pre-process the
results of one stage so that they are compatible with another e.g. BLAST results are
processed to find all accession numbers before querying the SwissProt database.

This automation cuts the time required by the scientist to set up and track
experiments considerably with GeneGrid managing the tracking of all experiment
threads, and also eliminates the errors which creep in via manual intervention by the
researcher. Finally, through the GeneGrid Portal, the scientist may track the progress
of the experiment, examining the input and output files used at each point in the
experiment.

Execution of the above workflow resulted in six uncharacterized and potentially
new siglecs, which are currently being characterized using further procedures.
Execution of the workflow, which would have taken about a day with conventional
methods involving manual access to applications, took about 20 minutes in
GeneGrid. This acceleration is largely due to the automation and parallelization of
task execution, as well as the optimal use of available resources.

6. Discussion and conclusion

The use of grid technology and standards which are in the infancy has made
GeneGrid development a challenging one. Furthermore, bioinformatics programs and
databases usually have different proprietary formats and generally do not follow any
standards. This has made the integration of multiple programs and data sources in
GeneGrid quite difficult. A simple workflow which a biologist wishes to execute
may not often suggest the underlying complexity in joining the tasks in the
workflow.

The use of products from other projects also presented obstacles as those products
are either in developmental stages or do not address GeneGrid’s requirements in its
entirety. Sometimes such problems were alleviated by the extension of the third party
products with custom solutions. For example, as GeneGrid required access to a
number of flat file databases, OGSA-DAI product was extended to provide the
required functionality.

The ability of GeneGrid to overcome these issues and provide automation of
workflows shows distinctive advantages over conventional methods, a few of which
are listed below.

e GeneGrid’s secure single access point provides users with a means to easily access
many diverse applications and datasets without the need to visit many web sites.

e Automatic monitoring and selection of resources removes a major burden from the
user, while ensuring an efficient allocation of resources.
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e Considerably less time spent by the user creating and managing workflows.

e Errors which may creep in as a result of manual intervention are avoided.

e The ease of use of the GeneGrid front end means that scientists may exploit the
promising potential of Grid technology while being insulated them from the inherent
complexity of new underlying technology.

Thus, the development of a functional prototype of GeneGrid and its use in the problem
of identifying new siglecs have clearly illustrated the viability of utilising grid services for
integrating heterogeneous Bioinformatics programs with diverse requirements on different
resources while following a workflow based approach.

7. References

[1] P. Donachy, T.J. Harmer, R.H. Perrott et al, “Grid Based Virtual Bioinformatics
Laboratory”, Proceedings of the UK e-Science All Hands Meeting (2003), 111-116

[2] I. Foster, C. Kesselman, et al., “The Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration”, Open Grid Service Infrastructure
WG, Global Grid Forum ( 2002)

[3] P.V. Jithesh, N. Kelly, D.R. Simpson, et al “Bioinformatics Application Integration
and Management in GeneGrid: Experiments and Experiences”, Proceedings of UK e-
Science All Hands Meeting (2004), 563-570

[4] P.V. Jithesh, N. Kelly, Paul Donachy et al “GeneGrid: Grid Based Solution for
Bioinformatics Application Integration and Experiment Execution”, IEEE Symposium
on Computer Based Medical Systems, Dublin (2005).

[5] S. Tuecke, K. Czajkowski, I. Foster et al., Open Grid Services Infrastructure (OGSI)
Version 1.0. Global Grid Forum Draft Recommendation, (6/27/2003).

[6] S.F. Altschul, et al, "Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs,” Nucleic Acids Res., vol. 25, pp. 3389-3402, Sep 1. 1997.

[7] A. Crogh et al, ““Predicting transmembrane topology,” J.Mol.Biol., vol. 305, pp. 567-
580, Jan. 2001.

[8] J.D. Bendtsen, H. Nielsen, G. von Heijne and S. Brunak, "Improved prediction of
signal peptides: SignalP 3.0," J.Mol.Biol., vol. 340, pp. 783-795, Jul 16. 2004.

[9] J.D. Thompson, D.G. Higgins and T.J. Gibson, "CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice,” Nucleic Acids Res., vol. 22,
pp. 4673-4680, (1994).

[10] S.R. Eddy, “Profile hidden Markov Models,” Bioinformatics, 14, 755-763 (1998)
[11] N. Kelly, P.V. Jithesh, D.R. Simpson et al, “Bioinformatics Data and the Grid: The
GeneGrid Data Manager”, Proceedings of UK e-Science All Hands Meeting (2004),

571-578

[12] R. Apweiler, et al, "UniProt: the Universal Protein knowledgebase,” Nucleic Acids
Res., 32, D115-9, 2004.

[13] C. Kanz, P. Aldebert, N. Althorpe et al, "The EMBL Nucleotide Sequence
Database," Nucleic Acids Res., vol. 33 Database Issue, pp. D29-33, Jan 1. 2005.

david.wallom@ierc.ox.ac.uk 67



GFD-1.068 29-03-06

[141J. Novotny, M. Russell, O. Wehrens, “GridSphere: An Advanced Portal Framework”,
Proceedings of EuroMicro Conference (2004), 412-419

[15] P.R. Crocker Siglecs: sialic acid binding immunoglobulin-like lectins in cell-cell
interactions and signaling. Curr. Opin. Struct. Biol., 12, 609-615 (2002).

david.wallom@ierc.ox.ac.uk 68



GFD-1.068 29-03-06

From Proposal to Production: Lessons Learned Developing the
Computational Chemistry Grid Cyberinfrastructure

Rion Dooley Kent Milfeld
Center for Computation and Technology Texas Advanced Computing Center
Louisiana State University Commons Center 1.154D,
Baton Rouge, LA 70803 J.J. Pickle Research Campus
dooley@cct.lsu.edu 10100 Burnet Road (R8700), Building 137

Austin, Texas 78758-4497
milfeld@tacc.utexas.edu

Chona Guiang Sudhakar Pamidighantam
Texas Advanced Computing Center National Center for Supercomputing Applications
Commons Center 1.154D, 605 E. Springfield Ave.
J.J. Pickle Research Campus Champaign, IL 61820
10100 Burnet Road (R8700), Building 137 spamidig@NCSA.UIUC.EDU

Austin, Texas 78758-4497
chona@tacc.utexas.edu

Gabrielle Allen
Center for Computation and Technology
Louisiana State University
Baton Rouge, LA 70803
gallen@cct.lsu.edu

Abstract

The Computational Chemistry Grid (CCG) is a 3-year, National Middleware Initiative
(NMI) program to develop cyberinfrastructure for the chemistry community. CCG is led by
the University of Kentucky, and involves collaborating sites at Louisiana State University, Ohio
Supercomputing Center, Texas Advanced Computing Center, and the National Center for Su-
percomputing Applications. In this paper we discuss our experience developing the CCG cyber-
infrastructure in the first year of the project. We pay special attention to sociological as well as
technical issues we faced, and look forward to challenges we foresee in the remaining two years.

1 Introduction

The term cyberinfrastructure, coined by an NSF Blue Ribbon Panel, refers to software which en-
ables scientists to exploit cutting edge technology resources, including compute and data servers,
visualization devices, instruments and networks, for advancing our research in science and engi-
neering.

The Computational Chemistry Grid (CCG) [1] is a three year NSF funded project to develop
a cyberinfrastructure to serve scientists engaged in studying molecular structure and function.
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Computational chemistry algorithms and software are now widely used across a broad range of
disciplines, including nanotechnology, biotechnology, and material science. Around the world users
of both commercial and academic chemistry software packages, such as Gaussian, GAMESS, MolPro
and NWChem, are major users of both high and middle end compute resources. CCG will leverage
existing established Grid middleware to provide an easy-to-use integrated computing environment
for these and other chemistry applications, including allocations on computing resources.

CCG is led by the University of Kentucky (UKy), and involves collaborating sites at Louisiana
State University (LSU), Ohio Supercomputing Center (OSC), Texas Advanced Computing Center
(TACC), and the National Center for Supercomputing Applications (NCSA). In this paper we
discuss initial experiences developing the CCG cyberinfrastructure through the first year of the
project and look ahead to challenges in the remaining two years. This paper discusses the important
issues faced, both technological and sociological, as well as the chosen solutions.

The remainder of the paper is as follows. In Section 2 we give an overview of the CCG and
the GridChem client application. In Section 3 we discuss the challenges of implementing the
technological infrastructure and the roadmaps developed at the start of the project. In Section 4, we
discuss some of the sociological issues of providing a community infrastructure. Finally, we outline
the current state of the CCG and show how the community is adopting this new infrastructure as
a means of facilitating their research.

2 Overview

The design of CCG, as shown in Figure 1, is a 3-tier architecture comprised of a client side GUI
application, a middleware service, and a resource layer. The client application, called GridChem,
is an open source Java application that remotely launches and monitors computational chemistry
calculations on CCG supercomputers at remote sites. GridChem is a ”lightweight” application and
is distributed as an ”executable jar” file. In the current release, installation includes downloading
the client and installing a server certificate that enables secure communication with the GridChem
Middleware Server (GMS) for authorization requests and notification. In future releases, we will
leverage the Java Web Start technology to wave the certificate requirement and automate the
process on behalf of the user

As mentioned in Section 1, the goal of GridChem is to create a powerful and useful tool for the
computational chemistry community that allows users to easily submit, monitor, and manage their
jobs using a large set of existing computational chemistry applications on a broad set of resources.
User interface design is a very important aspect of GridChem and a significant amount of effort
has been spent addressing chemistry and application specific issues relating to the user interface.
GridChem provides additional features such as application-specific molecular editors, output file
parsing, and ”hooks” to leverage customized visualization tools. More information on the GridChem
client can be found at [1].

It was realized very early in the project that a robust, Service-oriented Architecture (SoA) would be
needed to gain widespread acceptance by the user community. Problems of scalability, distributed
resource management, and the fluctuating nature of the Quality of Service (QoS) provided by each
resource are inherent in a static grid implementation. This is evident by the grid community’s
growing adoption of SoAs, such as WS-Is Basic Profile Compliant Web Services [2] , and the
upcoming Web Services Resource Framework (WS-RF) [3]. In both of these SoAs, services may
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Figure 1: The planned architecture for the Computational Chemistry Grid. CCG is implementing a Service-
oriented Architecture where the client utilizes the GMS for core functionality and the GMS in turn relies
upon a series of grid and web services to provide functionality to the client. The current CCG architecture is
very similar to the planned architecture. To move to this architecture, we will swap out existing CGI scripts
for the GMS web services shown.

be composed hierarchically, allowing us to focus on developing the necessary meta-services needed
for specific grid implementations, such as those in Section 3, rather than underlying low-level grid
services. Using this approach, as the quality of the base services improves, so too will the quality
of our meta-services.

Although the long-term goal of this project is to provide a robust, SoA, one of the primary de-
liverables in the first year of this project was to provide a production environment for users to
submit, monitor, and retrieve output from jobs. To meet our short term goal of usability and to
facilitate our long-term goal of implementing a robust grid architecture, we chose to first implement
server-side functionality (ie. the middle layer of our architecture in Figure 1) in CGI scripts. Thus,
the current middleware layer consists of basic grid middleware (Globus, NMI middleware distribu-
tion, etc.) and the client CGI scripts corresponding to individual client functionality. Using this
approach, we can replace CGI scripts one-for-one with their corresponding web-service implemen-
tation as they become available. We choose web services to implement the future middleware layer
instead of servlets or the existing CGI due to the complex nature of the final CCG architecture.
As you will see in Section 3, the middleware must provide several complex features that would be
difficult to achieve without heavy integration at the highest level. Using web services allows us
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to integrate the accounting, job submission, security, and monitoring components at a level not
possible in any of the individual underlying services.

The lowest level of the CCG Architecture is the resource layer which appears at the bottom of
Figure 1. The resource layer consists of the physical resources, local schedulers, resource-specific
low level information providers, and the software needed to run the computational chemistry ap-
plications on each machine. Included in this layer is a set of lexical scripts, called by the CCG
middleware, that collect resource information and place each job into the local batch scheduling
queue. The job queueing scripts are application specific and tailored to each machine’s unique char-
acteristics. As the middleware services mature, the scripts will be phased out in favor of server-side
resource brokering that will leverage robust software information provisioning.
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Figure 2: Sequence diagram of GridChem interaction with the GMS.

Further information on the interaction between the different CCG architectural layers is shown in
Figure 2. Notice that each action in the client is reflected by a call to the corresponding GridChem
Middleware Service. The GMS in turn, will leverage one or more underlying services to perform
the requested action. In this manner, GMS takes advantage of continually maturing grid services

without requiring significant development itself. More information on the CCG Architecture can
be found at [4].

3 Technological Issues

Creating a production grid environment poses several significant technological problems related to
security, software selection, account management, resource brokering, and accurate and up-to-date
information provisioning. In this section we address each of these issues in turn.
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3.1 Security

The CCG currently supports GSI, Kerberos, and Secure Shell security mechanisms. The decision
to support these various mechanisms was a trade-off between wanting to develop a full grid ar-
chitecture, and needing to gain wide community acceptance. Initially we decided to support all
mechanisms and then gradually migrate users towards GSI security via our community account.
The CCG community account is a multi-site allocation provided by each participating site to the
community. Through the community account, we provide full GridChem functionality to users
without requiring them to have an allocation on any individual machine.

Authentication and authorization both require significant planning. We first need to authenticate
the user in order to map their (potentially numerous) userids to their unique GridChem account.
This situation occurs when a user has multiple usernames on a machine and possesses more than one
grid certificate that can authenticate. In addition to keeping track of the user’s multiple identities,
we must keep track of the authorization technique to use with each identity (ie. GSI, Kerberos,
Secure Shell). Without such mechanisms, it is not possible to track account usage and determine
the correct way to authorize the users on each machine.

Because we knew many users would not be familiar with grid technology, we could not require
them to use their grid certificate for each operation they wished to perform. Additionally, we could
not ask them to install a large, complicated suite of grid middleware simply to use the GridChem
client. To avoid these issues, we allow users to authenticate to the GMS and perform all grid
functionality, such as creating, pushing, and pulling a user’s credentials from MyProxy [5], there,
where the installation of middleware and details of executing grid functionality are handled on the
user’s behalf.

An example authentication session using the GSI mechanism is as follows. A user starts the Grid-
Chem client and opens the ” Authenticate” panel. There, they select ”Myproxy” authentication,
enter their CCG username and password, then click on the ”Login” button. GridChem then
encrypts the username and password and sends them as arguments to the GMS Authentication
Service. The service checks to see if the user’s information is correct, then pulls a community
credential from our Myproxy server. Upon completion of this step, the user is authenticated and
can use the full functionality of the client without thought for the underlying security mechanisms
or having to authenticate again.

3.2 Accounting

Accounting is a fundamental concern for this project. Because we provide access to a community
account, we must track not only overall account usage, but also individual user utilization. Fur-
ther, we must solve each security scenario separately due to the unique characteristics of the job
submission workflow related to each technique. For the grid scenario, we solved this problem by
mandating individual user registration before granting use of the GridChem client application. By
controlling all account allocations, when a user logs in, we can track their activity by mapping their
chosen authentication technique to their CCG account using the DN from their grid certificate. We
currently store this information in a server-side database. By doing this, we can manage individual
accounts via a web interface or through GMS.

A problem which has proven to be much more difficult and remains an open question for this project
is accounting for user activity when the user submits jobs outside of GridChem. One solution is to
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rely on regular parsing of the history records from the local schedulers and reliable queue monitoring.
Often times, however this information is not readily available. Even assuming this information is
available, we still then need to develop mechanisms to map local machine accounts to CCG users.
When using GMS, we can locate user jobs by querying our database for using their unique user id.
In more general cases, however, we do not have such a luxury. Reverse mapping is very difficult,
if not impossible considering the user may use a special project account, a community account, or
simply a personal account issued under a different site allocation to run jobs not affiliated with
CCG.

To date, we have not found a definitive solution to this problem. Our primary focus at this time is
verifying accurate accounting of GridChem jobs. Once we are able to guarantee that all jobs are
audited correctly, we plan on incorporating information on the user’s other jobs into the auditing
process. However, as we mentioned above, it may not be possible to account for jobs not affiliated
with GridChem. In practice, this issue may not prove to be a problem. Users may use GridChem
for all their computational chemistry needs, or not hold GridChem liable for tracking their outside
jobs. Without an active user community to examine the situation further, we cannot be certain.
We expect that the general case will remain an open question until the project is well into its
production phase.

3.3 Resource Brokering

As mentioned in Section 2, the problem we address with the CCG is to provide cyberinfrastructure
for the computational chemistry community that enables them to submit and manage jobs using a
select set of well-known applications. Narrowing our focus from the general case to this specific case
of only supporting a few known applications simplifies the task of resource brokering. We know
what applications our user community will employ, we know the finite list of dedicated machines
on which the user will run these applications, and we are able to control the means in which this
introduction will happen. Using this information greatly reduces the complexity of our task and
allows us to again leverage the SoA paradigm to perform resource brokering at two distinct levels.

