
GFD-R-P.087 Editor: Mark Morgan, University of Virginia
Category: Recommendation 31 October 2006
OGSA ByteIO WG http://forge.gridforum.org/projects/byteio-wg

byteio-wg@ogf.org 1

ByteIO Specification 1.0

Status of This Memo

This memo provides information to the Grid community on efficient manipulation of, access to,
and management of bulk data sources and sinks in the grid. Distribution is unlimited.

Copyright Notice

Copyright © Open Grid Forum (2006-2007). All Rights Reserved.

Trademarks

OGSA is a trademark of the Open Grid Forum.

Abstract

The ByteIO Specification is a description of a set of port types that give users a concise, standard
way of interacting with bulk data sources and sinks in the grid. The purpose of these port types is
to provide the means for treating such data resources as POSIX-like files. At the same time,
clients will be able to leverage these port types to provide users with a convenient way of
interacting with these grid resources. The purpose of this specification is to address a common
case and common requirement in the grid community. Other applications may choose to provide
more application specific interfaces for accessing and modifying bulk data in their own resource
endpoints, however it is hoped that they will choose to additionally support ByteIO as a means of
providing a common interface to which arbitrary clients can speak.

ByteIO is divided into two port types and each addresses a unique set of use cases. The first of
these port types supports the notion that a data resource is directly accessible and that clients
can handle the maintenance of any session state (such as file pointer, buffering, caching, etc.).
The other port type presents a more stream-like interface to clients and as such contains implicit
session state. In this latter case data resources with this port type don’t represent that bulk data
source/sink directly but rather represent the resource of the open stream between the client and
the data source/sink.

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 2

Contents

Abstract .. 1
1. Introduction... 3

1.1 Outline for this Document .. 3
1.2 Terminology .. 4
1.3 Namespaces... 4

2. ByteIO Port Types.. 4
2.1 Bulk Data Transfer Mechanisms ... 4
2.2 Short Reads.. 5
2.3 RandomByteIO Interface ... 6

2.3.1 RandomByteIO read... 6
2.3.2 RandomByteIO write .. 9
2.3.3 RandomByteIO append.. 11
2.3.4 RandomByteIO truncAppend... 13

2.4 StreamableByteIO Interface .. 15
2.4.1 StreamableByteIO seekRead .. 15
2.4.2 StreamableByteIO seekWrite .. 18

3. Concurrency in ByteIO... 20
4. ByteIO Properties... 20

4.1 RandomByteIO Properties... 21
4.2 StreamableByteIO Properties.. 22

5. ByteIO Lifetime Management.. 23
5.1 Creation... 23
5.2 Destruction.. 23

6. Faults and Failures .. 24
6.1 Available Faults and Failures .. 24
6.2 Message Exchange Failures for RandomByteIO... 25

6.2.1 read.. 25
6.2.2 write ... 25
6.2.3 append... 25
6.2.4 truncAppend.. 25

6.3 Message Exchange Failures for StreamableByteIO.. 25
6.3.1 seekRead .. 25
6.3.2 seekWrite .. 25

7. Security Considerations... 25
Author Information... 26
Glossary ... 26
Intellectual Property Statement .. 26
Full Copyright Notice... 27
References... 27
Appendix A: DIME Transfer Mechanism (http://schemas.ggf.org/byteio/2005/10/transfer-
mechanisms/dime) .. 29
Appendix B: MTOM Transfer Mechanism (http://schemas.ggf.org/byteio/2005/10/transfer-
mechanisms/mtom) ... 30
Appendix C: Simple Transfer Mechanism (http://schemas.ggf.org/byteio/2005/10/transfer-
mechanisms/simple) ... 31

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 3

1. Introduction

One of the most important challenges facing the grid community at large will be that of achieving
buy-in and adoption from potential grid users. Historically, while many grids have solved
numerous technical issues, grid users as a whole have felt that the technology failed to address
their usability concerns. This perception stems from two inescapable facts:

1) The majority of grid users would prefer that the grid provide them the benefits of
thousands of available distributed resources without requiring them to learn new
methods and techniques for utilizing those resources;

2) A large number of potential, high-throughput grid applications are legacy applications
such as BLAST and SEQUEST which are unaware of the existence of the Grid.

Both of these concerns can be addressed via access transparency (one of the core distributed
systems transparencies). Users or clients of a distributed system or grid should be unaware (or
at least, should not be required to have knowledge of) the distributed nature of their resources. A
successful grid should provide the means to allow potential grid clients to use the grid without
requiring an intimate knowledge of the nature of the grid.

Access transparency should manifest itself in all facets of the grid ranging from compute
resources (clients should not be required to have knowledge of the grid in order to launch
processes on it), to security (i.e. single sign-on, etc.), to file systems (access to data should be
agnostic of data location in the grid). It is this last item that the byteio-wg addresses. In
particular, the byteio-wg’s goals are to develop and recommend a set of service port types that
would enable POSIX-like access to grid data resources and in doing so ease the burden of using
such resources in grid applications. In the limit, these services should allow for various file
access paradigms and protocols (such as NFS, CIFS, FTP, etc.) to be implemented which will
completely (and efficiently) hide the gory details of the grid from users and clients which wish (or
are by design) unaware of the nature of the grid. Additionally, a POSIX-like interface is familiar to
a large audience of potential grid users and grid developers, thus promoting ease of use and
implementation and aiding in adoption.