At the lowest level, we use grid schedulers to submit and manipulate the user’s job on every resource.
Existing tools such as Condor [6], the Grid Resource Management System (GRMS) [7], and GRAM
[8][9] fit this description. In order to avoid dependence on any one scheduling service, we leverage
the Grid Application Toolkit (GAT) API [10] which allows us to interchange grid schedulers without
altering our code base. It also allows us to take advantage of the best features of each technology
and provide an overall service that is more sophisticated than it’s individual parts. A good example
where we have the opportunity to leverage existing technology to solve low-level problems is proxy
certificate management. Computational chemistry jobs can vary in length from a couple hours to
many months. As job run time increases, so to does the possibility that a user’s proxy will expire
long before their job finishes. If the user’s proxy expires, all grid-based output file transfer will fail
due to an expired credential. Condor-G is a grid scheduler that performs credential management on
behalf of the user. Thus in the case of long running jobs, as an alternative to generating a credential
with an extremely long life, we are able to use Condor-G as the underlying grid scheduler to renew
the user’s proxy credential on their behalf.

At the highest level, we will provide sophisticated services to the user such as throughput scheduling,
economic scheduling, job monitoring, and notification. Intelligent scheduling of jobs, using different
criteria for optimality, is one of the second year goals of the project and is crucial in ensuring efficient
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use of grid resources. By definition, throughput scheduling seeks to maximize job throughput by
minimizing job turnaround time. Aside from requiring dynamic information that reflects current
resource utilization, throughput scheduling necessitates reasonable values of three parameters that
determine total job execution time, namely queue wait, data transfer and application run times. To
obtain estimates of these parameters (within some specified error bounds), our metascheduler will
utilize a web services-based prediction toolkit that implements the instance-based learning (IBL)
method pioneered by Smith [11].

The job scheduling, monitoring and notification services are made available through the rich re-
source descriptions pushed to our information service. Detailed software and hardware resource
descriptions allow us to integrate accounting into the decision making process, which in turn, en-
ables better decisions than could be made by a third-party broker.

With better information comes better accounting, with better accounting comes better brokering.
As we mentioned in section 3.2, we are working to provide more mature information providers and
an advanced accounting system. As of this writing, these systems are not in place, thus our current
resource brokering capabilities are dependent on the strength of the underlying grid schedulers we
employ: currently Condor-G and GRAM.

3.4 Information Provisioning

Accurate and dependable information provisioning is the largest single challenge of this project.
Without reliable information from all aspects of the system, we cannot make the necessary and
intelligent decisions on the user’s behalf. In line with our SoA architecture, we adopted the iGrid
information service [12] to supply resource information to the CCG. iGrid is a hierarchical informa-
tion service shown to perform several times faster than the Globus MDS [13]. The basic installation
of iGrid, however, did not provide resource descriptions that were descriptive enough to meet our
needs. Fortunately, iGrid is extendable and by working closely with the iGrid development team
we were able to create a resource description schema suitable for the CCG. This proved to be
relatively straightforward, taking less than a week, however, creating providers to discover local
resource information took significantly longer.

Over the last month we have created the Job And Machine Monitor Service (JAMMS). JAMMS
is a Perl script that pulls information on queues, running jobs, processor and machine utilization,
wait time, and history. JAMMS is run as a cron job at each site. By default, the script is set to
run every 5 minutes as a local user (e.g. ccguser). The Perl script uses the Perl Database Interface
(DBI) module for sending information to a MySQL data base (at www.gridchem.org). A PHP
program is used to extract information from the database and present it to the user, through their
browser.

JAMMS programs, called filters, execute batch utilities (for either PBS, LSF, or LoadLeveler), and
extract (filter out) needed information. Two or three batch utilities might be invoked from within
the Perl script to obtain the relevant information. For LSF, a single API program was developed
to quickly extract all relevant information. We are currently in the process of integrating the iGrid
API into JAMMS so it can serve as a provider to the iGrid information service.
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4 Sociological Issues

Equally as difficult as the technological problems associated with building a production grid are the
sociological issues. Accommodating individual site policies, putting software in place, administering
the various resources in a consistent way, and finding ways to to avoid stepping on each others’ toes
are all obstacles to overcome before a grid can ever be deemed, ”production”-worhty. This section
discusses how we have, in the past, and continue to address each of these issues.

4.1 Community Trust

Participating in a grid can prove difficult because it often involves compromise on security and
policy issues. Often this means agreeing to place a certain degree of control over the way local
systems are run in the hands of someone else. It is an issue of trust. We know our colleagues, but
how well do we really know them? Do we trust them enough to blindly issue accounts? Do we
trust them enough to commit time and manpower to install and maintain a predefined, and often
changing, software stack? Do we trust them to play by the rules by which we play? In short, how
can we make sure that we're good grid participants without leaving ourselves exposed?

In the CCG, we approach each of these issues with a healthy dose of open communication. We
are fortunate enough to represent sites of sufficient size and manpower to carry out the project,
yet comprise a group of people small enough to develop interpersonal relationships. Weekly Access
Grid [14] meetings allow us to "see” each other on a regular basis and connect visually with the
faces and voices behind the words. We implemented a solid system of documentation and discussion
using several media from the telephone to email and from instant messaging to group Wiki pages
[15]. This redundant level of communication and familiarity reduces the amount of insecurity and
hesitation that exists when ”strangers” are forced to work together.

Complementary to building trust relationships, we must build a level of certainty that people are
capable of performing the task at hand and dependable enough to carry out their work to the last
detail. Sometimes that means saying, ”I won’t have time to do that.” or, ”I’'m not sure how to do
that, let me do some reading and get back to you.” Being honest and accurate in our estimates and
asking for help when we necessary has allowed us to more effectively work as a team.

As is true in life, with trust and certainty come confidence in the integrity of our colleagues.
Through positive experiences with each other, we are reinforced with the knowledge that we are
working with a group of people ”just like us.” In short, by committing to be good grid participants
ourselves, we create an community of people who want to be good participants themselves.

Of course, not everything always works out as planned. We all experience setbacks, miss deadlines,
and inevitably have our own ”best ways” of doing things. The important thing in our experience
has been a willingness to listen and think things through. We cannot afford to let our egos get in
the way of the project at hand. Individually we all win some and lose some, but in the end the
goal is to make the project successful. If that happens, then all of us are winners.

4.2 Proprietary Licensing

Not everyone supports the concept of ”sharing” resources. There are significant obstacles to over-
come, both legal and historical, before industry accepts the notion that a site license means un-
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limited use at that site. Unique pricing, wildly varying negotiation experiences, and rejection were
all situations CCG member sites experienced when trying to purchase the license required to run
different Computation Chemistry applications. In the end we decided that not every site would
provide a complete set of end user applications. We believe that, for our needs, it is sufficient that
each applications is available at a subset of CCG sites. This solution still gives the users several
options where they can run their jobs and allow sites who cannot negotiate acceptable contracts
with software vendors to participate in the project.

5 Community Acceptance

Having already released the first version of our software at the GridChem Workshop in April, we
are now benefiting from user feedback and input from the computational chemistry community.
Through surveys given at the workshop and conversations with individual users, we found that
many users were very enthusiastic about the notion of a community account for running their jobs.
The SSH authentication interface was extremely successful and users stated that they would be
willing to adopt using grid certificates through a similar interface - especially if it meant gaining
access to additional compute time.

One recurring request from many users was incorporation of a workflow engine into the GridChem
client. Several researchers are currently performing task farming and/or more complex jobs that
GridChem could potentially support. Because this is a valuable feature driven by user requirements,
we will incorporate this into GridChem, however not in the near term as this functionality requires
adaptation at both the client and server levels and would be best incorporated at a later stage in
the project.

The last request users made was for more user-friendly file management. Keeping track of user
output files is not an easy problem. It boils down to the same issues we face with accounting.
As a first step, we are integrating Trebuchet, developed as a part of the Open Grid Computing
Environment (OGCE) project [16], to provide a GUI-based grid file browser for the users. This
feature, however, will not be available until the next full release.

We would like to thank Ian Kelley and Jon MacLaren for thoughtful review, as well as Michael
Sheetz and the UKy development team for their contribution to the GridChem GUI. This work
was funded in part by the National Science Foundation, Award #0438312.
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Abstract

We present the latest instantiation of GridSAT [5], a distributed and complete satisfiability solver that
is explicitly designed to aggregate grid resources for application performance. GridSAT was previously
shown to outperform the state-of-the-art sequential solvers. In this work, we explore the unprecedented
solving power GridSAT enables through algorithmic and implementation innovations. We describe
the implementation techniques that allow GridSAT to leverage a variety of high-end batch-scheduled
resources, clusters, interactive workstations, and personal computing resources through autonomous
scheduling, checkpoint scheduling, and work migration. These innovations have allowed GridSAT to
solve a set of “hard’ and previously unsolved industrial and community satisfiability problems. In ad-
dition to this new solution power, GridSAT also outperforms the otherwise highest performance general
solvers on the annual SAT competition performance benchmarks.

Keywords: Parallel, Distributed, Scheduling, Satisfiability, Computational Grid.

1 Introduction

Grid computing [11] is an emergent field in computer science that focuses, in part, on the aggregation
of geographically distributed and federated computational resources. These resource aggregations can
be harnessed by grid applications to solve problems in science and engineering [21, 1] which require
large computing power. Solving such challenging problems and enabling new scientific results is an
integral part of the grid computing vision.

One such challenging problem is propositional satisfiability. This problem involves finding a set of
binary assignments to variables that satisfies a set of constraints (i.e. makes a binary expression evaluate
to “true”). The problem of solving satisfiability instances is important from both theoretical and practi-
cal perspectives and is, in general, NP-complete. In practice, many engineering disciplines require the

*Thiswork was supported by grantsfrom the National Science Foundation, numbered CAREER-0093166, ElA-9975020,
ACI-0103759, and CCR-0331654.
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solution to domain specific instances of satisfiability. Such disciplines include scheduling, model check-
ing, security, Artificial Intelligence, software verification, and the the area of Electronic Design Au-
tomation (EDA) which includes circuit design [29], Field-Programmable Gate Arrays (FPGA) detailed
routing [23], combinational equivalence checking [18] and automatic test and pattern generation [20].

Because satisfiability solvers [22, 12, 15, 3] have become more efficient, they are now widely used
in many industrial and research settings. There has been an extensive research effort geared towards
the development of gradually more efficient satisfiability solvers [22, 12, 15, 3]. These solvers use
different techniques to navigate the entire search space of possible truth assignments for the variables of a
given expression. The best (fastest and most comprehensive) of these solvers use learning optimizations
that permit the search space to be “pruned” during execution. Learning [28] introduces new deduced
propositions which improve the solver’s efficiency by obviating subtrees in the space of possible variable
assignments.

Because learning requires a large, centralized database of intermediate propositions to be searched and
updated frequently, the best known solvers are sequential. These sequential solvers are characterized by
heavy use of compute power (CPU) as well as the memory of the host machine as the database must be
kept memory-resident (or the speed becomes unacceptably low).

Research in parallel solvers [5, 17, 30, 8] , shows that using a large pool of computational resources
leads to better performance for most problems. The aggregate CPU power and memory of the hosts
allows the solver to navigate the search space faster. Thus a computational grid populated by a a large
pool of resources offers potential improvements in solver speed. With the exception of those results re-
ported in [5], however, the fastest solutions to the largest number of problems is generated by sequential
solvers [26, 25].

By carefully leveraging the resources in grid settings, our goal is to build a parallel and distributed
satisfiability (SAT) solver that correctly solves previously infeasible industrial problem instances, the
answers for which cannot be determined in any other way. Secondarily, we would like to be able to
solve faster the problems that sequential solvers find feasible.

Our previous work with GridSAT [5, 4] demonstrates the latter. By dynamically acquiring and re-
leasing resources under the control of an automatic scheduler, GridSAT improves the time-to-solution
for various feasible SAT instances. Indeed, GridSAT outperforms the best-known solver on all prob-
lems that this leading solver can complete [26, 25]. We have also been able to use GridSAT to solve
several previously unsolved problems using non-dedicated, wide-area grid resources. It is these new
domain-science results, and the techniques we have employed to achieve them, that are the subject of
this paper.

In particular, by combining different batch-controlled super-computers with interactive workstations
and user desktop machines, we have applied GridSAT to hard SAT problems — ones that are not only
unsolved but for which previous attempts at solution using other general techniques have failed. This
pattern of combining different types of resources is new and different from that used by existing parallel
SAT implementations [17, 30]. Moreover, we know of no distributed (i.e. network and/or grid enabled)
SAT implementations, efficient or otherwise, at the time of this writing.

The resources in a computational grid may be of two different types: time-shared or batch controlled.
In the case of time-shared resources the application will compete with other user applications running
simultaneously on the host machine. However, since these resources are always available the applica-
tion can continue to make progress. Other resources which are controlled by a batch scheduler, will
participate intermittently in the application through some of their nodes. But these systems will provide
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significant compute power depending on the size of the application’s request.

In order to enable a grid implementation of a SAT solver to use many resources simultaneously, we
need to address two types of challenges. First the solver’s algorithm needs to be modified so that it
can run in parallel while ensuring that the parallel components cooperate to improve over-all efficiency.
The second challenge is developing a framework capable of running the parallel solver in a very volatile
computational environment.

Solving the above two problems was at the core of our methodology in designing the application
components and their interactions. Implementing this methodology can be achieved by selecting suitable
technologies. Examples of these technologies include those from parallel computing, which predate grid
computing,such as MPI [9]. The more relevant technologies are those which were the outcome of grid-
specific research projects such as Globus [10], Web Services [33] and related standards. We discuss
in this paper the requirements imposed by the application’s dynamic behavior and constraints on the
technology so that a successful implementation is realized. We also describe the current design and
implementation of the application.

We have developed GridSAT, a distributed satisfiability solver capable of running on a computational
grid. GridSAT implements a parallel algorithm for solving satisfiability problems based on Chaff [22].
GridSAT distributes and shares the internal proposition database among processors in a way that takes
advantage of dynamic resource performance predictions to achieve new levels of solver efficiency.

In this paper, we detail the current, most capable version of GridSAT. Our most recent improvements
in the clause sharing and resource scheduling algorithms have made it possible to solve previously un-
solved satisfiability problems from the field of FPGA routing as well as artificially generated benchmarks
specifically design to foil automatic SAT solvers.

2 GridSAT: SAT Solver for the Grid

A satisfiability problem is expressed as a boolean formula over a set of variables. Most solvers operate
on formulas expressed in Conjunctive Normal Form (CNF) in which an expression conjoins (logically
“ANDs”) a set of clauses, each of which may contain disjoined (“ORed”) literals. A literal is either an
instance of a variable (V') or its complement(~V") and variables are boolean. A SAT problem instance
is termed satisfiable if there exists a set of variable assignments that makes the formula evaluate to true
where “true” corresponds to a boolean 1 algebraically. If such an assignment does not exist the the
problem is declared unsatisfiable.

GridSAT is based on Chaff [22], a sequential SAT solver algorithm. Chaff, in turn, builds upon the
Davis-Putnam-Loveland-Logemann (DPLL) [7] algorithm which solves a SAT instance by making a set
of speculative variable assignments (termed “decisions”) stored in a decision stack. When these deci-
sions are propagated through the clauses they could lead to a cascade of implications. Implications are
assignments of boolean values to different variables as deductive consequences of previous speculative
decisions. These speculative decisions and the resulting implications may lead to logical conflicts — de-
duced contradictions in which a variable must take on both boolean values because of different clauses
in the original problem. In Chaff, as well as other solvers, the performance of the algorithm is enhanced
by using techniques for adding new deduced clauses after a conflict occurs. This technique is called
Learning [27, 19, 28]. Using learning, the algorithm may generate a vast number of additional clauses
during execution. These clauses consume memory, possibly overwhelming the capacity of the host, and
also may slow the algorithm as they can add to the search complexity of the clause database.
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Figure 1. GridSAT resource views

GridSAT’s distributed solver addresses three significant challenges to improving solver performance.
First, GridSAT parallelizes the search algorithm that is navigating the space of possible truth assign-
ments. Second, certain learned clauses from the various solvers are selected to be distributed and shared
across resources. Finally, the GridSAT application components are dynamically scheduled at runtime to
take advantage of those available resources which can enhance the solver’s performance.

To apply a parallel search technique to SAT, we split the original problem into subproblems (having
decision stacks with different truth assignments), each of which is independently investigated for satis-
fiability. Subproblems, themselves, may be split in the same way, forming a recursive tree, each node
of which is assigned to a logically distinct processor. Clause sharing is facilitated by identifying and
sharing only important clauses.

3 GridSAT Architecture and Resour ce Scheduling

GridSAT is implemented as a special form of the coordinator/client model where individual clients
communicate directly and share clauses (i.e. communication is between peers rather than routed through
the master). The GridSAT application uses two views of the computational resources as shown in fig-
ure 1. The first view employs jobs to classify processes which belong to the same resource. The second
view is flat where all processes are part of a single pool. Both of these views are useful for managing
resources under GridSAT

The coordinator (or master), shown in figure 2, reflects the resource views shown in figure 1. It
consists of the resource manager, the client manager, the scheduler and the checkpoint server. We now
describe the role of these components.

The resource manager is tasked with loading resource information from one or more grid informa-
tion systems such as Globus MDS [6] and the NWS [37]. The scheduler, however, is responsible for
coordinating the interactions between all the components. In addition, it handles interactions with ex-
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ternal resources and monitors them to detect failures. For example, the scheduler queries the resource
manager for resource types. If the resource is time-shared, then only one GridSAT process is launched.
For batch systems, the scheduler instead submits one job request. Additional jobs could be manually
submitted and GridSAT will use their resources when they become available. We term this form of
scheduling active queuing; jobs waiting in queue logically execute on the interactive resources until the
batch-controlled resources become available. At that time, the scheduler migrates work into the newly
available resources. Thus, the application makes progress using the slower, shared resources while it
waits in queue. It is the client manager that maintains a list of all GridSAT processes (active and queued)
and monitors their progress.
The GridSAT scheduler is the focal point and is

responsible for coordinating the rest of the com- O —

ponents and launching new processes, also termed o %

clients. The scheduler uses a progressive scheme
ient Manager

Client messages

for starting additional clients on remote resources

and adding them to the active resources’ pool. ond Failure
Resources which are no longer performing a task detection
on behalf of GridSAT are released immediately
when possible. The reason for this approach is
the variability and unpredictability of resource us-
age for a particular SAT problem. Some problems
are solved easily using a single host after a short
time period. Other problems, however, might be
harder and require a large number of hosts and
a longer time period. By starting with a small
resource pool and expanding the set of used re-
sources, GridSAT achieves three goals. First, a
small number of resources will be used to solve
the easy problems which results in a smaller com-
munication overhead and therefore shorter time to solve the problem. Second, GridSAT can adapt re-
source usage to how difficult the problem is perceived. If at a particular stage the problem is perceived
difficult, the size of the resource pool used will grow. At another stage, the same problem might be per-
ceived to be easy, a smaller resource set will be used, and excess resources will be released. Lastly, by
remaining as small as possible at any given point in the execution, GridSAT promotes allocation stability
and sharing. The scheduler does not waste resources needlessly thus the maximum number of GridSAT
instances can co-exist since each is attempting to use as few resources as possible for its own problem
instance.

The GridSAT scheduler uses the first available client immediately to start solving the problem. Each
client records the time it took to receive the problem data. Clients also monitor their memory usage. The
decision for splitting a problem is made locally by the client and not by a centralized scheduler. A client
notifies the master that it wants to split its assigned subproblem with another client when its memory
usage exceeds a specified limit (currently 80% of available memory) or after running for a specific
period of time. This time period is determined as twice the duration of the communication period the
client used to obtain the problem data. Using this method, the scheduler allows for computation time
to offset the communication overhead by using the previous communication period as a prediction of

Checkpoint Manager

Check-point
Storage

External Resources

Figure 2. GridSAT components and their in-
ternal and external interactions. The ex-
ternal components and systemswhich Grid-
SAT uses, such as the Globus MDS and the
NWS, are shown in clouds.
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future overhead. The clients, therefore, do not spend most of their time splitting instead of doing useful
computation. The splitting process is performed by the cooperation of the master, the splitting client and
an idle client. The idle client is a process which is not currently assigned a subproblem to investigate.

The GridSAT solver terminates when all subproblems are solved or one of the clients finds a satisfying
assignment. In the latter case the client which finds the satisfying assignment sends its stack to the
master. Finally, the master saves the final solution, terminates all running clients and cancels any pending
resource requests. Most solvers in the literature are evaluated based on the time the first satisfiable
instance is found. However there are cases [16] where knowing all satisfiable instances is helpful.
GridSAT can also enumerate all the instances where a problem is satisfiable.

3.1 Active Queuing: Efficient Use of Batch Jobs

In GridSAT, initial batch job requests are large with a high number of nodes and long duration. This
leads to a long waiting period in the scheduler’s batch queue. Thus, if a job is not solved after this long
waiting period, then it most probably is a hard problem. Therefore batch jobs are only used when the
problem is hard. When a batch job starts execution, GridSAT migrates work (as a checkpoint file) to
achieve more efficient use of batch nodes. Remote GridSAT nodes, which are numerous, will migrate
immediately to occupy batch nodes. After, migration takes place and since networks are fast within
super-computing nodes, splitting happens at higher rates especially after the above mentioned reductions
in communication overhead. Moreover the GridSAT scheduler senses the additional bandwidth between
clients executing on a supercomputer or cluster. It then increases the size and number of clauses shared
by subproblems inside the tightly coupled resource as a further improvement. Note that the number
of active nodes (i.e. those with subproblems) will increase exponentially. This happens because the
number of new subproblems is increased in proportion to the number of existing active solvers. Problem
migration leads to a more efficient use of batch jobs.

4 Grid Implementation
4.1 Application Characteristics

The GridSAT application is different from most high-performance computing applications. In gen-
eral, these applications are composed of alternating steps involving computation and communication.
The computation and communication intervals do not overlap. Also the communication steps are used
as synchronization barriers which enable the various components of the application to exchange infor-
mation. Moreover, these applications use a predetermined set of compute resources throughout their
execution.

Our application differs in much of the above aspects. The GridSAT application has variable resource
requirements depending on the problem instance. The number of resources and duration of use of those
resources cannot be predicted in general for satisfiability instances. In fact, the set of active resources
which are assigned parts of the search space during runtime is dynamic. Resources are added each time
the problem is split. Also resources are released immediately after a subproblem is solved. There can be
many simultaneous acquiring of new resources, through problem splitting, and release of other unneeded
resources at any given instance. Moreover, the application components shared intermediate results as
soon as they are produced. These results are asynchronously used by all the receiving clients.
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Therefore, all the GridSAT segments are event driven and events are produced and consumed asyn-
chronously. The solver components, for instance, can simultaneously perform communication and com-
putation. All application modules are designed and implemented to allow for efficient management and
responsiveness to these events.

Dynamic resource usage are needed, in general, to efficiently solve any satisfiability problem [5].
Solving “hard” satisfiability problems represents further challenges. For “hard” problems, a small num-
ber of resources would be exhausted in a relatively short time. The CPU and memory resources would
be saturated and additional resources are required in order to make progress in solving the problem un-
der investigation. Therefore, we wanted to use all computational resources at our disposal, in order to
render the solution of the hardest problems more plausible. The set of available resources varied from
desktop machines, to small-size clusters, to supercomputers. This collection of resources was heteroge-
neous in terms of hardware, Operating Systems and resource management software. This heterogeneity
represents a further challenge to the deployment of the application.

These application characteristics described above represent a true Computational Grid application.
Moreover, these characteristics are not unique to GridSAT. Other branch-and-bound or coordinator-
worker applications can benefit from a similar use of computational resources.

A major challenge before implementing the various application components was to develop an im-
plementation strategy. The final implementation aims at using all the available grid resources efficiently
while dynamically adjusting to the application behavior and resource needs.

4.2 Implementation Strategy

Given these resource usage patterns, which are typical for a true Grid application, we had to choose an
implementation strategy which would satisfy these requirements. There are several technology choices
to select for the implementation of the application. Such options include, among others, MPI [9],
Globus [10], vanilla Web Services [33] and later improvements such as WSRF [24].

According to our experience with GridSAT we have learned that a successful implementation tech-
nology should allow for three pivotal capabilities: dynamic resource pool, error detection and universal
deployment.

The first capability is to allow the use of dynamic a resource pool. This feature, for example, was not
available in MPI-1 which did not allow for dynamic Communicators. MPI-2 has introduced extensions
to allow for dynamic creation and destruction of communicators. Globus and Web services also allow
for a dynamic set of resources.

The second capability is error detection and reporting. Since GridSAT runs for extended periods of
time using a set of geographically distributed resources, then network and resource failures are more
frequent. Therefore in order to implement this application we need a technology which allows for the
detection of these errors. From the perspective of the application, the distinction between resource and
network failures is not important. It suffices for the application to obtain a feedback if a certain operation
is not successful after a certain time period.

Error detection and recovery is very important because in our experience all resources experience a
failure at some point. Even those resources which are professionally maintained can become unrespon-
sive from the application’s perspective. Those resources that do not experience hardware and software
failures usually have scheduled routine preventive maintenance periods or a combination of software
and hardware upgrades. From the point of view of the application these are “scheduled” or “anticipated”
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failures. Without rigorous error handling the application would not be able to run for extended periods
as shown later in the results section.

Different technologies provide some form of error handling. MPI-I allows for error handling in a lim-
ited scope which is expanded further in MPI1-2. Globus GRAM allows for error handling and call-back
functions for job management. In Web Services, WS-Notification [14], WS-BaseFaults [34] and related
standards could be used to provide this functionality. The desirable error handling for our application is
to provide a time period for some actions after which some form of error handling should be performed.
Sometimes if an action fails, then all is needed is to retry it. In other cases, it is assumed that the re-
source (or the connecting network) has failed. This form of error handling is not available for the grid
technologies mentioned above and can be implemented at the application level.

The last desirable capability for a suitable grid technology is universal deployment. This is not entirely
a characteristic of the technology but of the computational environment as well. A widely deployed tech-
nology is advantageous because it reduces the development overhead since one version can be deployed
on all available resources.In our experience there was no grid technology that was universally adopted
and deployed which would enable us to combine all computational resources at our disposal.

Furthermore, in order to deploy our application over a large set of resources,we had to interface
with many types of resource managers. For example, resources could be managed by one of many
Batch schedulers, Condor [31] or simply shared. Our goal was to use all these resources simultaneously
regardless of what systems they originate from. This is accomplished by determining a general job
description which can be instantiated differently using specific launchers for each resource manager. For
instance, shared resources can be accessed directly using SSH. Batch systems, however, are accessed by
submitting a batch script with syntax tailored to the scheduler used. Whenever, Globus is deployed we
use it to launch and monitor job submissions.

4.3 GridSAT Implementations

We believe that many of these technologies could be used to develop GridSAT. In fact, we have
developed a previous versions of GridSAT called GrADSAT [4] (note the “A” in the spelling) using
GrADSoft. GrADSoft is a set of programming abstractions where the baseline grid infrastructure is
provided by Globus and the NWS. GrADSoft is part of the Grid Application Development Software
(GrADS) project [2, 13] which is a comprehensive research effort studying grid programming tools and
application development. To facilitate experimental application research and testing, the project main-
tains a nationally distributed grid of resources for use as a production testbed. Since the GrADS tools
were universally deployed on this testbed we were able to deploy our application with little overhead on
the entire testbed.

The current version of GriDSAT uses EveryWare [36] a very portable communication library. Every-
Ware has been designed explicitly to manage the heterogeneity and dynamism inherent in grid resource
environments. EveryWare can be easily deployed as library on all the resources. In addition, all com-
munication calls use a timeout argument, as desired, for error detection.

The resource management system interfaces with resources which use batch systems as well as desk-
top machines which are accessed through SSH. All resource related operations have been implemented
to allow for a specific timeout. If the resource is not responsive after the timeout period expires, then the
resource is considered unreachable.

In the future, we will explore other technologies as they become more widely used. Our goal would
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be to make GridSAT implementation independent where we can use an API for interfacing the appli-
cation with the underlying communication infrastructure. As a result different grid technologies can be
substituted without affecting the application.

5 Experimental Apparatus and Results

Since GridSAT is a true grid application, (robust, portable, heterogeneous, pervasive, etc. [11]) we
ran a set of experiments to show that GridSAT can run for extended periods of time robustly using
a wide variety of resources and also solve previously unsolved hard satisfiability instances. In these
experiments we simultaneously use computational resources that belong to collections of individual
machines, small size research clusters and super-computing scale clusters. The computational resources
we use are composed from four main sources:(1) 40 machines from the VGrADS [35] testbed located
at UTK, UCSD and UCSB, (2) Blue Horizon at SDSC, (3) TeraGrid site at SDSC, (4) TeraGrid site at
NCSA and (5) DataStar at SDSC.

The TeraGrid [32] project is a multi-site national scale project which is aimed at building the worlds
largest distributed infrastructure for open scientific research.

During our experiments, none of the resources we used were dedicated to our use. As such, other
applications shared the computational resources with our application. It is, in fact, difficult to determine
the degree of sharing that might have occurred across all of the available machines after the fact. In
batch controlled system such as Blue Horizon, Data Star and the TeraGrid, the queue wait time incurred
is highly variable because of jobs submitted by other users.

Thus, if it were possible to dedicate all of the VGrADS resources to GridSAT, we believe that the
results would be better. As they are, they represent what is currently possible using non-dedicated Grids
in a real-world compute setting.

These experiments also use a more diverse set of resources for longer periods of time (up to a month
in duration) and multiple job requests. We chose a set of challenge problems from both SAT2002 [25]
and SAT2003 [26] benchmarks. These benchmarks are used to judge and compare the performance of
automatic SAT solvers at the annual SAT conference. All the problems in the benchmarks are shuffled
to insure that submitted benchmarks are not biased in favor or against any solver. These benchmarks
are used to rate all competing solvers. They include industrial and hand-made or randomly generated
problem instances that can be roughly divided into two categories: solvable and challenging. The solv-
able category contains problem instances that some SAT solvers have solved correctly. They are used
for comparing the speed of competing solvers. Alternatively, the challenging problem suite contains
problem instances that have yet to be solved by an automatic method or which have only been solved
by one or two automatic methods, but are nonetheless interesting to the SAT community. Some of these
problems have known solutions that are known through analytical methods (i.e. the problem has a known
solution by construction), but several of these problems are open questions in the field of satisfiability
research.

In these experiments, we only chose problems from the challenging set. These problems were deemed
hard by all participating solvers in both the 2002 and 2003 SAT competitions. We investigate seven
previously unsolved problems where three instances are from the SAT 2003 benchmark category, and
four are instances from the SAT 2002 benchmark category, all of which we have not been able to solve
using previous versions of GridSAT.

This group of problems represent a variety of fields where problems are reduced to instances of sat-
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| File name | Description | SAT/UNSAT/* | Time | GridSAT Result |

3bitadd-31.cnf theoretical UNSAT 8 days -
k2fix-gr-rcs-w8.cnf | FPGA Routing | * 83261 sec ( 23 hours) | UNSAT
k2fix-gr-rcs-w9.cnf | FPGA Routing | * 14 days and 8 hours | UNSAT
cntl10.cnf Theoretical SAT 13134 sec (4hours) | SAT

combl.cnf Model Checking | * 11 days -

f2clk50.cnf Model Checking | * 9 days -

hanoi6.cnf Theoretical SAT 23 days -

(*): problem solution initially unknown

Table 1. GridSAT results using VGrADS testbed, Blue Horizon, Data Star and TeraGrid. All these
problems were not previously solved by any other solver.

isfiability and solvers are used to determine the solutions. The problems contain a pair of problems in
FPGA routing and model checking. These two disciplines benefit heavily from efficient SAT solvers.
The remaining problems are of theoretical nature. In addition, we set the absolute minimum size of
shared clauses to two and absolute maximum to 15. This range allows for sharing clauses which would
help prune the search space without significant communication overhead.

Unlike previous experiments there was no timeout value set for the maximum execution time. Every
problem was run using different job description for the batch systems. Jobs on the different batch queues
were manually re-launched at random intervals. Job re-submission could have been automated but we
wanted more control over rationing our limited compute budgets to specific experiments based on their
perceived progress. Experiments where GridSAT was making progress were allotted bigger jobs with
longer durations and more nodes. The progress of the solver was judged by inspecting how often the
checkpoints were updated. We can also inspect the internal state of a particular solver using some of the
tools we developed. The VGrADS nodes were used during the entire duration of each experiment unless
the hosts experienced failures.

5.1 Results

The experimental results are summarized in Table 1. The first column contains the problem file name.
The second column indicates the field from which this problem instance in obtained. The third column
contains the solution to the instance: satisfiable (SAT), unsatisfiable (UNSAT), or unknown. We have
marked those problem instances which were previously open satisfiability problems with an asterisk (*).
If a problem was originally unknown and was later solved by a solver, then we still keep it marked with
an asterisk for completeness. The fourth column represents the total wall-clock time that the problem
was tried. Finally, the fifth and last column represents the solution obtained by GridSAT which is
represented by SAT, UNSAT or (-) if we terminated the experiment before GridSAT found an answer.
Note that while we terminated these problem instances manually so that we could complete this paper,
each can be continued from its last checkpoint (which we have archived).