1.1 Outline for this Document

The remainder of this document will be organized as follows. First, we will present a high level
overview of the port types we recommend for the ByteIO specification. We will follow this with
sections which drill down into the details for each of the port types. Born of the necessity to
support potentially numerous OGSA Basic Profiles (of which at the time of this document’s
writing, only one such profile exists – the OGSA WSRF Basic Profile 1.0 [WSRFProfileDoc]),
explicit WSDL cannot be given, but a pseudo-schema for the port types will be indicated where
applicable1. Finally, we will summarize the information in this document and wrap up with
information about security considerations, author information, and glossary terms. Accompanying
this document will be a number of Profile Rendering documents which will normatively describe
the details as they pertain to the OGSA Basic Profile in question.

1 In order to give normative specifications for various port types and in light of this requirement
that OGSA specifications are referent to basic profiles of a diverse nature, it seems obvious that
any specification will need to be accompanied by various rendering documents which will
describe normatively how to map the basic port types to the various profiles.

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 4

1.2 Terminology

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, “OPTIONAL” in this document are to be interpreted
as described in [RFC 2119].

In addition to the terms introduced in [RFC 2119], additional terms commonly used in this
document are defined in the Glossary in the back.

When describing abstract data models, this specification uses the notational convention used by
the [XML Infoset].

When describing concrete XML schemas, this specification uses the notational convention of
[WS-Security]. Specifically, each member of an element’s [children] or [attributes] property is
described using an XPath-like notation (e.g., /x:MyHeader/x:SomeProperty/@value1). The use of
{any} indicates the presence of an element wildcard (<xsd:any/>). The use of @{any} indicates
the presence of an attribute wildcard (<xsd:anyAttribute/>).

1.3 Namespaces

The following namespaces are used in this document:

Prefix Namespace
s11 http://schemas.xmlsoap.org/soap/envelope
xsd http://www.w3.org/2001/XMLSchema
wsa http://www.w3.org/2005/08/addressing
byteio http://schemas.ggf.org/byteio/2005/10/byte-io
rbyteio http://schemas.ggf.org/byteio/2005/10/random-access
sbyteio http://schemas.ggf.org/byteio/2005/10/streamable-access

2. ByteIO Port Types

ByteIO is divided into two separate and distinct port types – each addressing a unique set of use
cases. The first of these port types supports the notion that a data resource is directly accessible
and that clients can handle the maintenance of any session state. This port type is specifically
designed to ease the burden of service authoring by pushing off much of the management to the
client libraries. The client manages things like size, position, etc. The other port type is useful for
clients that wish for more session-able semantics in their data interactions. In this latter case
resources with this port type don’t represent that bulk data source/sink directly so much as an
open session between the client and the data. It is expected that many implementations of either
port type will wrap implementations of the other. For example, a stream ByteIO resource could
be a session between a client and a non-stream ByteIO resource (henceforth referred to as a
Random ByteIO resource).

2.1 Bulk Data Transfer Mechanisms

One of the goals for the ByteIO Working Group was to develop a simple specification to transfer
large amounts of bulk data efficiently. While [SOAP 1.1] is a reasonable communication medium
for describing many types of data, its use as a means of efficient bulk data transfer is
questionable at best. However, at the same time, not all consumers or producers can be
expected to support more complicated transfer mechanisms. As a compromise, any message
which requires the transfer of bulk data takes as a parameter a URI which describes the desired
transfer mechanism. At the same time, ByteIO resources will advertise which bulk data transfer

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 5

mechanisms they can support. In this way, clients will be able to potentially choose the transfer
mechanism which suits their specific needs the best.

At this time the following transfer mechanisms are documented:

• http://schemas.ggf.org/byteio/2005/10/transfer-mechanisms/simple
• http://schemas.ggf.org/byteio/2005/10/transfer-mechanisms/dime
• http://schemas.ggf.org/byteio/2005/10/transfer-mechanisms/mtom

The latter two transfer mechanisms are straightforward utilizations of their respective
specifications (i.e., [DIME] and [MTOM]). The former implies a very simple transfer where the
raw data is in-fact included in the applicable [SOAP 1.1] messages as a [Base64] encoded text
element2. To ensure that all clients can communicate with all ByteIO resources, a ByteIO
implementation MUST support at least the http://schemas.ggf.org/byteio/2005/10/byte-
io/.transfer-mechanisms/simple transfer mechanism. It MAY additionally support any other
available transfer.

The following two URIs are reserved for future expansion of the specification to include various
flavors of HTTP based data transfer:

• http://schemas.ggf.org/byteio/2005/10/transfer-mechanisms/http
• http://schemas.ggf.org/byteio/2005/10/transfer-mechanisms/parallel-http

In order to support this level of flexibility in the bulk data transfer operations, any message which
involves the transport of bulk data information (be it a read or a write, a request or a response)
MUST include the following XML element as a bulk transfer payload3:

<byteio:transfer-information-type transfer-mechanism=”xsd:anyURI”>
 {any}*
</byteio:transfer-information-type>

The components of the transfer-information-type data type are further described as follows:

/byteio:transfer-information-type/@transfer-mechanism
 The URI which names the transfer mechanism in use (as defined above).

Further interpretation of the xsd:any element inside of this element is to be “profiled” later to
match various transfer mechanisms (see attached appendices at the end of this document for
normative descriptions of the given transfer mechanisms).

2.2 Short Reads

All read/write operations in the ByteIO port types follow the C#/Java semantics for short reads
and complete writes. In other words, all read operations are permitted to return less bytes than
the number requested. This is to support ByteIO sources which may not want to block on
unavailable data or for which the amount of data simply doesn’t satisfy completely the requested
amount. This is not an error condition and no faults should be generated. It is however the case
that the operations should never return 0 bytes unless the end of the resource has been reached

2 See Appendix C for a normative description of this transfer mechanism.
3 Note that this element is included in all messages even if normally one wouldn’t consider that
message to contain bulk data (for example, this data item is part of the result message from write
operations even though the bulk data is conceptually only transferred during the request. This
symmetry is to support complicated out-of-band bulk data transfer protocols which require more
advanced handshaking. Each transfer mechanism “profile” is expected to fully describe the
nature of these messages.