Table 1 shows that GridSAT was able to solve three problems all of which were not previously solved.
Two of the problems were found unsatisfiable and they are both from the field of FPGA routing. The
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first problem k2fix-gr-rcs-w8.cnf was solved using the VGrADS testbed only. Batch jobs which were
submitted for this experiment were canceled when the problem was solved. On the other hand the
second problem k2fix-gr-rcs-w9.cnf took much longer to solve, it took more than two weeks. Table 2
gives a more detailed description of the resource used during this experiment. For each job a number of
GridSAT solver components were launched as indicated in the last column of table 2. In table 3 a break
down of the CPU-hours used on each resource are tabulated. Note that the VGrADS testbed machines
were able to deliver a sizable amount of compute power because they were available in a shared mode
for the duration of the experiment.

_The last problem cnt10.cnf was also so_lvc_ad Compute Job Tob Node | procs
using the VGrADS testbed only under simi- resource count | dur.(hr) | count | /node
lar circumstances to k2fix-gr-rcs-w8.cnf. We BlocHoraon |2 ) 00 3
previously tried solving this problem in [5] Bius Horizon | 1 12 150 -
using the same testbed for four days in ad-
dition to Blue Horizon for 12 hours but were | DaaStar 2 10 8 11
not successful. We believe the improvements TG@SDSC | 1 10 40 2
made to the solver and especially the new TGA@SDSC | 1 12 40 2
clause sharing method have helped achieve | 1C@SDSC | 3 10 4 2
this result. TG@SDSC | 4 5 4 2

In order to illustrate further GridSAT’ssuc- | TG@NCSA | 3 10 4 2
cess in using all the above variety of resources TG@NCSA | 4 S 4 2

mentioned earlier we present a section of a 1N addition to 40 machines from VGrADS testbed for

run using instance hanoi6.cnf. This problem 14 days 7 hours and 44 minutes

is a SAT representation of the Hanoi Towers

problem using six disks. A six day snapshot Table 2. Batch jobs used to solve the k2fix-gr-rcs-
from a 23 day run is shown in figure 3(a) w9.cnf instance from SAT 2003 benchmark

using logarithmic scale. The figure shows

several jobs from Blue Horizon, Data Star and TeraGrid sites participating in the execution. This figure
shows that GridSAT was able to make use of the available resource when some of their nodes became
available and then continued to run after the nodes were taken away to serve other users. GridSAT pro-
cesses continue to run on the batch controlled resources until the scheduler decides to terminate them.
This abrupt termination has no effect on the application which deals with these events as (scheduled)
resource failures. GridSAT was able to manage up to 350 processes running on different resources as
show in this figure.

The satisfiability solver performs mostly integer, branching and load/store operations. The number
of floating point operations is very low (less than .1 FLOPS). We present in figure 3(b) an estimate
of the total number of instructions per second during the same six day period. Since instrumenting
GridSAT can cause significant slow down, we conducted some benchmarking on some machines at
UTK to determine the average efficiency of the solver. Since the solver code is mostly sequential,
we assume that at the maximum only one instruction per cycle can be finished by the processor. The
determined efficiency is 70%. We estimated that other hardware and OS combinations will exhibit equal
efficiencies. The number of operations provided by a resource is estimated to be the product of its peak
performance and the estimated efficiency. The total number of instructions in figure 3(b) is the sum
of operations of all active resources. We notice that the VGrADS testbed is able to deliver about 20
Billion instructions per second (IPS). In the middle of the graph, there is a batch job from Blue Horizon
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which failed suddenly while joining the GridSAT execution. This might have happened because the
Blue Horizon machine became unavailable for scheduled maintenance. The total number of IPS was
multiplied by more than five times when some batch jobs became active. It reached up to 110 Billion
IPS.

Another measure of performance, is how much of the Compute node- 1 CPUs/ | CPU
batch job maximum computational power is actually | ocqurce _hours | node | -hours
used by GridSAT processes. Most other parallel jobs -
run on all the processes from start to finish with little ggi:;z:'zon iggo ? T igggo
overhead. In this case, batch jobs are efficiently used.

In the of case GridSAT, however, there are two main TG@SDSC | 1080 | 2 2160
sources of inefficiency. First, some jobs might wait ide- TG@NCSA | 200 2 400
ally at the start. Batch jobs usually include a large num- GrADS(*) 13750 | 1 13750

ber of processes. Some of these processes have to wait () Machines were shared with other users

until a sufficient number of splits occur to generate new
sub-problems for all the newly created solvers. Sec-
ond, some batch processes may contain idle solvers for
a period of time after they solve the previously assigned
sub-problem. The solver in this case, waits until it is as-
signed a new sub-problem by the master. For the first job in figure 3(a), which is a large 100-node job,
the efficiency is 98.9%. Thus GridSAT was able to use batch jobs efficiently. The main reason is that
batch jobs usually wait in the batch queue for a long time before executing. Thus by the time the job is
executed, GridSAT was unable to solve the problem because it is hard. This means that batch jobs are
only used when the problem is in deed hard. It is possible that for certain problems, the efficiency of
batch jobs might be low. In this case, future versions of GridSAT might monitor the batch job efficiency
to determine whether and when a job is to be terminated.

During our experiments, the Blue Horizon super-computer was being decommissioned. GridSAT
was able to continue running experiments on the set of available resources through this transition. The
scheduler would try to submit jobs but it would notice that the Blue Horizon resource was not responding.
The failure of this single (but important) resource which did not affect the already running experiments
shows the robustness of GridSAT.

Table 3. CPU-hours per resource used
to solve the k2fix-gr-rcs-w9.cnf instance
from SAT 2003 benchmark

6 Conclusion

This paper presents a new version of GridSAT which implements a parallel, distributed and complete
satisfiability solver. In order to solve harder problems, new improvements to both the algorithm and
architecture of GridSAT were introduced. GridSAT is capable to dynamically selecting resources to
enable improved overall performance.

The experiments we presented show GridSAT’s ability to manage and use a diverse set of dynamic
computational grid resources. The experiments lasted for weeks as a testament to the robustness of the
application. During these experiments new previously unsolved problems from practical and theoretical
fields were solved.
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Grid computing for energy exploration

Dimitri Bevc', Sergio E. Zarantonello?, Neena Kaushik®, Tulian Musat®

Abstract

3-D seismic imaging is the most computationally intensive task in the oil and gas industry. It is a key
technology that has allowed the success ratio of exploratory wells to increase from 20% to 80%. The
objective of this paper is to give an overview of a Grid-enabled environment for seismic imaging developed
by 3DGeo and comment on its use in a production setting. This system addresses the demand for advanced
seismic imaging applications in the oil and gas industry, and the ensuing need of computational and data
resources to run these applications flexibly and efficiently.

1. Introduction

A key task in exploration geophysics is the creation of images of the subsurface of the
earth to identify deposits of oil and gas. The earth's response to trains of artificially
created elastic waves is recorded with arrays of geophones. This data is then processed to
ultimately deliver images of the subsurface. The construction of accurate 3-D images of
the subsurface from this data is an extremely resource-intensive task. It requires the
handling of large data volumes - on the order of 10-15 Terabytes for a single modern
marine 3-D survey - and the application of computationally-demanding imaging
algorithms. Only large-scale parallel computers can apply these algorithms and deliver
the results within a useful turn-around time. Furthermore, the most advanced imaging
technologies are resource-demanding and only feasible today on small-sized projects.
Harnessing Grid resources flexibly and effectively is thus a fundamentally important
development for the oil and gas industry.

In this paper we describe our work developing a Grid-enabled system for seismic
imaging.

3DGeo is a leading-edge provider of advanced software products and services to the oil
and gas industry’ . Its commercial offerings include INSP (Bevc and Popovici, 2003), a
proprietary Java based Internet infrastructure for remote collaborative seismic processing

'3DGeo Development Inc., 4633 Old Ironsides Drive, Santa Clara, CA 95054 (dimitri@3dgeo.com).
23DGeo Development, Inc., 4633 Old Ironsides Drive, Santa Clara, CA 95054 (sergio@3dgeo.com), and
Department of Applied Mathematics, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053
(szarantonello@scu.edu).

>3DGeo Development, Inc., 4633 Old Ironsides Drive, Santa Clara, CA 95054 (neena@3dgeo.com), and
Department of Computer Engineering Santa Clara University, 500 El Camino Real, Santa Clara, CA
95053 (nrkaushik@scu.edu).

*3DGeo Development Inc., 17171 Park Row, Houston, TX 77084 (iulian@3dgeo.com).

> 3DGeo Development, Inc., http:/www.3dgeo.com/
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and seismic imaging, and a suite of advanced imaging applications that can be accessed,
executed, and monitored with the INSP system. The conversion of INSP to a Grid-
enabled system, providing flexible and secure access to advanced imaging applications
and to the resources to run these applications whenever and wherever needed, is a
strategic step for 3DGeo. We believe such a system will allow 3-D seismic data to be
much more effectively used to characterize and delineate oil reservoirs and contribute to
opening up exploration venues in extremely complicated geological conditions. A major
oil discovery in these areas could decrease United State's dependence on imported oil and
have a direct impact on the cost of energy.

The organization of the paper is as follows. In Section 2 we give an overview of 3-D
depth imaging, we discuss the computational cost of different algorithms, and give an
overview of Kirchhoff depth migration, a typical 3-D imaging application. In Section 3
we discuss design issues associated to PSDM, a particular implementation of Kirchhoff
migration, in a Grid environment. In Section 4 we give an overview of the INSP seismic
processing system and the specifics of the Grid-enabled extension. In Section 5 we
discuss the implications of seismic imaging on the Grid and give our conclusions.

2. Seismic imaging

Seismic imaging methods solve an inverse problem for the classical wave equation of
mathematical physics, whereby signals recorded by geophones on the surface of the Earth
are converted to a model of the subsurface. 3-D depth imaging methods are the most
computationally-intensive tasks in the oil and gas industry. These methods are usually
classified into two categories: methods based on the Kirchhoff integral equation, and
methods that operate directly with the wave equation. Wave-equation methods are further
classified as shot-receiver (e.g. common azimuth and narrow azimuth methods) and shot-
profile methods. Wave equation shot profile methods are the most computationally
expensive methods in use, and are unfeasible except for small projects.

Table 1. The computational challenge: Gulf of Mexico 3-D marine surveys.

Size of data Runtime in days
Blocks Gbytes Kirchhoff Narrow azimuth Shot profile
10 620 3 31 184
100 6,200 111 1,100 6,640
500 30,700 996 9,960 59,800 (164 yrs!)

To put the computational challenge in perspective, in Table 1 we compare the estimated
runtimes of hypothetical imaging projects for Deep Gulf of Mexico 3-D marine surveys
on a 128-CPU cluster of 2.4 GHz Pentium® 4 processors delivering a sustained

performance of 900 Mflops/CPU. Running shot profile migration on a large 3-D marine
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survey would take 164 years to complete on such system ! The INSP system has modules
for all the methods represented in Table 1.

The better accuracy offered by advanced methods is illustrated in Figure 1, where we
compare the seismic images obtained with PSDM, 3DGeo's implementation of Kirchhoff
pre-stack 3-D depth migration, and the image obtained with one of 3DGeo's wave-
equation migration methods (Biondi and Palacharla, 1996). The generally
computationally more intensive wave-equation method gives better accuracy than
Kirchhoff migration, therefore underscoring the need for more compute resources
deliverable through the Grid.

Crossline (m)
EO00 EOD 18000

Crogaline {m)
000 8004 3200 10000

Rirchhoff G3 ERK, Depth=1400 m

QOO

COMAZ €3, Depth=1400 m

Figure 1. Image on left obtained using PSDM. Image on right obtained using
a wave-equation migration method.

3. Overview of PSDM

We use PSDM as an example to illustrate design issues that were addressed for Grid
deployment. Pre-Stack Depth Migration (PSDM) is 3DGeo's implementation of the three-
dimensional Kirchhoff depth migration, one of the most comprehensive and flexible
methods for imaging pre-stack 3-D seismic data. PSDM approximately solves the wave
equation with a boundary integral method. The acoustic reflectivity at every point of the
Earth's interior is computed by summing the recorded data on multidimensional surfaces;
the shape of the summation surfaces and the summation weights are computed from the
Green's functions of the single scattering wave propagation experiment.
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The essence of 3-D prestack Kirchhoff migration can be expressed in the following
integral equation:

Image(x):// / G(xs,x,w) G(x, xp,w) Data(xg, X, w) dxy dxs dw
Xs /Xr

If the Green's functions are known this solution is exact. In a computational environment
we express the integral as a sum:

Image(x) = > Y AgA;Input(xs,xr, ts + tr)

Xs Xr

where A; and A are determined by the transport equation, and t, and tg are either found
by ray-tracing or by solving the eikonal equation. We note that each point x of the
seismic image is calculated by a sum over a travel-time surface, and that the sums for
the different points of the image can be calculated independently from each other. Since
the wave propagation velocity is not known a priori, the process of building an exact
image is iterative, with successive improvements made to the velocity field. Each
iteration requires running a Kirchhoff migration. The overall procedure, schematized in
Figure 2, involves collaboration between multidisciplinary teams and can be extremely
demanding in terms of human and computational resources.

Gathers

ple Semblance for Tnitial Graphical QC.

Residual velocity - Pick validation
estimation Picks and high-grading
=" ¢ Automated or manual picking Residual
: model

Residual Iwproved

Curvature ?

Velocity Model
Updating

Velacity
Model

N

Automatic
Vertical ray
Next Level Normal ray

orFinal  Com P ute Intensive! 3-D tomography

Figure 2. Building a 3-D seismic image requires iterative updating of the
velocity model.
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Parallelization of PSDM on a cluster. PSDM presents different parallelization issues in
cluster and Grid environments. 3DGeo's implementation of Kirchhoff migration was
designed to achieve maximum efficiency on a cluster of interconnected multiprocessor
computers. To achieve this efficiency the input data is distributed among the
computational nodes, while the output image is divided into processing blocks that are
distributed over parallel processors on each node. At the end, the results from each node
are gathered to build the final image.

Figure 3 illustrates the PSDM MPI architecture. The input data is distributed using a
dispatching service which responds to individual requests from each node. This approach
ensures a good load balancing over heterogeneous nodes, especially if the computational
demands for processing each block of input data are different. This dispatching service
keeps track of the execution stage and provides necessary information to restart the entire
job in case of a failure, an important feature on a large distributed system where one node
may become unavailable anytime during the execution.

Each node has a copy of the output image which is divided into processing blocks. The
summation computation for each block is distributed independently over parallel
processors. By partitioning the output, the algorithm is scalable with respect to the total
amount of memory available, and can run efficiently on workstations where less memory
is available or on supercomputers where any remaining memory can be used for staging
data. Once the entire input data is processed, the final image is composed by summing
the local images from each node.

Input data & ain, TAPES, elc)

P

MPI
parallelization D atch
between nodes Spe cher

MPI calls

Final
Computational Node g Computational Node| symmation |Computational Node
(M ulli-processar mac hine) (M ulli-processor machine) * (¥ ulli-proce ssar mac hine)
Shared memory —F‘\\ /' /1 MPI calls —P
arallelization Local 10
P Local Local
on one node 1 Di High 1 Dl - 1Di
3-D image . k 3-D image
OpenMP & bandwidth Mag &

Figure 3. Parallelization of PSDM on a cluster
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After comparing several multi-threading libraries, we chose the OpenMP® standard for
the implementation of the shared-memory parallelization on each multiprocessor node.
This standard is jointly defined by a group of major computer hardware and software
vendors, and provides a simple and flexible interface for developing parallel applications,
portable on a variety of systems.

The solution chosen to implement the input data dispatching mechanism and the
collective operations used for the final summation is based on the MPI standard. We used
MPICH (Groop, Doss, and Skjellum, 1996), an open source implementation of the MPI
standard, optimized and tested on a variety of architectures. PSDM uses about one
hundred parameters, usually extracted from a text file. Since many of those parameters
refer to files on the local file system, the parameter acquisition library was augmented to
accept placeholders for different MPI runtime values such as the process rank. This
simplifies the laborious task of setting up a PSDM running job.

PSDM on the Grid. Tests and benchmarking of PSDM on various cluster architectures
and configurations shows that in a typical run the I/O operations associated with the input
data distribution account for a small fraction of the total processing time. This
encouraged us to use - in a first phase - the same architecture for distributing a PSDM job
across multiple clusters, interconnected in a computational grid, as shown in Figure 4.
Using the Globus Toolkit (Foster and Kesselman, 2003) we set up a Grid, interconnecting
two of 3DGeo's processing centers (Santa Clara, California, and Houston, Texas) and a
Linux cluster at the San Diego Supercomputing Center.