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 6

or specified. However, write operations must always completely write all data requested. Failing
to do so is an error and an appropriate fault should be generated.

2.3 RandomByteIO Interface

The RandomByteIO port allows clients to access bulk data sources in a session-less, random
way, much like the back end of a local file system would work – in other words, clients ask to read
or write blocks of data starting at given offsets. The RandomByteIO interface is conceptually
defined as follows:

Figure 1: Conceptual Interface for RandomByteIO

2.3.1 RandomByteIO read

The read message is sent to an RandomByteIO implementation when a client wishes to obtain
blocks of bulk data within the resource. The RandomByteIO resource MUST respond to this
message with a readResponse message but MAY respond with fewer bytes of data then
requested. A response with 0 bytes of bulk data indicates that the offset is beyond the limit of the
RandomByteIO. This operation MUST happen atomically on the service side of the call.

2.3.1.1 RandomByteIO read

The format of the read Message is:

…
<rbyteio:read>
 <rbyteio:start-offset>xsd:unsignedLong</rbyteio:start-offset>
 <rbyteio:bytes-per-block>xsd:unsignedInt</rbyteio:bytes-per-block>
 <rbyteio:num-blocks>xsd:unsignedInt</rbyteio:num-blocks>
 <rbyteio:stride>xsd:long</rbyteio:stride>
 <rbyteio:transfer-information transfer-mechanism=”xsd:anyURI”>
 byteio:transfer-information-type
 </rbyteio:transfer-information>
</rbyteio:read>
…

The components of the read message are further described as follows:

/rbyteio:start-offset

RandomByteIO

read(startOffset: unsignedLong, bytesPerBlock: unsignedInt,
numBlocks: unsignedInt, stride: long): byte[]

write(startOffset:unsignedLong, bytesPerBlock: unsignedInt,
stride: long, data: byte[]): void

append(data: byte[]): void
truncAppend(offset: unsignedLong, data: byte[]): void

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 7

 The offset (an unsigned long describing the number of bytes) into the data resource at
which the client wishes to begin reading4.

/rbyteio:bytes-per-block
 The number of bytes in a single block that the client wishes to read

/rbyteio:num-blocks
 The number of blocks that the client is reading

/rbyteio:stride
 The offset or delta describing how far apart the beginnings of each block of data are

inside the data source.

/rbyteio:transfer-information
 A bulk transfer information block as described above in section 2.1 which contains

information about the transfer-mechanism being used (and possibly the data itself as per
the transfer mechanism).

/rbyteio:transfer-information/@transfer-mechanism
 A URI which describes which transfer mechanism the client is using to send this

message. The RandomByteIO resource MAY refuse to process this write request if the
transfer mechanism used is not supported by the resource.

The response to the read message is a message of the following form:

…
<rbyteio:readResponse>
 <rbyteio:transfer-information transfer-mechanism=”xsd:anyURI”>
 byteio:transfer-information-type
 </rbyteio:transfer-information>
</rbyteio:readResponse>
…

The components of the readResponse message are further described as follows:

/rbyteio:transfer-information
 The transfer information data (as described above in section 2.1) which contains either

the actual resultant data or information about how to retrieve the bulk data (as per the
transfer mechanism specified).

/rbyteio:transfer-information/@transfer-mechanism
 A URI describing the transfer mechanism that is being employed. This transfer

mechanism MUST match that requested by the client in the read message.

2.3.1.2 Example SOAP Encoding of the read Message Exchange

The following is a non-normative example of a read request message using [SOAP 1.1]:

<s11:Envelope
 xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

4 A method to read from negative offsets (i.e. read from the end of the file) is not provided. It is
assumed that the client can calculate the appropriate offset from the total file size. The model for

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 8

 xmlns:wsa=”http://www.w3.org/2005/08/addressing”
 xmlns:byteio=”http://schemas.ggf.org/byteio/2005/10/byte-io”
 xmlns:rbyteio=”http://schemas.ggf.org/byteio/2005/10/random-access”>
 <s11:Header>
 <wsa:Action>
 http://schemas.ggf.org/byteio/2005/10/random-access/read
 </wsa:Action>
 <wsa:To s11:mustUnderstand=”1”>
 http://www.byteio.org/RandomByteIOSource
 </wsa:To>
 </s11:Header>

 <s11:Body>
 <rbyteio:read>
 <rbyteio:start-offset>1024</rbyteio:start-offset>
 <rbyteio:bytes-per-block>512</rbyteio:bytes-per-block>
 <rbyteio:num-blocks>4</rbyteio:num-blocks>
 <rbyteio:stride>1024</rbyteio:stride>
 <rbyteio:transfer-information

 transfer-mechanism=”http://schemas.ggf.org/byteio/2005/10/transfer-
mechanisms/dime”>
 </rbyteio:transfer-information>
 </rbyteio:read>
 </s11:Body>
</s11:Envelope>

The following is a non-normative example of a read response message using [SOAP 1.1]:

<s11:Envelope
 xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”
 xmlns:wsa=”http://www.w3.org/2005/08/addressing”
 xmlns:byteio=”http://schemas.ggf.org/byteio/2005/10/byte-io”
 xmlns:rbyteio=”http://schemas.ggf.org/byteio/2005/10/random-access”>
 <s11:Header>
 <wsa:Action>
 http://schemas.ggf.org/byteio/2005/10/random-access/readResponse
 </wsa:Action>
 <wsa:To>
 http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous
 </wsa:To>
 </s11:Header>

 <s11:Body>
 <rbyteio:readResponse>
 <rbyteio:transfer-information

 transfer-mechanism=”http://schemas.ggf.org/byteio/2005/10/transfer-
mechanisms/dime”>
 </rbyteio:transfer-information>
 </rbyteio:readResponse>
 </s11:Body>
</s11:Envelope>

RandomByteIO in general assumes that the web service is simple and client is complex.

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 9

2.3.2 RandomByteIO write

The write message is sent to an RandomByteIO implementation when a client wishes to set bulk
data within the resource. The RandomByteIO resource MUST respond to this message with a
writeResponse message. This operation MUST happen atomically on the service side of the call.

2.3.2.1 RandomByteIO write

The format of the write message is:

…
<rbyteio:write>
 <rbyteio:start-offset>xsd:unsignedLong</rbyteio:start-offset>
 <rbyteio:bytes-per-block>xsd:unsignedInt</rbyteio:bytes-per-block>
 <rbyteio:stride>xsd:long</rbyteio:stride>
 <rbyteio:transfer-information transfer-mechanism=”xsd:anyURI”>
 byteio:transfer-information-type
 </rbyteio:transfer-information>
</rbyteio:write>
…

The components of the write message are further described as follows:

/rbyteio:start-offset
 The offset into the RandomByteIO resource at which to begin writing the block of data.

/rbyteio:bytes-per-block
 The number of bytes of data that are to be written for each block of data.

/rbyteio:stride
 The number of bytes that separate the beginnings of each block in the data sink. Blocks

are considered to be written sequentially in the order indicated by the stride (i.e., if the
stride is positive, then the sequence is in ascending absolute offset order whereas if the
stride is negative, the presumed order is descending absolute offset of the blocks). The
implication here is that the offsets of the blocks are calculated in isolation from the actual
block sizes. If the stride is larger then the block size, then the blocks will be written to the
file leaving holes in the middle (the behavior being that these holes should retain any
values present prior to the write request if applicable, otherwise the values in the holes
are undefined). If the stride is less then the block size, then blocks will overlap and the
final value of any given written byte will be that of the last block in the sequence to
overlap that byte. Regardless of the stride value, blocks are assumed to be
concatenated directly together in the write requests data block (i.e., stride does not apply
to this block).

/rbyteio:transfer-information
 A transfer information block as described above in section 2.1 which contains information

about the transfer-mechanism being used (and possibly the data itself as per the transfer
mechanism).

/rbyteio:transfer-information/@transfer-mechanism
 A URI which describes which transfer mechanism the client is using to send this

message. The RandomByteIO resource MAY refuse to process this write request if the
transfer mechanism used is not supported by the resource.

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 10

The response to the write message is a message of the following form:

…
<rbyteio:writeResponse>

<rbyteio:transfer-information transfer-mechanism=”xsd:anyURI”>
 byteio:transfer-information-type
 </rbyteio:transfer-information>
</rbyteio:writeResponse>
…

The components of the writeResponse message are further described as follows:

/rbyteio:transfer-information
 A transfer information block as described above in section 2.1 which contains information

about the transfer-mechanism being used (and possibly the data itself as per the transfer
mechanism).

/rbyteio:transfer-information/@transfer-mechanism
 A URI which describes which transfer mechanism the client is using to send this

message. The RandomByteIO resource MAY refuse to process this write request if the
transfer mechanism used is not supported by the resource.

2.3.2.2 Example SOAP Encoding of the write Message Exchange

The following is a non-normative example of a write message using [SOAP 1.1]

<s11:Envelope
xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

 xmlns:wsa=”http://www.w3.org/2005/08/addressing”
 xmlns:byteio=”http://schemas.ggf.org/byteio/2005/10/byte-io”
 xmlns:rbyteio=”http://schemas.ggf.org/byteio/2005/10/random-access”>
 <s11:Header>
 <wsa:Action>
 http://schemas.ggf.org/byteio/2005/10/random-access/write
 </wsa:Action>
 <wsa:To s11:mustUnderstand=”1”>
 http://www.byteio.org/RandomByteIOSource
 </wsa:To>
 </s11:Header>

 <s11:Body>
 <rbyteio:write>
 <rbyteio:start-offset>1024</rbyteio:start-offset>
 <rbyteio:bytes-per-block>512</rbyteio:bytes-per-block>
 <rbyteio:stride>1024</rbyteio:stride>
 <rbyteio:transfer-information transfer-
mechanism="http://schemas.ggf.org/byteio/2005/10/byte-io/transfer-mechanisms/dime”>

 </rbyteio:transfer-information>
 </rbyteio:write>
 </s11:Body>
</s11:Envelope>

The following is a non-normative example of a write response message using [SOAP 1.1]:

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 11

<s11:Envelope
 xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”
 xmlns:wsa=”http://www.w3.org/2005/08/addressing”
 xmlns:byteio=”http://schemas.ggf.org/byteio/2005/10/byte-io”
 xmlns:rbyteio=”http://schemas.ggf.org/byteio/2005/10/random-access”>
 <s11:Header>
 <wsa:Action>
 http://schemas.ggf.org/byteio/2005/10/random-access/writeResponse
 </wsa:Action>
 <wsa:To>
 http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous
 </wsa:To>
 </s11:Header>

 <s11:Body>
 <rbyteio:writeResponse>
 <rbyteio:transfer-information transfer-
mechanism=”http://schemas.ggf.org/byteio/2005/10/transfer-mechanisms/dime”>
 </rbyteio:transfer-information>

</rbyteio:writeResponse>
 </s11:Body>
</s11:Envelope>

2.3.3 RandomByteIO append

The append message is sent to an RandomByteIO implementation when a client wishes to
append a block of bulk data to the end of an RandomByteIO resource. The RandomByteIO
resource MUST respond to this message with an appendResponse message. This operation
MUST happen atomically on the service side of the call.