We had built PSDM using MPICH libraries, and the choice of MPICH-G2 (Karonis,
Toonen, and Foster, 2003) for the necessary Grid support seemed a natural decision. The
result was a Grid-enabled MPI implementation built on top of MPICH and Globus API.
After re-compiling with the MPICH-G?2 libraries, we were able to deploy and run a
PSDM job on public IP nodes. However, since MPICH-G2 does not support private [P
clusters, running a single PSDM job on two or more interconnected clusters was not
possible and a modified approach was required.

The main problem was due to the implementation of MPICH-G2 which required direct
TCP/IP connection between the nodes of the different clusters. Since most of the clusters
were configured without public IP addresses for the internal nodes, direct TCP/IP
connection could not be established. For testing purposes we were able to tunnel the TCP
traffic through a secure connection, setting up a VPN between two test clusters. This
solution was not scalable and the settings are impractical to achieve on a commercial
Grid setup where different participants have different security policies. However, the test
was fruitful in assessing the limitations of the parallelization model we built for PSDM
and to draw future development plans for improving it. Our present plans are to explore
and use the functionality of MPICH-GP, a modification of MPICH-G2 by Kum-Rye
Park. MPICH-GP includes a Network Address Translation service, and a user-level proxy
scheme. MPICH-GP supports public as well as private IP clusters, and mixed
combinations of public and private IP clusters (Park ef al., 2004).

® http://www.openmp.org/
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Figure 4. Parallelization of PSDM on multiple clusters.

Demonstration on the Virtual Computer. Once the SDSC cluster was configured to
support the seismic imaging software, it was connected to 3DGeo's distributed
monitoring Grid. The connection to the monitoring grid was performed by installing the
Ganglia Resource Monitoring tool. Ganglia’ is an Open Source application, originally
developed by the Berkeley Millenium project and currently bundled with the NPACI
Rock distributions. Ganglia was used to interconnect the 3DGeo Santa Clara processing
center, consisting of 32 CPUs and 80 CPUs Linux clusters, with 3DGeo's Houston
processing center, 5 clusters hosting another 350 CPUs Linux cluster. The SDSC cluster
was the last addition to the monitoring grid. Ganglia gave an overview of resource
utilization.

The information is accessible as a web page (Figure 5), and includes graphs showing the
evolution in time of metrics such as machine load, memory usage, and number of
processes. 3DGeo processing staff were thus able to inspect from a single web page the
load of the machines geographically distributed in Santa Clara CA, San Diego CA and
Houston TX.

7 http://ganglia.sourceforge.net/
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From the system administration point of view, setting up the monitoring infrastructure
consisted of the installation and configuration of the Ganglia monitor daemon on all the
cluster nodes, including the master nodes, and the installation of a Ganglia metadaemon,
an Apache web server, and the Ganglia web front end on the master nodes. The central
metadaemon running in the Santa Clara processing center was configured to interrogate
and accept data from the San Diego cluster metadaemon. In addition, Gexec, a
component of the Ganglia project, was experimentally installed on 3DGeo’s and SDSC’s
clusters. Gexec is a scalable cluster remote execution system which provides RSA
authenticated remote execution of parallel and distributed jobs. Its capabilities include
transparent forwarding of stdin, stdout, stderr, and signals to and from remote processes,
it provides local environment propagation. Gexec is designed to be robust and to scale to
systems of over 1000 nodes. For our experimental grid we installed Globus server
software GT 2.4 on the master nodes of all the clusters. The final step was to incorporate
the Grid-enabled applications such as PSDM within the INSP framework.
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Figure 5. Status of the 3DGeo Grid displayed by Ganglia in Web browser. The
windows display CPU and memory load of the available 3DGeo and SDSC
resources.
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4. Tying Grid resources together with INSP

INSP is a collaborative environment, developed and commercialized by 3DGeo for
building and launching workflows of computationally intensive parallel and distributed
jobs, visualizing data on client workstations, and monitoring jobs. It is based on a client-
server relationship between user interfaces (clients) and computationally intensive
workflows (servers), presenting users with options to visualize intermediate results, and
monitor, and design workflows for seismic processing (Bevc, Popopvici, and Biondi,
2002). The INSP Data Viewer allows a user to visualize a data cube, to pick locations,
and to edit values in the data cube, thereby developing a geological earth model. It
allows remote clients to interact with multiple data objects. Figure 6 shows a screen shot
of the INSP Explorer interface illustrating some of the INSP functionalities. Visible in
the left side is the explorer tree structure of modules (executable application-specific
programs), datasets, and workflows for each server. Seismic data, velocity models, and a
sample workflow are displayed on superimposed windows.
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Figure 6. INSP Explorer is the Internet-based GUI for remote processing services.
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The INSP graphical user interface presents the users with a complete set of seismic
processing and imaging modules and a visualization system. The GUI is written in Java,
allowing client portability and access to any type of computer on either a local or wide-
area network. This takes advantage that Java can handle security and parallel distributed
computing, all key issues in geophysical applications. The Java client-server design of
INSP leverages the “write once, run anywhere” capabilities for the GUI and process
management, while using highly optimized seismic imaging algorithms running on
specialized high performance computers for number-crunching tasks. A key function of
INSP is to facilitate the communication between members of a geographically distributed
exploration team, providing them with the tools that help them easily share information,
regardless of physical distance between members of the team.

Design of current INSP. The current INSP consists of a 3dGeo proprietary client and
server. The client part is the GUI which shows the data, flows and the modules. It also
allows the user to mount remote file systems, view data, and add new workflows. The
modules are populated in the database on the server side using the “inspac” command.
They are viewable on the client GUI when connected to the INSP server. The INSP
architecture is shown below.

INSP
Client 1
INSP
Client 2
Processing Site 1
Application Server j,-{
/1
~— - ]
£ . s
+— |
i e ) Processing Site 2
omputation ~ i INSP Server

=t ST e
== IS

Figure 7. Current INSP architecture.
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Grid-enabled INSP. We are currently redesigning INSP to allow the client to use the
Globus server to run flows and view/manage data. The objective is to replace the current
INSP design:

INSP Client
NETBEANS
J2SE remote
invocation
layer

with a Grid-enabled design shown below:

INSP Client

In this design, security will be handled by the Globus server. The A&A policies will
become Grid-specific. While the current INSP server provides an additional layer of
authorization (ACL type of permissions for every project), the same can be done at the
filesystem level, so any system administrator will be able to handle this task without
having to learn a new system. The flows will be simple files which can reside either on
the local disk or on the server. So the sharing will be done in the same way as with data
files — the user can run his/her own flows or can save them on a server for later use.
When connecting from different machines to the same server, the same list of files will be
seen, the same as with an FTP client. The flows and data will be logically separated on
what we call the project database, which will be an XML file containing all necessary
information for a seismic project plus the paths to data and flows. In this framework it is
possible to have exactly the same structure as in the present version of INSP - and this is
the objective — to enhance it for better usability in a Grid environment. Our plans are to
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incorporate Ganglia in INSP by creating a Java API to Ganglia: The Ganglia monitor
daemon collect cpu load data, etc. and broadcasts this info.The Ganglia metadaemon runs
on a single node and collects this info in an XML database. Our objective is to have an
API on Java that can access the monitor daemon.

5. Conclusions

Seismic imaging is an application area where Grid computing holds great promise.
Today’s operational environment, shown in Figure 8, involves many inefficiencies that
are seamlessly resolved in a Grid environment. The data tapes are transported physically
(typically by UPS or FedEx) between the raw data acquisition site, data banks, data
processing sites (usually a seismic contactor), and quality control and interpretation sites
- the customer oil and gas production company. Once the data is interpreted it is often
reprocessed with a new set of parameters. The process is repetitious and lengthy,
culminating in decision to drill a well which can cost in the order of $30 M. In today’s
operational environment, a large imaging project can easily require one to two years to
complete.

data bank

data acquisition

(100’s of Thytes)

drilling decision

N

(site a platform)

(data analvsis
& interpretation)

depth imaging

Figure 8. In today's operational scenario data are physically transported between
the acquisition, processing, and storage sites, and the end user (oil company).
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In a fully-optimized Grid operational environment, shown in Figure 9, we expect the time
to complete the same project to be reduced to six months or less. This framework will
necessitate a wavelet-based compression utility to allow for electronic transmission of
extremely large datasets (Bevc et al., 2004). The data will be monitored as it is being
acquired, quality control will be concurrent with data processing, and interpretation and
reprocessing will be done with much greater flexibility. These advantages are
compelling, and have motivated 3DGeo’s efforts to be at the forefront of bringing the
Grid to the energy exploration industry.

“data bank

:5 depth imaging

(data analvsis
& 1nterpretat10n)

Figure 9. The future : a fully-enabled Grid scenario that by allowing greater and
more flexible access to resources (data, computers, personnel), reduces turn around
time and dramatically shortens the time to making a drilling decision. In this
scenario, all components of the process become Grid nodes accessible through INSP.
Data transfers are via GridFTP; resource requests are through Globus Resource
Allocation Manager.

A Grid-enabled environment for seismic imaging allows for a new paradigm of
commodity computing. In the life of a seismic imaging project the demand for compute
cycles will ebb and swell as the project proceeds through its different stages. Buying
compute cycles on the Internet whenever needed will free the oil and gas exploration
industry to focus on its core competencies, and will result in dramatically increased
productivity.
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Abstract

Air Quality Forecasting (AQF) is a new discipline that attempts to reliably predict atmospheric
pollution. The application has complex workflow and in order to produce timely and reliable forecast
results daily, each execution requires multiple computational and storage resources to be simultaneously
and collaboratively available. Deploying AQF on grid is one option to satisfy such needs, but requires
related grid middleware to support automated application-specific scheduling and execution on grid
resources. This paper presents our initial experience of deploying AQF on a campus grid environment
and our current efforts of developing a solution of grid-enabling AQF-like applications in Gracce project.
Gracce has the goal to provide domain users a grid platform supporting from the management of an
application and its dataset, to the automatic execution and viewing of results. In Gracce, application
workflow is described using GAMDL, a powerful data-flow language for domain users in describing
application logics. The Gracce metascheduler architecture, which includes a workflow-orchestrated
metascheduler, an event-driven workflow engine, and an execution runtime system provides the required
functionalities of scheduling application workflow in global level and coordinating workflow executions.

1 Introduction

Air Quality Forecasting (AQF) [22] is a new discipline that attempts to reliably predict atmospheric
pollution, especially high levels of ozone. The application incorporates multiple dependent computational
modules that make intensive use of numerical tools, requires high compute power for the simulation of
meteorological and chemical processes, and entails the transfer, storage and analysis of a huge amount
of observational and simulation data [6]. We participate in an effort to build such a service, with the
goal of providing timely, reliable forecasts of air quality for the Houston-Galveston region and for several
other regions in the South Central USA that have encountered problems with air quality in the recent
past [3, 4]. On-going work at the University of Houston (UH) aims to create, test and deploy an AQF
application as well as to establish a suitable development and deployment environment.

Grid technology [15], and middlewares to enable the creation of such grids, provide a potential strategy
for meeting the computational and storage needs of AQF executions. Users with large-scale problems,
such as AQF applications, may exploit multiple distributed high performance computing resources in a
grid environment to produce high quality results that cannot be achieved from single-domain resources.
As the grid technology becomes mature and standardized, deploying application on grid to efficiently use
grid powers is becoming more important than technology and standardization themselves. Additional
efforts are required to fill the gaps between grid visions and domain expectations. Yet such efforts are
still in the stage of trial and related experiences are very application-specific and technology oriented.

Including ours [2, 3], most of current approaches of grid application deployment starts with the
packaging or wrapping of legacy application codes with grid services and utilities of grid remote execution
and automatic file transfer, and presents them in a grid portal to domain users. Efforts in supporting the
automated application-specific scheduling and execution on grid resources, and thus providing users an
end-to-end grid environment (not grid technology) are very few. This paper presents our experience of
deploying AQF application on a campus grid environment and our current efforts of developing a solution
of grid-enabling AQF-like applications in Gracce project [28]. The initial efforts provided a working, but

david.wallom@ierc.ox.ac.uk 107



GFD-1.068 29-03-06

not feature-complete solution to support AQF run on the resources across our campus grid. It is the
basis for the next stage development of a general-purpose solution in Gracce.

Gracce has the goal to provide domain users an application grid platform supporting from the man-
agement of the application and its dataset, to the automatic execution and viewing of results. In Gracce,
application coordination and collaboration, a typical example of which is workflow, is described us-
ing GAMDL, a powerful data-flow language for domain users in describing application logics. Gracce
metascheduler architecture is designed as a software above the available grid infrastructural middlewares
to provide functionalities of grid resource allocation, workflow coordination and runtime control. The
architecture includes a workflow-orchestrated metascheduler with planning and reservation features, an
event-driven workflow engine able to coordinate the scheduling process and job execution, and a runtime
system to control workflow executions.

The organization of this paper is as follows. Section 2 introduces AQF application, our initial efforts
in deploying AQF on UH Campus grid [2], and the requirements to support automatic AQF run on grid
in production quality. At the end of this section, software and projects related to these requirements
are surveyed. Section 3 presents the current two major efforts in Gracce project, GAMDL and Gracce
metascheduling architecture. Section 4 summarizes our work and its strengths.

2 Experience of AQF on Campus Grid and New Requirements

Our initial efforts in deploying AQF on grid utilized the basic functionalities provided by Globus toolkits
2.x [12] and provided a working solution to support AQF run on the resources across our campus grid
[3]. But it is not feature complete to build an application grid environment, which is our ultimate goal of
application deployment on grid. In this section, we introduce AQF application and our current deploying
approach, and analyze issues in the approach. Also based on our current experience, three additional
features that are required for grid middlewares to fulfill our goal are identified in current stage of the
project. Middlewares and efforts related to these features are studied at the end of this section.

2.1 AQF Introduction

AQF is an integrated computational model that is composed of three subsystems: the PSU/NCAR
MMS5 mesoscale weather forecast model [9], the Sparse Matrix Operator Kernel Emission System code
(SMOKE) [24], and EPA’s CMAQ chemical transport model [7]. AQF execution is a computational
sequence of the three subsystems on heterogeneous resources with increasing resolution and decreasing
geographical boundaries. Figure 1 illustrates the workflow of a nested 2-day forecasting operation over
a single region of interest by a three-domain computation. The 36km domain computation provides
coarse forecast data over continental USA, the 12km provides data across the south central USA, and the
4km forecasts air quality across a smaller geographic region. Each rectangle represents a computational
module and each arrow indicates the flow of data between modules. An AQF daily run starts with the
download of the data of ETA weather forecast analysis on 15:30PM, and should produce results before
6:00AM the next day to researches and state and local officials [22, 34]. In our experience, a sequential
run on a 256-CPU Linux cluster can only finish AQF forecast timely for 12km domain, with about 30G
data generated daily. Substantial computational and storage resources are required in order to provide
high-quality forecasting in an urban area based upon 4km and lkm domains. Enabling AQF on UH
campus grid and utilizing the parallelism of module executions in AQF workflow are two approaches we
explored for the timely and accurate forecasting in finer domain regions [2].

2.2 Initial Experience of AQF Deployment on Campus Grid

The UH campus grid currently consists of a heterogeneous cluster of Sun SMPs, a Beowulf cluster and
an SGI visualization system, with 9 TB storage, at UH High Performance Computing Center (HPCC)
[31], and clusters of Sun SMPs and Beowulf and several Sun workstations in different departments. AQF
modules are installed and configured in these resources, and disk and tape spaces are allocated for its daily
execution. Sun Grid Engine (SGE) [35] and Platform LSF [32] have been installed to manage resources
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Figure 1: AQF Application Workflow

within the individual administrative domains. Globus toolkits [12] are installed on these resources for grid
job execution and file transfer. UH HPCC serves as the CA [14] in our campus grid and is responsible for
granting grid accounts. Individual departmental resources are configured to accept only the certificates
from this CA. To make it as easy as possible for users to interact with the services provided through the
campus grid, EZ-Grid [3], a light-weight web-based portal, have been developed. It uses the Java CoG
Kit [11] to provide a convenient interface to all Globus functions, including grid authentication using
X.509 certificates and management of GSI proxies [14], job specification, submission and management,
file transfers, and grid resource information and load status.

In current campus grid setup, AQF workflow structure is described using an XML file, and a Perl
script controls AQF workflow execution and interacts with Globus in EZ-Grid portal. A module in the
workflow is described as a task in the XML file that will become a grid computational job (Module, task
and job refer to the same entity in different context, the term “module” is from application people, task
is a workflow concept and job is often used in grid context). Dependencies between modules are specified
as the parent-child relationships of tasks in which parent tasks produce the data that are consumed by
child tasks. For each task, details about the executable and resources where it is going to be launched
are hard-coded in the task RSL file [36]. The Perl script reads the XML file and controls the overall
execution of AQF tasks, including submitting jobs to grid resources, initiating file transfer when the
data are available, and resolving task dependencies. So basically, the AQF execution scenario, which is
about where, when and how each workflow task is going to be launched and a dependency is handled,
are predefined in the description XML file and the control Perl script.

There are several issues in our current solution. Firstly, computational resources are pre-allocated
for AQF tasks and are assumed to be available during task execution periods. The allocated resources
specified in task RSL file are defined by system administrators, who also reserves the resources in the local
scheduler to ensure their availabilities. Obviously, this type of human-scheduling policy is not suitable for
the changing grid environments and resource allocation should be automated to provide best decisions
according to the resource load status. Secondly, failures in a grid resource will cause the failure of the
whole AQF run if without users’ intervention. There is no scheduler to allocated resources for a task
whose dedicated resource fails. Specifying a secondary resource in the RSL is one solution, yet normally
the secondary resource is rather busy such that the task would have to wait for long period in the local
queue. Thirdly, the non-standard XML and script approach for workflow description and execution
control is error-prone and introduces lots of burden for domain users and system administrators. Domain
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users are required to be a programmer for XML, Perl and RSL for their applications, which is a daunting
task in the process of AQF deployment. Instead of digging down all details of grid setup and resource
scheduling in AQF run, users expect a complete application execution environment, from graphical user
interface to final view of execution results.

2.3 New Requirements and Studies of Related Grid Middlewares

Understanding the above issues and users’ expectations, and also based on our experience in campus grid
setup and AQF deployment, we have identified three features that are required from grid middleware to
support the automatic AQF execution on grid:

e Grid Application Modeling and Description This is to provide domain users a modeling
language to describe an application so that users are relieved from the tedious details of work-
flow, execution control and grid activities. Such language should target for application people, be
powerful but easy to use and require only introductory or even no knowledge in grid technology
when describing a complex application structure, and should be easily integrated with other grid
middlewares, such as workflow and scheduling systems.

e Grid Metascheduling AQF daily run requires grid middleware to provide functionalities of au-
tomatic resource allocation for AQF workflow tasks across grid. Grid metascheduler operating on
the global level is the middleware that may possibly satisfy such needs. But an AQF job typically
consists of several dependent tasks and placing these tasks on the appropriate resources across a
grid for efficient execution is a much more complex problem than scheduling a single-executable job.
Moreover, the scheduling decision must ensure application Quality-of-Service, in our case, which
means forecasting results must be generated timely.

e Workflow Orchestration in Resource Allocations In workflow execution, the approach of
scheduling tasks on resources right after the task dependencies are resolved can not guarantee
resources can be discovered and allocated. Resource co-allocation normally requires planning of
workflow execution and advanced reservation of resources. In making these decisions, metascheduler
should consider the task execution scenario based on AQF workflow to make sure the resource co-
allocation are properly coordinated with the application workflow.

There have been lots of efforts addressing issues of scheduling in grid computing area. Globus GRAM
[19] and RSL [36] are the early, de-facto standard in providing solutions for secure job execution in
metacomputing environments. However, GRAM and Globus itself do not have grid scheduling and
brokering functionalities. DUROC [17] is an early effort in Globus 2.x to address the issues of resource
co-allocations in RSL-specified multi-request for resources. Globus GARA [13], Maui Silver [33] and
architecture defined in [10] introduced advanced reservation [23] into GRAM co-allocations architecture.
SNAP [18], which extends Globus GRAM and GARA, proposes a service negotiation protocol into grid
scheduling process. Pegasus [8] addresses workflow job scheduling issues as AI planning in constructing
and execution workflow from application logic workflow.

Although issues related to grid scheduling have been researched in different projects, efforts to de-
velop a fully functional grid metascheduler are very few, and to our best knowledge, none of them
addresses workflow orchestration issue in resource allocations. Community Scheduler Framework (CSF)
[26] implements a number of low-level services as a development basis for implementing a fully functional
metascheduler. Maui silver [33] scheduler jobs across Maui-managed resources and is not standard based.
GRASP [29] aims to provide an OGSI-compliant resource allocation and reservation services following
the requirement of Grid Scheduling Architecture proposed by Grid Scheduling Architecture Research
Group of GGF [30]. Nimrod/G [20] is an resource management and scheduling system with focus on
computational economy in scheduling tasks based on their deadlines and budgets. MARS Metascheduler
[1] is an on-demand scheduler which discovers and schedules the required resources for a critical-priority
task to start immediately. We also studied efforts in addressing various issues in grid scheduling.

Efforts that address scheduling in workflow community are also very limited. Triana [5] workflow
engine schedule tasks across multiple resources either in parallel or in a pipeline. GridFlow [16] executes a
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grid workflow according to a simulated schedule. Pegasus [8] separates abstract workflow with the concrete
workflow and relies on Condor DAGMan [27] to schedule the workflow jobs. For workflow descriptions that
directly interest us, several languages are studied based on our AQF needs. Business Process Execution
Language (BPEL) [25] is an XML-based workflow definition language that allows businesses to describe
enterprise business processes. BPEL is in low-level web service level, which additional extension and
wrapping development needed to make it easy of use by grid application owners. XScufl [39] is a specific
workflow definition language for Taverna project, but XScufl is too fine grained for describing scientific
applications. Abstract Grid Workflow Language (AGWL) [21] “programs” application control flow using
constructs of imperative programming style. For data-flow applications, users have to translate the
dataflow into control-flow to use AGWL.

3 Gracce: Building An Application Grid Environment

Driven by AQF application, Gracce (Grid Application Coordination, Collaboration and Execution)
project [28] was proposed to develop a set of grid middlewares for grid application deployment. The
vision of Gracce is to provide domain scientists an application-specific grid environment, supporting from
the management of an application and its dataset, to the automatic execution and viewing of results. In
Gracce solutions, domain users are only required to provide application descriptions and major resource
requirements, and Gracce is responsible for allocating grid resources for tasks, placing tasks on resources
for execution and monitoring them, and returning the results back to users. The three required features
for automatic AQF execution on grid are addressed by two efforts in Gracce: the Gracce Application
Modeling and Description Language, and Gracce metascheduler architecture.

3.1 Gracce Application Modeling and Description Language (GAMDL)

GAMDL is a high level abstraction language for domain scientists to describe their applications in grid
environment. GAMDL is a data-flow modeling language, compared with other solutions that describe
application control-flow structures. GAMDL models an application in its domain logics and users do
not need to extract application control structures to construct a workflow. By using conditioned prop-
erties and conditioned pipes, GAMDL allows control-flow to be defined within dataflow. GAMDL also
introduces the concept of multiple-value property (mvproperty) for easy description of similar application
entities, such as files, modules, and executables. In a GAMDL document, a universal ID (uid) is used
to identify and reference an application entity, which may not be defined in the same document. This is
very helpful in programming and mapping application entities with persistence services, such as RDBMS,
XML and Java Object.

GAMDL is specified using XML-Schema and a grid application is represented as a gridApp XML doc-
ument with four major child elements: appExecutables, appDataFiles, appModules and appMdDeps,
which specify the required executables, files, modules, and module dependencies respectively in an ap-
plication. A task in application workflow is modeled as a “module”, a term domain users are familiar
with. A module, which consists of executables, input/output file set, and its grid job specification, is
normally a computation unit that will become a single-executable grid job. Dependency relationships be-
tween modules can be specified in either parent-children pattern indexed by parent tasks or child-parents
pattern indexed by child tasks. In each relationship, dependencies are specified by pipes, whose pipeln
specifies the piped output of parent tasks, and pipeOut specifies the piped input of child tasks. Each
pipe is conditioned by a boolean string that will be evaluated runtimely to decide whether the piped
dependency should be handled or not.

The GAMDL description for AQF is attached in appendix. In AQF grid App XML document, mvprop-
erties are defined by either including from files (uhaqf .mvproperties in this example) or defining them
directly(mdName). The file uhaqf.mvproperties defines three mvproperties: md={mm5, smoke,cmaq},
dmsz={36K, 12K,4K}, and day={d1,d2}. The mdName ($md, $dmsz, $day), defined as uhaqf-$md-$dmsz-$day
($ operator on a mvproperty refers to its values), is extended into 18 (which is #md*#dmsz*#day, #
operator on a mvproperty returns the number of its values) values. So this one sentence is enough to
reference all the AQF computational modules. AppExecutables, appDataFiles and appModules are all
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defined here as uid reference and they should be specified in other documents. AppMdDeps are specified
using child-parent relationships, which is easily understood from the GAMDL itself. For detail about
GAMDL, we refer readers to [28].

3.2 Gracce Metascheduling Architecture

We define metascheduler as “a grid middleware that discovers, evaluates and co-allocates resources for
grid jobs, and coordinates activities between multiple heterogeneous schedulers that operate at the local
or cluster level”. There are two aspects covered in this definition, the “scheduling” aspect which addresses
resource co-allocation issues for applications requiring resources simultaneously at multiple sites, and the
“meta” aspect that concerns about the brokering from global grid requests onto resource local schedulers.
To address these two aspects, our metascheduler design separates job execution from the metasched-
uler, making scheduling process independent from underlying grid middleware for job execution. This
allows metascheduler to work with various remote execution utilities. The separation is achieved by the
concept of Execution Plan (EP) for a workflow job. The job EP contains scheduling decisions for each
task and mechanisms for dependency handling, and a separate runtime system translates the EP into
execution-specific scripts for job execution and controls. The defined architecture has three components,
Metascheduler, EPExec runtime system, and GridDAG workflow engine. To deploy this architecture in
a grid environments, we assumes the installation of Grid Information Services. The complete setup is
shown in Figure 2.

Metaschedule
GAMDL app MetaPlanner | MetaAlloc

Execution Plan

/.

GridDAG < R
Chain Chain
Buider | Deploye | DEPRESOlVe

A~
GridDAG agent| GT GridDAG agent| GT GridDAG agent| GT
Resource 1 Resource2 | =" " Resourcen

Figure 2: Gracce Metascheduling Architecture

GridDAG is an event-driven workflow system to coordinate the execution of tasks with dependen-
cies. GridDAG events, such as completion of tasks or dependent file availabilities are WS-Notification
NotificationMessages produced and consumed by corresponding entities in the architecture. The sequence
of these events are referred as event chains and two GridDAG modules, chain builder and deployer setup
and install these chains. GridDAG DepResolver keeps track of the events along job execution and invokes
certain handlers upon receiving events. GridDAG agents, installed optionally on grid resources generate
the outgoing events and consume incoming events locally.

Metascheduler plans job execution and co-allocates resources for workflow tasks. Two modules are
designed for these two functionalities, MetaPlanner and MetaAlloc. MetaPlanner predicts the execution
scenario for each task; and MetaAlloc searches for suitable resources, negotiates the resource provision
and makes reservation with resource providers. The whole metascheduling process is orchestrated by
job workflow and the output of this process is a job EP which includes resource allocation decisions and
mechanisms for task dependency handling.

EPExec submits task jobs following the EPs, and monitors and manages the execution of these
tasks. EPExec also works with GridDAG for handling task dependencies. During execution, EPExec
may adjust EP according to the real execution scenario. Being independent from metascheduler, EPExec
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can be developed to support different methods of job submission and remote execution utilities. EPExec
has three components, EXEpre (Execution Preparation), sJSCS (simple Job Submission and Control
Service) and RTadj (RunTime Adjuster).

The life-cycle of a grid workflow job in this architecture is described briefly below:

1. Grid users submit to the Metascheduler a workflow job (possibly with preferred deadline) specified
using the application GAMDL.

2. Metascheduler plans the execution of the tasks and the dependency handling mechanisms, and
allocates resources for tasks executions. As a result, the job’s EP that includes the decision details
is outputted.

3. The job’s EP is forwarded to EPExec for job execution, which submits tasks to their allocated
resources and monitors their executions.

4. During execution, GridDAG agents and DepResolver handle task dependencies and decide whether
task dependencies are resolved. EPExec also handles failures and makes required adjustments when
the executions are not following the plan.

3.2.1 Gracce metascheduler

Gracce metascheduler plans job execution and co-allocates resources for workflow tasks by the two mod-
ules, MetaPlanner and MetaAlloc. MetaPlanner predicts and identifies the execution windows for each
task and MetaAlloc searches a list of candidate resources, negotiates and makes the agreement with re-
source owners of resource provision. A task’s execution window (EW), represented by a <EWstarttime,
EWlength> pair, is a time period in which task execution shall be. EWstarttime is the window start-
time and EWlength denotes the length of this window. The metascheduling process is orchestrated by
job workflow so that execution orders of dependent tasks are kept and parallelism of execution of tasks
without dependencies are employed.

Given a workflow job, the scheduling process starts with the allocation of resources for the first task
in the workflow by the MetaAlloc. When resources are allocated, MetaAlloc also identifies the task’s
EW. Then, metascheduler processes the child tasks of the first task. First, MetaAlloc discovers a list of
candidate resources for each child task and calculate the costs of file transfer between the resource for first
task and the candidate resources for child tasks. Secondly, MetaPlanner predicts the task EWs on each
candidate resource. EWstarttime is calculated by adding three time value together, the EWstarttime and
the EWlength of the first task, and the cost for dependency handling; and EWlength is equal to task’s
wall-clock execution time. Thirdly, the predicted task EWs associated with each candidate resources
are processed by MetaAlloc again, which will choose the best resource and finally reserve the resource
for each task. Metascheduler then moves on to process other tasks until the last one. For tasks with
more than one parent tasks, MetaPlanner considers the one with latest EW in prediction. Brother tasks
will normally have overlapped EW, which means that they may be in execution at the same time. In
calculating any time value and task EW, certain grace periods or buffer time are applied.

MetaAlloc allocates grid resources for jobs, mainly computational resources for tasks in a sequence
of resource discovery, negotiation, and reservation. In resource discovery, MetaAlloc looks up in Grid
Information Services the resources that satisfy task resource requirements and are also available during
its EW. The process of filtering resource is split into two stages to ultimately identify a list of candidate
resources for the given task’s specification. In first stage, resources are selected by a simple match-making
of each attribute of task’s specification with static resource information. The resources on which the task
is able to run are picked to be further evaluated according their runtime information. So in second stage,
selected resources are checked for their availabilities during task EW and MetaAlloc finally identifies a list
of candidate resources. For each of these candidates, MetaAlloc reservation negotiates with the resource
local schedulers about resource provision and makes agreement on the availability of resources. For a
list of discovered candidate resources, MetaAlloc requests reservation for resources during task’s EW and
this is considered as a negotiation process. If local schedulers grant this request, MetaAlloc chooses the
one that can provide the earliest EW for the task. A reservation ID is returned which will be used to
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access the reservation. If no reservation could be made for all the candidates, grace periods are added
to the EW and MetaAlloc requests reservation again for other wall-clock periods within the EW until a
reservation is made. If MetaAlloc cannot reserve resources for the task, metascheduler stops on this task
and forwards the partial EP to EPExec to launch the job. During job execution, MetaAlloc attempts
the resource allocation steps periodically for this task until decisions are made.

3.2.2 GridDAG Workflow System

GridDAG is our event-driven workflow system able to coordinate the execution of dependent tasks of a
workflow job. Events are notification about status change of jobs or file transfers, data availabilities, or
other situations defined by users for resource accounting and monitoring purpose. The event producers
detects certain situation or change of status, generate the corresponding event messages and distributes
them. The event consumers receive an event and then take certain actions or invoke event handlers. The
GridDAG event mechanism is developed using WS-Notification standard [38] and the concepts of event,
event producers and consumers map to the situation, NotificationProducer, and NotificationConsumer
in WS-Notification specification. A Subscriber is an entity that acts as a service requester, sending the
subscribe request message to a NotificationProducer.

As shown in Figure 2, four components are designed in GridDAG to support the eventing mechanisms,
event chain builder, chain deployer, GridDAG agent, and DepResolver. The chain builder reads job
execution plan forwarded from metascheduler and generate the event chains according to the EP. An
event chain is a sequence of the events flowing between the participating producer and consumers in the
predefined order. The chain builder also decides who are the producer, consumer, and Subscriber; and
what events are going to be generated by each producer and to be received by each consumer. The chain
deployer sends subscription requests to producers. A Subscription represents the relationship between
a consumer, producer, and related event messages. These relationships constitutes the runtime event
chains of a GridDAG job. GridDAG agents installed on each grid resources coordinate the runtime event
activities in a distributed fashion by playing several roles at the same time. First, as the event producer,
detects events occurred on the host resources, and generates and sends out event message. Secondly, as a
consumer, receives messages about the availability of dependent files on remote resources or locally, and
takes actions accordingly, such as pulling files. Another GridDAG module, DepResolver is configured to
received all event notifications and keeps track of the states of tasks’ dependencies (a task may have more
than one dependencies). When all dependencies of a tasks are resolved, DeResolver takes certain actions,
which are typically sending requests to EPExec for job submission or control.