2.3.3.1 RandomByteIO append

The format of the append message is:

…
<rbyteio:append>
 <rbyteio:transfer-information transfer-mechanism=”xsd:anyURI”>
 byteio:transfer-information-type
 </rbyteio:transfer-information>
</rbyteio:append>
…

The components of the append message are further described as follows:

/rbyteio:transfer-information
 A transfer information block as described above in section 2.1 which contains information

about the transfer-mechanism being used (and possibly the data itself as per the transfer
mechanism).

/rbyteio:transfer-information/@transfer-mechanism
 A URI which describes which transfer mechanism the client is using to send this

message. The RandomByteIO resource MAY refuse to process this append request if
the transfer mechanism used is not supported by the resource.

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 12

The response to the append message is a message of the following form:

…
<rbyteio:appendResponse>

<rbyteio:transfer-information transfer-mechanism=”xsd:anyURI”>
 byteio:transfer-information-type
 </rbyteio:transfer-information>
</rbyteio:appendResponse>
…

The components of the appendResponse message are further described as follows:

/rbyteio:transfer-information
 A transfer information block as described above in section 2.1 which contains information

about the transfer-mechanism being used (and possibly the data itself as per the transfer
mechanism).

/rbyteio:transfer-information/@transfer-mechanism
 A URI which describes which transfer mechanism the client is using to send this

message. The RandomByteIO resource MAY refuse to process this append request if
the transfer mechanism used is not supported by the resource.

2.3.3.2 Example SOAP Encoding of the append Message Exchange

The following is a non-normative example of an append message using [SOAP 1.1]

<s11:Envelope
xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

 xmlns:wsa=”http://www.w3.org/2005/08/addressing”
 xmlns:byteio=”http://schemas.ggf.org/byteio/2005/10/byte-io”
 xmlns:rbyteio=”http://schemas.ggf.org/byteio/2005/10/random-access”>
 <s11:Header>
 <wsa:Action>
 http://schemas.ggf.org/byteio/2005/10/random-access/append
 </wsa:Action>
 <wsa:To s11:mustUnderstand=”1”>
 http://www.byteio.org/RandomByteIOSource
 </wsa:To>
 </s11:Header>

 <s11:Body>
 <rbyteio:append>
 <rbyteio:transfer-information transfer-
mechanism="http://schemas.ggf.org/byteio/2005/10/byte-io/transfer-mechanisms/dime”>

 </rbyteio:transfer-information>
 </rbyteio:append>
 </s11:Body>
</s11:Envelope>

The following is a non-normative example of an append response message using [SOAP 1.1]:

<s11:Envelope
 xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”
 xmlns:wsa=”http://www.w3.org/2005/08/addressing”

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 13

 xmlns:byteio=”http://schemas.ggf.org/byteio/2005/10/byte-io”
 xmlns:rbyteio=”http://schemas.ggf.org/byteio/2005/10/random-access”>
 <s11:Header>
 <wsa:Action>
 http://schemas.ggf.org/byteio/2005/10/random-access/appendResponse
 </wsa:Action>
 <wsa:To>
 http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous
 </wsa:To>
 </s11:Header>

 <s11:Body>
 <rbyteio:appendResponse>
 <rbyteio:transfer-information transfer-
mechanism="http://schemas.ggf.org/byteio/2005/10/byte-io/transfer-mechanisms/dime”>
 </rbyteio:transfer-information>

</rbyteio:appendResponse>
 </s11:Body>
</s11:Envelope>

2.3.4 RandomByteIO truncAppend

The truncAppend message is sent to an RandomByteIO implementation when a client wishes to
truncate an RandomByteIO resource’s bulk data to a given offset and optionally also append a
block of bulk data to the end of the truncated RandomByteIO resource. The RandomByteIO
resource MUST respond to this message with a truncAppendResponse message. The client
MAY choose to truncate to any valid offset within the resource (including 0). The client MAY also
choose to append either 0 bytes of data, or a non-zero sized block of data, to the end of the
truncated resource. This operation MUST happen atomically on the service side of the call.

2.3.4.1 RandomByteIO truncAppend

The format of the truncAppend message is:

…
<rbyteio:truncAppend>
 <rbyteio:offset>xsd:unsignedLong</rbyteio:offset>
 <rbyteio:transfer-information transfer-mechanism=”xsd:anyURI”>
 byteio:transfer-information-type
 </rbyteio:transfer-information>
</rbyteio:truncAppend>
…

The components of the truncAppend message are further described as follows:

/rbyteio:offset
 An offset into the resource to which the resource is to be truncated.

/rbyteio:transfer-information
 A transfer information block as described above in section 2.1 which contains information

about the transfer-mechanism being used (and possibly the data itself as per the transfer
mechanism).

/rbyteio:transfer-information/@transfer-mechanism

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 14

 A URI which describes which transfer mechanism the client is using to send this
message. The RandomByteIO resource MAY refuse to process this append request if
the transfer mechanism used is not supported by the resource.

The response to the truncAppend message is a message of the following form:

…
<rbyteio:truncAppendResponse>

<rbyteio:transfer-information transfer-mechanism=”xsd:anyURI”>
 byteio:transfer-information-type
 </rbyteio:transfer-information>
</rbyteio:truncAppendResponse>
…

The components of the truncAppend message are further described as follows:

/rbyteio:transfer-information
 A transfer information block as described above in section 2.1 which contains information

about the transfer-mechanism being used (and possibly the data itself as per the transfer
mechanism).

/rbyteio:transfer-information/@transfer-mechanism
 A URI which describes which transfer mechanism the client is using to send this

message. The RandomByteIO resource MAY refuse to process this append request if
the transfer mechanism used is not supported by the resource.

2.3.4.2 Example SOAP Encoding of the truncAppend Message Exchange

The following is a non-normative example of a truncAppend message using [SOAP 1.1]

<s11:Envelope
xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

 xmlns:wsa=”http://www.w3.org/2005/08/addressing”
 xmlns:byteio=”http://schemas.ggf.org/byteio/2005/10/byte-io”
 xmlns:rbyteio=”http://schemas.ggf.org/byteio/2005/10/random-access”>
 <s11:Header>
 <wsa:Action>
 http://schemas.ggf.org/byteio/2005/10/random-access/truncAppend
 </wsa:Action>
 <wsa:To s11:mustUnderstand=”1”>
 http://www.byteio.org/RandomByteIOSource
 </wsa:To>
 </s11:Header>

 <s11:Body>
 <rbyteio:truncAppend>
 <rbyteio:offset>0</rbyteio:offset>
 <rbyteio:transfer-information transfer-
mechanism="http://schemas.ggf.org/byteio/2005/10/byte-io/transfer-mechanisms/dime”>

 </rbyteio:transfer-information>
 </rbyteio:truncAppend>
 </s11:Body>
</s11:Envelope>

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 15

The following is a non-normative example of a truncAppend response message using [SOAP
1.1]:

<s11:Envelope
 xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”
 xmlns:wsa=”http://www.w3.org/2005/03/addressing”
 xmlns:byteio=”http://schemas.ggf.org/byteio/2005/10/byte-io”
 xmlns:rbyteio=”http://schemas.ggf.org/byteio/2005/10/random-access”>
 <s11:Header>
 <wsa:Action>
 http://schemas.ggf.org/byteio/2005/10/random-
access/truncAppendResponse
 </wsa:Action>
 <wsa:To>
 http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous
 </wsa:To>
 </s11:Header>

 <s11:Body>
 <rbyteio:truncAppendResponse>
 <rbyteio:transfer-information transfer-
mechanism="http://schemas.ggf.org/byteio/2005/10/byte-io/transfer-mechanisms/dime”>
 </rbyteio:transfer-information>
 </rbyteio:truncAppendResponse>
 </s11:Body>
</s11:Envelope>

2.4 StreamableByteIO Interface

The StreamableByteIO port allows clients to access bulk data sources via a stateful session
resource – in other words, clients will open (through means not normatively described by ByteIO)
a session resource to a data source/sink and will then read and write to and from that stream as
required. The StreamableByteIO interface is conceptually defined as follows:

Figure 2: Conceptual Interface for StreamableByteIO

2.4.1 StreamableByteIO seekRead

The seekRead message is sent to an StreamableByteIO implementation when a client wishes to
read a block of data from the resource. This is combined with the notion of a seek operation to
allow for a smaller number of messages to be sent in the common case for a seek (the common
case being that almost all seek requests are immediately followed by read or write requests).
Note that both singleton seeks (without reads or writes) and non-seek reads and writes are
available with this interface by filling in appropriate values for the seek parameters and/or
read/write parameters. For a non-seekable stream, the offset for the seek operations MUST be
0, and the seekOrigin MUST indicate the current position (as given below). Failure to follow
these guidelines for non-seekable streams SHOULD result in faults being thrown. The
StreamableByteIO resource MUST respond to this message with a seekReadResponse

StreamableByteIO

seekRead(offset: long, seekOrigin: URI, bytesToRead: unsignedInt): byte[]
seekWrite(offset: long, seekOrigin: URI, data: byte[]): void

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 16

message. The StreamableByteIO resource MAY choose to fail on this message exchange if it
does not support the read operation. The resource MAY also response with fewer bytes of data
then the client asked for (0 returned bytes indicating that the end of the stream has been
reached). This operation MUST happen atomically on the service side of the call.

2.4.1.1 StreamableByteIO seekRead

The format of the seekRead message is:

…
<sbyteio:seekRead>
 <sbyteio:offset>xsd:long</sbyteio:offset>
 <sbyteio:seek-origin> xsd:anyURI </sbyteio:seek-origin>
 <sbyteio:num-bytes>xsd:unsignedInt</sbyteio:num-bytes>
 <sbyteio:transfer-information transfer-mechanism=”xsd:anyURI”>
 byteio:transfer-information-type
 </sbyteio:transfer-information>
</sbyteio:seekRead>
…

The components of the seekRead message are further described as follows:

/sbyteio:offset
 The offset into the StreamableByteIO resource which the client wishes to seek to.

/sbyteio:seek-origin
 A URI which indicates the origin of this seek operation. Valid URIs include:

• http://schemas.ggf.org/byteio/2005/10/streamable-access/seek-
origins/current -- instructs the StreamableByteIO resource to seek from
the current position within the bulk data source/sink.

• http://schemas.ggf.org/byteio/2005/10/streamable-access/seek-
origins/beginning -- instructs the StreamableByteIO resource to seek
from the beginning of the bulk data source/sink.

• http://schemas.ggf.org/byteio/2005/10/streamable-access/seek-
origins/end -- instructs the StreamableByteIO resource to seek from the
end of the bulk data source/sink.

/sbyteio:num-bytes
 The maximum number of bytes that the client wishes to read from the stream resource.

/sbyteio:transfer-information
 The transfer information data (as described above in section 2.1) which contains either

the actual resultant data or information about how to retrieve the bulk data.

/sbyteio:transfer-information/@transfer-mechanism
 A URI describing the transfer mechanism that is being employed.