3.2.3 EPExec Runtime system for Job Execution and Management

EPExec executes workflow jobs by carry out its Execution Plan. EPExec has three main functional
modules, EXEpre (Execution Preparation), sJSCS (simple Job Submission and Control Service), and
RTadj (Runtime Adjuster). EPExec’s EXEpre fills in job EP the required information for job submission
and workflow control. sJSCS is a simple utility answering requests from EPExec to submit single-
executable jobs and control them. EPExec RTadj identifies differences between the job execution and the
job EP, and makes certain adjustments on the execution so that it follows the EP.

When a job EP is forwarded to EPExec for execution, EPExec first calls EXEpre to setup execution
related details; and then calls sJSCS to submit the job of the first task to its allocated resources, thus
begins the execution cycle of the workflow job. Task job is submitted using its resource reservation
ID and the task EWstarttime are set in the resource local scheduler. A successful submission returns
a global job ID, which EPExec uses for job monitoring and control. During job execution, GridDAG
agent and DepResolver work together to handle task dependencies. For data dependencies, file transfer
can be in either destination-pull or source-push mode. In destination-pull mode, GridDAG events on
source resources sends events about file availabilities to destination GridDAG agent, which then fetches
files and sends events to GridDAG DepResolver about file arrivals. For source-push mode, when files
are available, source GridDAG agent transfers them to the destination resources and send events to
DepResolver indicating that the intermediate files have been transferred. As the overall coordinator of
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dependency handling, DepResolver keeps track of the status of the dependencies of all tasks and decides
whether dependencies of a task are all resolved.

If job execution does not follow the EP, RTadj is responsible to adjust the mismatch to make sure
that tasks are executed on the allocated resources during the reserved time frame. RTadj categorizes job
execution into four situations depending on how much task executions deviate from the EP. In the first
situation, tasks are executing within their EWs and no adjustment is needed. In the second situation,
a job completes after its EW, but the difference is within the grace periods of its child tasks so that
they all can be started within their EW. In the third situation, the task’s late completions go beyond
the grace periods of their child tasks and cause their execution not to complete within the resource
reservation time frame. Instead of killing those jobs, we configure local scheduler to allows them to finish.
Currently, RTadj does not make adjustment for the situation two and three and relies on the allocated
buffer time in task EW to automatically repair this. In the fourth situation, the tasks’ late completions
cause the expiration of reservation of its child tasks. In this case, EPExec submits these jobs without
using reservation, yet the jobs may be held in the resource local queues. So, after submitting them, RTadj
will request metascheduler to discover other resource for these tasks. If some resources are discovered and
allocated, EPExec submits another copies of these tasks to these resources. During execution, EPExec
kills the one that it thinks will be completed later than another one. In doing this, RTadj tries its best
to make up the lost time in past job execution and minimizes the negative impacts on the execution
of later tasks. If cannot make up these delays and it is almost impossible to follow the original plan,
RTadj will consider re-scheduling for the rest of tasks. RTadj forwards the sub graph of job GridDAG
to Metascheduler to do re-planning and re-allocating. Re-scheduling may cause low resource usage or
wasting because of the cancellation of the reservation that has already been made. Metascheduler should
avoid such cancellation by scheduling other jobs onto these reservations.

4 Conclusions

AQF is a typical application that requires several computational resources simultaneously and collabora-
tively available to produce air quality forecasting results in timely fashion. While a grid environment has
potential to satisfy such requirement, lots of efforts are still needed to fill the gap between grid community
and domain scientists. This paper presents our efforts to provide solutions for domain scientists to enable
their applications on grid. Driven by AQF application and based on our past experiences of grid de-
ployment in UH campus grid, the ongoing Gracce project attempts to provide an end-to-end solution for
automatic application execution on grid environments. Using middlewares of Gracce, domain scientists
are only required to specify their application logic structures and major resource requirements, Gracce
is responsible to allocate grid computational resources for application tasks, launch the application and
deliver the results back to users.

There are two major efforts in Gracce project in current stage: GAMDL and Gracce metascheduler.
GAMDL provides a very intuitive means to model an application for grid computing. GAMDL’s data-
flow style in describing an application reflects the application original logics, requiring no efforts from
users to extract application control-flow. The mvproperty concept makes GAMDL to be very powerful
in describing similar application entities and a GAMDL description document is very concise and read-
able. Gracce metascheduling effort researches grid scheduling issues for workflow jobs, defines the term
“Grid metascheduler” and proposes a workflow-orchestrated metascheduling architecture. The architec-
ture integrates solutions to scheduling related issues in grid area, such as resource co-allocation, service
negotiation and resource reservation, and workflow execution planning.
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Appendix: GAMDL Description for AQF Application

<gridApp uid="uhaqf05" xmlns="http://.../gamdl"
xsi:schemalocation="... gamdl.xsd">
<name>UH-AQF-2005</name>

<mvproperty file="uhaqf.mvproperties"/>
<mvproperty name="mdName ($md,$dmsz, $day) ">
<value>uhaqf-$md-$dmsz-$day</value>
</mvproperty>

<include href="aqfexe.xml"/>

<include href="aqffiles.xml"/>

<include href="aqfmd.xml"/>

<appExecutables>
<executable uidRef="uhaqf-$md"/>
</appExecutables>

<appDataFiles>

<file uidRef="$mdName ($md, $dmsz,$day)-in1"/>
<file uidRef="$mdName (mm5,$dmsz,$day)-in2"/>
<file uidRef="$mdName (mm5, $dmsz, $day)-in3"/>
<file uidRef="$mdName (cmaq,$dmsz,$day)-in2"/>
<file uidRef="$mdName (cmaq, $dmsz,$day)-in3"/>
<file uidRef="$mdName (cmaq,$dmsz,$day)-ind"/>
<file uidRef="$mdName ($md, $dmsz, $day)-outl"/>
<file uidRef="$mdName (mm5,$dmsz, $day)-out2"/>
<file uidRef="$mdName (mm5, $dmsz, $day)-out3" />
<file uidRef="$mdName (smoke, $dmsz,$day)-outl"/>
<file uidRef="$mdName (smoke, $dmsz, $day)-out2"/>
<file uidRef="uhaqf-postpv-$day-ini"/>

<file uidRef="uhaqf-postpv-$day-outl"/>
</appDataFiles>

<appModules>

<module uidRef="$mdName ($md,$dmsz,$day)"/>
<module uidRef="uhaqf-postpv-$day"/>
</appModules>

<appMdDeps>
<CPsRship uid="smoke-mm5-$dmsz-$day-CPs">
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<childMd uidRef="$mdName (smoke,$dmsz,$day)"/>
<parentMd uidRef="$mdName (mm5,$dmsz,$day) ">
<viaPipe>

<pipelInFile uidRef="$mdName (mm5,$dmsz,$day)-outl"/>
<pipeOutFile uidRef="$mdName (smoke,$dmsz,$day)-in1"/>

</viaPipe>
</parentMd>
</CPsRship>
<CPsRship uid="cmaq-smoke-$dmsz-$day-CPs">
<childMd uidRef="$mdName (cmaq,$dmsz,$day)"/>
<parentMd uidRef="$mdName (smoke,$dmsz,$day)">
<viaPipe>

<pipelInFile uidRef="$mdName (smoke,$dmsz,$day)-outl"/>
<pipeOutFile uidRef="$mdName (cmaq,$dmsz,$day)-inl"/>

</viaPipe>
<viaPipe>

<pipelInFile uidRef="$mdName (smoke,$dmsz,$day)-out2"/>
<pipeOutFile uidRef="$mdName (cmaq,$dmsz,$day)-in2"/>

</viaPipe>
</parentMd>
</CPsRship>

<CPsRship uid="mm5-12k-36k-$day-CPs">
<childMd uidRef="uhaqf-mm5-12k-$day"/>
<parentMd uidRef="uhaqf-mm5-36k-$day">
<viaPipe>
<pipelInFile uidRef="uhaqf-mm5-36k-$day-out3"/>
<pipeOutFile uidRef="uhaqf-mm5-12k-$day-in3"/>
</viaPipe>
</parentMd>
</CPsRship>
<CPsRship uid="mm5-4k-12k-$day-CPs">
<childMd uidRef="uhaqf-mm5-4k-$day"/>
<parentMd uidRef="uhaqf-mm5-12k-$day">
<viaPipe>
<pipelnFile uidRef="uhaqf-mm5-12k-$day-out3"/>
<pipeOutFile uidRef="uhaqf-mm5-4k-$day-in3"/>
</viaPipe>
</parentMd>
</CPsRship>
<CPsRship uid="cmaq-12k-36k-$day-CPs">
<childMd uidRef="uhagf-cmaq-12k-$day"/>
<parentMd uidRef="uhaqf-cmaq-36k-$day">
<viaPipe>
<pipelnFile uidRef="uhaqf-cmaq-36k-$day-out2"/>
<pipeOutFile uidRef="uhaqf-cmaq-12k-$day-ind"/>
</viaPipe>
</parentMd>
</CPsRship>
<CPsRship uid="cmaq-4k-12k-$day-CPs">
<childMd uidRef="uhaqf-cmaq-4k-$day"/>
<parentMd uidRef="uhaqf-cmaq-12k-$day">
<viaPipe>
<pipelnFile uidRef="uhaqf-cmaq-12k-$day-out2"/>
<pipeOutFile uidRef="uhaqf-cmaq-4k-$day-ind"/>
</viaPipe>
</parentMd>
</CPsRship>

<CPsRship uid="mm5-2d-1d-$dmsz-CPs">

<childMd uidRef="uhaqf-mm5-$dmsz-2d"/>

<parentMd uidRef="uhaqf-mm5-$dmsz-1d">
<viaPipe>
<pipelInFile uidRef="uhaqf-mm5-$dmsz-1d-out2"/>
<pipeOutFile uidRef="uhaqf-mm5-$dmsz-2d-in2"/>
</viaPipe>

</parentMd>

</CPsRship>

<CPsRship uid="cmaq-2d-1d-$dmsz-CPs">

<childMd uidRef="uhaqgf-cmaq-$dmsz-24"/>

<parentMd uidRef="uhaqf-cmaq-$dmsz-14">
<viaPipe>
<pipeInFile uidRef="uhaqf-cmaq-$dmsz-1d-outl"/>
<pipeOutFile uidRef="uhaqf-cmaq-$dmsz-2d-in3"/>
</viaPipe>

</parentMd>

</CPsRship>

<CPsRship uid="postpv-cmaq4k-$day-CPs">

<childMd uidRef="uhaqf-postpv-$day"/>

<parentMd uidRef="uhaqf-cmaq-4k-$day">
<viaPipe>
<pipeInFile uidRef="uhaqf-cmaq-4k-$day-out2"/>
<pipeOutFile uidRef="uhaqf-postpv-$day-inl"/>
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</viaPipe>

</parentMd>
</CPsRship>
</appMdDeps>

<startMdUid>uh-aqf-mm5-36k-1d</startMdUid>
</gridApp>
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Abstract. We discuss our software development experiences with Grid-BGC, a grid-
enabled terrestrial carbon cycle modeling environment. Grid-BGC leverages grid
computing technologies to create a secure, reliable and easy to use distributed
computational environment for climate modeling. The goal is to develop a system
which insulates the scientists from tedious configuration details thereby increasing
scientific productivity. This project is part of a collaborative effort between the
University of Colorado and the National Center for Atmospheric Research to create a
general grid-enabled computational framework for climate modeling. Over the
course of this project we gained valuable experience deploying grid technology and
learned how to create a production quality grid system. We provide an overview of
our current system, describe our most salient experiences, and present a proposed
production architecture for Grid-BGC.

Introduction

Grid-BGC is a grid-enabled global carbon cycle modeling system and computational framework.
Using grid computing technologies, such as the Globus Toolkit [5], researchers and software
engineers at the National Center for Atmospheric Research (NCAR) and the University of
Colorado at Boulder (CU) implemented a prototype of a grid-enabled system which models the
global carbon cycle using computational and storage resources distributed between both
institutions. The ultimate goal of this system is to give scientists access to the climate models and
data necessary to model the carbon cycle and minimize the complexity of running the models in
a distributed computational environment.

In creating this system we gained many experiences on how to develop a stable and usable
grid computing system. While NCAR actively participates in archiving climate related data on
the grid (e.g., the Earth System Grid) the Grid-BGC project is the first grid-enabled modeling
environment developed and deployed by NCAR and provided as a grid service to the climate
modeling community. Throughout this project, we gained valuable experience constructing a
distributed climate modeling environment using grid technologies. These experiences ranged
from mechanical practices, such as using the Globus toolkit, to engineering practices, such as
defining a sound security model.

This paper discusses the relevant experiences and lessons learned during the development of
the system prototype. We provide a detailed description of the prototype along with a description
of how our experiences and lessons learned influenced the final production system’s design. We
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start with an overview or related work, then provide a brief introduction to carbon cycle
modeling, followed by an overview of the prototype architecture and implementation of the
Grid-BGC system. The following section discusses our experiences and lessons learned during
development and operation of the prototype. Finally, we present our proposed production
architecture, future work, and conclusions.

Related Work

As the grid computing paradigm matures, more organizations are utilizing the grid computing
software infrastructure to help support their scientific and computational needs. In [2], we
presented an overview of similar projects (e.g., GEMCLA [6], DIRAC [14], and NorduGrid [4]).
We concluded that the Grid-BGC project differed from these projects because our system
provides users with a simple interface to request execution of a limited set of climate models on
their behalf and guarantees that all aspects of the requested computation are accomplished with
complete transparency to the scientist. In contrast, these other solutions are intended for general
workflow processing and provide a generic language and parser to define and manipulate
workflows, at the cost of introducing substantial complexity to the system design. Two recent
external projects similar to Grid-BGC are GridChem and CRAFT.

GridChem [10] is a collaborative project between the NCSA, OSC, and TACC to interface
chemists’ desktop computers with a grid-enabled environment. The researchers found that the
grid computing model and software is difficult for users to adjust to and addressed this in their
systems design. GridChem users interact with a Java client, locally installed on users’ desktops.
The client communicates with a middleware server to authorize and authenticate users as well as
manage their workflow tasks. The middleware server implements a customized data management
scheme and utilizes Condor [8] for task scheduling. Grid-BGC differs from GridChem in several
ways. Grid-BGC utilizes a centralized web-client interface and does not require the installation
of a client on the users’ desktops. Grid-BGC also focuses on the development of a reliable and
automated computational fabric.

Project CRAFT [3] is another collaborative project that utilizes grid computing middleware to
link remote resources. The ultimate goal of CRAFT is to link data collected from remote sensing
instruments into event-driven meteorological models in real-time. CRAFT utilizes grid
middleware to create a virtual machine room for computing the models as separate
computational centers. Like Grid-BGC, CRAFT utilizes grid computing resources to offload
load the execution of meteorological models.

Terrestrial Ecosystem Modeling

Modeling the carbon cycle is accomplished through a multistage workflow composed of two
climate models; Daymet and Biome-BGC (see Figure 1). This workflow transforms observed
meteorological and ecosystem data, gathered from a finite number of observation stations over
the past 50 years, into a high resolution grid of data. With the gridded-weather data, the
workflow simulates the carbon cycle on each point in the gridded data set and produces another
grid of the simulated carbon cycle data. The generated carbon cycle data can be analyzed through
text analysis or visualization tools.
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Figure 1, Grid-BGC Workflow

The first transformation performed by the workflow is accomplished through the use of the
Daymet climate model [12]. Daymet interpolates historical weather data to produce a high
resolution spatial grid of ground-based weather observations. These grids are subdivided into
sections referred to as tiles. After the creation of the tiles, the carbon cycle for each tile is
modeled using Biome-BGC [13]. This model ingests the tile of climate data along with known
soil and plant data and other simulation parameters to simulate the carbon cycle for this tile over
a period of time. Post processing of the data is performed to glean data relevant for a particular
scientists needs from the output from Biome-BGC.

The point and tile based nature of Daymet and Biome-BGC accommodates simulations of
small areas well, but quickly becomes overwhelming for scientists to manage on larger scales.
These simulations are embarrassingly parallel because simulations of different tiles can be run in
parallel with others. Large area simulations are performed by executing many of the point-based
simulations as a collection. In order to achieve a high resolution simulation of a large area,
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scientists are required to manage many simulations that compose a collection. Management of
these simulations requires tedious attention to detail, including periodically monitoring running
simulations, transferring data, correctly scripting configuration files for each model, and
detecting failed simulations and handling the failures as appropriate. The management of these
tasks is further complicated by our computational environment, as resources available to this
project are located at two distinct locations: CU houses the allocated computational cluster and
NCAR manages the storage systems and web portal user interface.