The response to the seekRead message is a message of the following form:

…
<sbyteio:seekReadResponse>
 <sbyteio:transfer-information transfer-mechanism=”xsd:anyURI”>
 byteio:transfer-information-type
 </sbyteio:transfer-information>

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 17

</sbyteio:seekReadResponse>
…

The components of the seekReadResponse message are further described as follows:

/sbyteio:transfer-information
 The transfer information data (as described above in section 2.1) which contains either

the actual resultant data or information about how to retrieve the bulk data.

/sbyteio:transfer-information/@transfer-mechanism
 A URI describing the transfer mechanism that is being employed. This transfer

mechanism MUST match that requested by the client in the seekRead message.

2.4.1.2 Example SOAP Encoding of the seekRead Message Exchange

The following is a non-normative example of a seekRead message using [SOAP 1.1]

<s11:Envelope
xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

 xmlns:wsa=”http://www.w3.org/2005/08/addressing”
 xmlns:byteio=”http://schemas.ggf.org/byteio/2005/10/byte-io”
 xmlns:sbyteio=”http://schemas.ggf.org/byteio/2005/10/streamable-access”>
 <s11:Header>
 <wsa:Action>
 http://schemas.ggf.org/byteio/2005/10/streamable-access/seek-read
 </wsa:Action>
 <wsa:To s11:mustUnderstand=”1”>
 http://www.byteio.org/StreamableByteIOSource
 </wsa:To>
 </s11:Header>

 <s11:Body>
 <sbyteio:seekRead>
 <sbyteio:offset>0</sbyteio:offset>
 <sbyteio:seek-origin>http://schemas.ggf.org/byteio/2005/10/streamable-
access/seek-origins/current</sbyteio:seek-origin>
 <sbyteio:num-bytest>1024</sbyteio:num-bytes>
 <sbyteio:transfer-information
 transfer-
mechanism=”http://schemas.ggf.org/byteio/2005/10/transfer-mechanisms/dime”>
 </sbyteio:transfer-information>

</sbyteio:seekRead>
 </s11:Body>
</s11:Envelope>

The following is a non-normative example of a read response message using [SOAP 1.1]:

<s11:Envelope
 xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”
 xmlns:wsa=”http://www.w3.org/2005/08/addressing”
 xmlns:byteio=”http://schemas.ggf.org/byteio/2005/10/byte-io”
 xmlns:sbyteio=”http://schemas.ggf.org/byteio/2005/10/streamable-access”>
 <s11:Header>
 <wsa:Action>

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 18

 http://schemas.ggf.org/byteio/2005/10/streamable-access/readResponse
 </wsa:Action>
 <wsa:To>
 http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous
 </wsa:To>
 </s11:Header>

 <s11:Body>
 <sbyteio:readResponse>
 <sbyteio:transfer-information
 transfer-mechanism=”http://schemas.ggf.org/byteio/2005/10/transfer-
mechanisms/dime”>
 </sbyteio:transfer-information>
 </sbyteio:readResponse>
 </s11:Body>
</s11:Envelope>

2.4.2 StreamableByteIO seekWrite

The seekWrite message is sent to an StreamableByteIO implementation when a client wishes to
write a block of data tothe resource. This is combined with the notion of a seek operation to allow
for a smaller number of messages to be sent in the common case for a seek (the common case
being that almost all seek requests are immediately followed by read or write requests). Note that
both singleton seeks (without reads or writes) and non-seek reads and writes are available with
this interface by filling in appropriate values for the seek parameters and/or read/write
parameters. For a non-seekable stream, the offset for the seek operations MUST be 0, and the
seekOrigin MUST indicate the current position (as given below). Failure to follow these
guidelines for non-seekable streams SHOULD result in faults being thrown. The
StreamableByteIO resource MUST respond to this message with a seekWriteResponse
message. The StreamableByteIO resource MAY choose to fail on this message exchange if it
does not support the write operation. This operation MUST happen atomically on the service
side of the call.

2.4.2.1 StreamableByteIO seekWrite

The format of the seekWrite message is:

…
<sbyteio:seekWrite>
 <sbyteio:offset>xsd:long</sbyteio:offset>
 <sbyteio:seek-origin> xsd:anyURI </sbyteio:seek-origin>
 <sbyteio:transfer-information transfer-mechanism=”xsd:anyURI”>
 byteio:transfer-information-type
 </sbyteio:transfer-information>
</sbyteio:seekWrite>
…

The components of the seekWrite message are further described as follows:

/sbyteio:offset
 The offset into the StreamableByteIO resource which the client wishes to seek to.

/sbyteio:seek-origin

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 19

 A URI which indicates the origin of this seek operation. Valid URIs include:
• http://schemas.ggf.org/byteio/2005/10/streamable-access/seek-

origins/current -- instructs the StreamableByteIO resource to seek from
the current position within the bulk data source/sink.

• http://schemas.ggf.org/byteio/2005/10/streamable-access/seek-
origins/beginning -- instructs the StreamableByteIO resource to seek
from the beginning of the bulk data source/sink.

• http://schemas.ggf.org/byteio/2005/10/streamable-access/seek-
origins/end -- instructs the StreamableByteIO resource to seek from the
end of the bulk data source/sink.

/sbyteio:transfer-information
 The transfer information data (as described above in section 2.1) which contains either

the actual resultant data or information about how to retrieve the bulk data.

/sbyteio:transfer-information/@transfer-mechanism
 A URI describing the transfer mechanism that is being employed.

The response to the read message is a message of the following form:

…
<sbyteio:seekWriteResponse>

<sbyteio:transfer-information transfer-mechanism=”xsd:anyURI”>
 byteio:transfer-information-type
 </sbyteio:transfer-information>
</sbyteio:seekWriteResponse>
…

The components of the seekWrite message are further described as follows:

/sbyteio:transfer-information
 The transfer information data (as described above in section 2.1) which contains either

the actual resultant data or information about how to retrieve the bulk data.