Prototype Architecture
The goal of our prototype architecture was to address the issue of global carbon cycle modeling

complexity in our computational environment. The implementation of our prototype architecture
is a federation of several independently functioning components (see Figure 2). These
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Figure 2, Grid-BGC prototype architecture
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components include a web portal, a job management daemon, and a reliable data transfer utility.

The web portal provides a management interface to the Grid-BGC environment for both users
and system administrators. The web-portal implementation requires no Grid-BGC specific
software packages installed on the client machines since the web portal is maintained at a
centralized location. The web portal allows users to specify simulation parameters, manage and
monitor their simulations that are in progress, analyze results, and share results with other system
users. A client embedded in the web portal communicates with the remote execution
environment by invoking methods of a grid service residing on a computational resource. These
methods include functionality to stop, start, and monitor simulations in the remote execution
environment.

The job management daemon, known as the Grid-BGC JobManager, is used to monitor and
coordinate the tasks executing in the computational environment. JobManager runs on the
computational resources, such as a cluster. As the grid service receives communications from the
web portal, the service parses and stores the requests into a persistent database. JobManager polls
the database for new tasks to perform on the environment and the Grid-BGC tasks. The state of
Grid-BGC simulations is periodically stored in the same database, so the grid service can query
the database when task monitoring information is requested from the web portal. The decoupling
of the grid service and JobManager and the use of a database to store system state allows system
administrators to arbitrarily restart either component without loss of state, prior to the occurrence
of a system failure.

The final component of the system is a data management utility, DataMover [11]. The utility
was developed for the Earth System Grid and provides reliable file transfers, data caching,
authentication, and interoperability with different storage architectures. DataMover uses
GridFTP [1] as the underlying file transfer utility and implements several storage system access
protocols, including a protocol to access NCAR’s Mass Storage System (MSS). The Grid-BGC
prototype uses this tool exclusively to transfer data between CU and NCAR. As the simulations
are prepared, DataMover transfers the required input data sets to the computational facility at
CU. Once the computations have completed, DataMover transfers the data back to NCAR for
storage on the MSS or cached on the grid-enabled host at NCAR.

Experiences and Lessons Learned Implementing the Grid-BGC Prototype

Our prototype architecture successfully implements an end-to-end computational environment
for Grid-BGC. The prototype currently manages a small portion of the workflow: the execution
of the Biome-BGC model and the associated setup and finalization tasks. During the
development of the prototype, we encountered several design problems that helped strengthen
our future architecture of the system. Our experiences implementing the prototype include the
need to implement a robust security scheme to accommodate the participating institutions
security requirements, the need to create a reliable execution environment, and good practices for
developing a grid-enabled computational environment.

Security Considerations

As is the case with many grid computing systems, a secure system is critical. While the grid
computing middleware provides authentication and encryption mechanisms through the GSI
security model, more security measures were needed. For example, NCAR not only requires that
access to the MSS be authenticated, it also requires a great deal of accountability for each users
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actions. A significant challenge in the prototype implementation was to accommodate the
rigorous security requirements imposed by our organizations.

Grid computing system security is continually evolving and unfortunately must be reevaluated
frequently. This includes addressing more advanced security needs and requirements posed by
our organizations, such as one time password authentication, and the policies impacts on our
system design. We have found that creating a flexible system design that can accommodate
changes in security policy is essential in grid computing development. The flexibility allows
security infrastructure to change with minimal impacts to other components of the system.

Reliability and Fault Tolerant Considerations

An essential quality of our computational environment is reliable execution of computational
tasks. Fault tolerance in grid computing is being addressed in several areas, including workflows,
data management, and task management. We found that integrating fault tolerant capabilities into
our system software and grid services, in addition to the previously mentioned areas,
strengthened our system design. Our grid service, daemons, and user submitted tasks store little
state in volatile memory and log all critical state to a persistent database. With this design, these
components can recover from faults by recovering the most recent state from the database and
proceeding from this point.

Grid Computing System Development

Grid computing and the development of a grid-enabled environment was a surprisingly more
difficult paradigm to become familiar with and acclimated to than we originally expected. We
found that pleasant persistence in the face of frustration is an essential quality for the successful
development of an environment similar to ours. The Globus toolkit provides many tools to grid
developers, but usually at the cost of a complex programming model. From our experiences, a
development environment capable of automating code generation for grid components
substantially increases development productivity.

We also found that a developer’s mileage with the grid middleware will vary. The middleware
provides a set of tools that help cope with most grid computing systems, but the development of
additional tools to support our application’s needs was necessary. Instead of leaving the model
configuration for the user to define, we found that development of a tool to automate the creation
of configuration files reduced the possibility of human error and interaction with the system. We
also found that it was most useful to utilize as much of the established grid middleware as
possible. Use of these tools will allow our environment to be re-deployed and interoperate with
other environments more easily.

Shortcomings of the Prototype Architecture

From our experiences developing and deploying the prototype, we identified several weaknesses
in its design. The prototype architecture deploys a monolithic grid service and daemon that
jointly perform all system tasks. A better design would break apart the distinct functions
provided by these two components into several modular components. This approach would
separate functionality and make the components more extensible for other uses. We believe that
staging temporary data to the NCAR MSS is a misuse of the storage system. Only those files that
need to be archived should be transferred to the MSS. The prototype is not completely Globus
compliant. It uses a non-standard data management utility, DataMover, and Grid-BGC
JobManager for execution management. A better approach would utilize the standard
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components and minimize the software deployment to the climate models and the system
services. Porting the prototype architecture would be easier if the third-party utilities were
replaced by those that are packaged with the Globus Toolkit.

Production Architecture

Our production architecture addresses the experiences and lessons learned from the
implementation of the prototype (see Figure 3). The fundamental goals of our prototype still are
the same for the proposed production architecture: the system should be easy for scientists to use
and efficiently execute global carbon cycle models. The significant advances we propose for the
production architecture is the integration of more Globus Toolkit compliant services into our
system, re-structuring data management policies, breaking apart the monolithic service structure
to be more service oriented and modular, and re-developing the system from the most recent
release of the Globus Toolkit.
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Web Service Client GridFTP

Grid Security Infrastructure Boundary

Grid-BGC Web
Service
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GridFTP
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Figure 3, Proposed Grid-BGC production architecture
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Our production system will take advantage of several standard services provided by the
Globus Toolkit. Prior critiques of the systems design indicated that the use of WS-GRAM would
help standardize the execution functionality provided by our system. Our production system will
deploy a model execution web service using GRAM as the execution management engine. The
service will provide the necessary mechanisms to setup and finalize the execution of the model
specified in the web service configuration. WS-GRAM will be supplemented by the fault
tolerant, reliable job execution, and management functionality developed during the prototype
implementation. We believe that the integration of GRAM into our execution engine will make
deployment of our system onto other grids much easier. Additionally, the use of the Globus data
management will make our system more interoperable. We are also considering the integration
of the Surfer [7] resource broker to help our user community and system allocate available
resources as our environment expands from a couple of computational domains to several.

Our objective for restructuring the data management policies and functionality developed for
the prototype are to create a more efficient data grid. First, we have decreased our reliance on the
NCAR MSS as a staging platform. Instead of staging files through archival storage, we propose
staging files using SAN-based scratch space at NCAR and manually archiving files to the MSS
as needed. Additionally, we are considering removing DataMover from the system architecture.
We believe we can replicate the essential qualities of it by using GridFTP, the Replica Location
service, the Reliable File Transfer service, and the Data Storage Interface. Removing DataMover
would eliminate the use of a third-party tool from our system design and enable us to use the
more recent Globus compliant tools.

The production design also aims to make our system more modular and service oriented.
Instead of a single web service to handle all tasks with the system, we propose to modularize the
current monolithic grid service. We plan to break out services, such as security, file transfer, data
management, job execution, and system management, from the single daemon implemented in
the prototype. We believe that breaking out the services has many benefits including reducing
the number of bottlenecks, making the system more manageable and scalable, and making the
framework more accommodating for use by other grid-based projects in the climate modeling
community.

Finally, the use of Globus Toolkit 4 (GT4) in our production prototype should help improve
our overall system design for future use. GT4 is web service compliant, so re-development of our
services to the standard web service interface will increase interoperability of Grid-BGC with
other web service technologies. MyProxy [9] is now a standard component of GT4 and its
addition will allow our security requirements to assimilate to other grid computing environments
more easily. Significant improvements were made to the data management functionality of GT4,
including striped server support for GridFTP, reliable file transfer through RFT, and modular
support for non-GridFTP compliant interfaces. These improvements to GridFTP will enable us to
better utilize our high-performance storage system through the use of striped servers and mitigate
our reliance on DataMover through reliable file transfer support and the development of a
modular interface to the NCAR Mass Storage System.

Future Work and Conclusions
Our future work includes developing the production system, deploying the system, and using

the system to model the carbon cycle. At this time, we plan on completing the development and
deployment of our system by the end of August 2005. Many of the components of the prototype
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are still usable, including the web portal and many of the reliable execution components. Most of
the production development will consist of porting code to GT4 and integrating new services into
the system.

We found that the development of the Grid-BGC prototype has been productive, providing
experience with grid computing development, security, and reliability. The prototype also
highlighted weaknesses in our system design and helped us address these weaknesses in our
proposed production architecture. We anticipate our user community will utilize the system to
perform scientific studies by the end of October 2005.
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1 Introduction

A grid, based on current technology, can be considered as a distributed system for which heterogeneity,
wide-area distribution, security and trust requirements, failure probability, as well as high latency and
low bandwidth of communication links are exacerbated. Different grid middleware systems have been
built, such as the Globus toolkit [9], EGEE LCG and g-lite [3], ARC [8], Condor [5], Unicore [4],
etc). All these systems provide similar grid services, and a convergence is in progress. As the GGF [6]
definition of grid services tries to become compliant to Web services technologies, a planetary-scale
grid system may emerge, although this is not yet the case. We thus consider a grid a federation of
different heterogeneous systems, rather than a virtually homogeneous distributed system.

In order to build and program applications for such federations of systems, (and likewise application
frameworks such as problem solving environments or “virtual labs”), there is a strong need for solid
high-level middleware, directly interfacing application codes. Equivalently, we may call such middle-
ware a grid programming environment. Indeed, grid applications require the middleware to provide
them with access to services and resources, in some simple way. Accordingly, the middleware should
implement this access in a way that hides heterogeneity, failures, and performance of the federation
of resources and associated lower-level services they may offer. The challenge for the middleware is to
provide applications with APIs that make applications more or less grid unaware (i.e. the grid becomes
invisible).

Having several years of experience designing and building such middleware, we analyze our systems,
aiming at a generalization of their APIs and architecture that will finally make them suitable for
addressing the challenges and properties of future grid application programming environments. In this
paper, we identify functional and non-functional properties for future grid programming environments,
we present our systems, ProActive, Ibis, and GAT, and investigate which of the properties they meet
already. Then we derive a generalized architecture for future grid programming environments, and
outline directions of future work.

*Full paper published as CoreGRID Technical Report TR-0003, June 2005, http://www.coregrid.net
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2 Properties for grid application programming environments

Grid application programming environments provide both application programming interfaces (APIs)
and runtime environments implementing these interfaces, allowing application codes to run in a grid
environment. Here we outline the properties of such programming environments.

2.1 Non-functional properties

We emphasize non-functional properties as these are determining the constraints on grid API function-
ality and have to be taken into account when designing grid application programming environments.

e Performance
As high-performance computing is one of the driving forces behind grids, performance is the most
prominent, non-functional property of the operations that implement the functional properties
as outlined below.

e Fault tolerance
Most operations of a grid API involve communication with physically remote peers, services, and
resources. Because of this remoteness, the instabilities of network (Internet) communication, the
fact that sites may fail or become unreacheable, and the administrative site autonomy, various
error conditions arise.

e Security and trust
A grid API thus needs to support mutual authentication of users and resources. Access control
to resources (authorization) becomes another source of transient errors that runtime systems and
their APIs have to handle. Besides, privacy becomes important in Internet-based systems which
can be ensured using encryption.

e Platform independence
It is an important property for programming environments to keep the application code indepen-
dent from details of the grid platform.

2.2 Functional properties

We envision the following categories of necessary functionality.

e Access to compute resources, job spawning and scheduling
A job submission API has to take descriptions of the job and of suitable compute resources. The
mapping and scheduling decisions are usually taken by an external resource broker service [7].

e Access to file and data resources
Any real-world application has to process some form of input data, be it files, data bases, or
streams generated by devices like radio telescopes.

e Communication between parallel and distributed processes
Besides access to data files, the processes of a parallel application need to communicate with each
other to perform their tasks.

e Application monitoring and steering
Users need to inspect and possibly modify the status of their long-running applications while
they are running on some nodes in a grid. For this purpose, monitoring and steering interfaces
have to be provided.
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3 Existing grid programming environments

For our grid application programming environments, ProActive, Ibis, and GAT, we briefly sketch their
scope and how far they address the properties identified above.

3.1 ProActive

ProActive|[2] is a Java library for parallel, distributed and concurrent computing, also featuring mobility
and security in a uniform framework. With a reduced set of simple primitives, ProActive provides a
comprehensive API masking the specific underlying tools and protocols used, and allowing to simplify
the programming of applications that are distributed on a LAN, on a cluster of PCs, or on Internet
Grids. The library is based on an active object pattern, on top of which a component-oriented view is
provided.

3.2 1Ibis

The Ibis Grid programming environment [10] has been developed to provide parallel applications with
highly efficient communication API’s. Ibis is based on the Java programming language and environ-
ment, using the “write once, run anywhere” property of Java to achieve portability across a wide range
of Grid platforms. Ibis aims at Grid-unaware applications. As such, it provides rather high-level
communication API’s that hide Grid properties and fit into Java’s object model.

3.3 GAT

The Grid Application Toolkit (GAT) [1] aims to enable scientific applications in grid environments. It
helps to integrate grid capabilities in application programs, by providing a simple and stable API with
well known API paradigms (e.g. POSIX like file access), interfacing to grid resources and services,
abstracting details of underlying grid middleware. This allows to interface to different versions or
implementations of grid middleware without any code change in the application.

3.4 Summary

Table 1 summarizes the functional and non-functional properties addressed by the three systems.
There, bullet points indicate properties that are addressed while hollow circles refer to unaddressed
properties. From the table it becomes obvious that the three systems have been designed for somewhat
different purposes. These choices directly influence which properties are addressed, actually.

Property | ProActive |  Ibis | GAT
Non-Functional Properties
performance ° ° )
fault tolerance . . °
security / trust e /o e /o o /o0
platform independence ° . °
‘ Functional Properties ‘
resources / job spawning / scheduling | e / e / o o/o/o | e/e /e
files / data resources o/ o o/o o/ e
parallel / distributed communication o/ o o/ o/ e
application monitoring / steering e /o o/ o o/ o

Table 1: Comparison of the three frameworks
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Figure 1: Generic runtime architecture model

4 Generic architecture model

Our three systems, ProActive, Ibis, and GAT, provide API functionality that partially overlaps, and
partially complements each other. A much stronger similarity, however, can be observed from their
software architectures, which is due to the non-functional properties of platform independence, per-
formance, and fault tolerance. These properties strongly call for systems that are able to dynamically
adjust themselves to the actual grid environment underneath.

Figure 1 shows the generic architecture for grid application programming environments that can
address the properties identified in Section 2.

e Application code is programmed exclusively using the API’s provided by the envisioned grid
application programming environment.

e The API’s are implemented by a runtime engine. The engine’s most important task is to delegate
API invocations to the right service or resource.

e Delegation to a selected service can be achieved by dynamically loaded proxies.

e For resource and service selection purposes, the runtime engine needs configuration information
to provide the right bindings.

It is obvious that current grid application programming environments comply only partially to this
architecture. However, with the advent of more sophisticated grid middleware, like grid component
architectures, or widely deployed monitoring and information services, also programming environments
will be able to benefit and provide more flexible, better performing, and failure-resilient services to
applications.

5 Conclusions and future directions

Grids can be considered as distributed systems for which heterogeneity, wide-area distribution, secu-
rity and trust requirements, failure probability, as well as latency and bandwidth of communication
networks are exacerbated. Such platforms currently challenge application programmers and users.
Tackling these challenges calls for significantly advanced application programming environments.
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We have identified a set of functional and non-functional properties of such future application
programming environments. Based on this set, we have analyzed existing environments, emphasizing
ProActive, Ibis, and GAT, which have been developed by the authors and their colleagues, which we
also consider to be among the currently most advanced systems.

Our analysis has shown that none of our systems curently addresses all properties. This is mostly
due to the different application scenarios for which our systems have been developed. Based on our
analysis, we have identified a generic architecture for future grid programming environments that allows
building systems that will be capable of addressing the complete set of properties, and will thus be
able to overcome today’s problems and challenges. The full paper provides detailed descriptions and
discussions, of the set of properties, the three programming environments, as well as the proposed,
generic architecture model for grid application programming environments.
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