/sbyteio:transfer-information/@transfer-mechanism
 A URI describing the transfer mechanism that is being employed.

2.4.2.2 Example SOAP Encoding of the seekWrite Message Exchange

The following is a non-normative example of a seekWrite message using [SOAP 1.1]

<s11:Envelope
xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”

 xmlns:wsa=”http://www.w3.org/2005/08/addressing”
 xmlns:byteio=”http://schemas.ggf.org/byteio/2005/10/byte-io”
 xmlns:sbyteio=”http://schemas.ggf.org/byteio/2005/10/streamable-access”>
 <s11:Header>
 <wsa:Action>
 http://schemas.ggf.org/byteio/2005/10/streamable-access/seekWrite
 </wsa:Action>
 <wsa:To s11:mustUnderstand=”1”>
 http://www.byteio.org/StreamableByteIOSource
 </wsa:To>
 </s11:Header>

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 20

 <s11:Body>
 <sbyteio:seekWrite>
 <sbyteio:offset>0</sbyteio:offset>
 <sbyteio:seek-origin>http://schemas.ggf.org/byteio/2005/10/streamable-
access/seek-origins/current</sbyteio:seek-origin>
 <sbyteio:transfer-information
 transfer-mechanism=”http://schemas.ggf.org/byteio/2005/10/transfer-
mechanisms/dime”>
 </sbyteio:transfer-information>

</sbyteio:seekWrite>
 </s11:Body>
</s11:Envelope>

The following is a non-normative example of a seekWrite response message using [SOAP 1.1]:

<s11:Envelope
 xmlns:s11=”http://www.w3.org/2003/05/soap-envelope”
 xmlns:wsa=”http://www.w3.org/2005/03/addressing”
 xmlns:byteio=”http://schemas.ggf.org/byteio/2005/10/byte-io”
 xmlns:sbyteio=”http://schemas.ggf.org/byteio/2005/10/streamable-access”>
 <s11:Header>
 <wsa:Action>
 http://schemas.ggf.org/byteio/2005/10/streamable-
access/seekWriteResponse
 </wsa:Action>
 <wsa:To>
 http://schemas.xmlsoap.org/ws/2004/03/addressing/role/anonymous
 </wsa:To>
 </s11:Header>

 <s11:Body>
 <sbyteio:seekWriteResponse>
 <sbyteio:transfer-information
 transfer-
mechanism=”http://schemas.ggf.org/byteio/2005/10/transfer-mechanisms/dime”>
 </sbyteio:transfer-information>
 </sbyteio:seekWriteResponse>
 </s11:Body>
</s11:Envelope>

3. Concurrency in ByteIO

As a simple, file-like bulk data specification, ByteIO explicitly does not address the more
complicated question of concurrency for multiple readers and writers. Any attempt at managing
such concurrency is left up to external (and undefined) services and software. Advisory locking
could easily be implemented as an additional service port type and would not impact the
simplicity of ByteIO. The only concurrency issues that are addressed by ByteIO are atomicity
issues revolving around multiple read/write requests within the service. At that level, each ByteIO
specific operation (read, write, append, etc.) should be atomic.

4. ByteIO Properties

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 21

The ability to retrieve various properties for ByteIO resources is an important part of this
specification. However, it is not possible to normatively describe those properties in this
document. The ByteIO specification is referent to the various OGSA Basic Profiles. Because
those various profiles may choose to represent properties in different ways, the normative
description of the ByteIO properties must be placed in separate documents which normatively
describe how to render this specification according to those profiles. However, in order to
maintain as much consistency as possible between renderings, it is desirable to describe non-
normatively here what properties a ByteIO resource should contain.

4.1 RandomByteIO Properties

The following table indicates the properties that RandomByteIO resources might have for each
Profile Rendering. The various ByteIO rendering documents MUST describe normatively how to
represent these properties. The Requirement Level entry in the table describes whether an
RandomByteIO resource MUST have the property, SHOULD have the property, or MAY have the
property (as per [RFC2119]). This list is by no means exhaustive and implementers are free to
add their own properties as they see fit. Neither should the names for properties in this table be
taken as absolute – they are merely textual identifiers attached to conceptual properties. The
true, normative names for various properties MUST be specified by the appropriate rendering
document.

Property Requirement Level Description
Size MUST The total size (in bytes) of the RandomByteIO

resource.
Readable MUST A Boolean indicating whether or not the resource

will allow clients to read information from this
resource (using the read message exchange).

Writeable MUST A boolean indicating whether or not the resource
will allow the write messages (write, append, and
truncAppend).

TransferMechanism MUST A list of URI’s indicating the transfer mechanisms
supported by the ByteIO resource in question. If
a transfer mechanism is listed here, then the
ByteIO resource MUST support that transfer
mechanism as per the appropriate specification.

CreateTime* MAY The timestamp for when this resource was
created (relative to the hosting environment).
Creation time is loosely defined as the time at
which a client could first use any of the methods
(or access any of the properties) on an
RandomByteIO resource and receive a valid,
non-error response message. It is left up to the
implementer to determine what this time should
be.

ModificationTime* MAY The timestamp for when this resource was last
modified (relative to the hosting environment).
Modification time is defined as any time after
which any client having previously read a block of
data (with the read method), or having accessed
the Size or ReadOnly properties, could now
expect to receive different results were it to call

* All timestamps are with respect to the hosting environment for the resource. No attempt at a
global clock is intended. In other words, the CreateTime, AccessTime, and ModificationTime for
a resource all represent timestamps taken by the hosting environment and synchronized only to
that hosting environment’s clock. No guarantees are made beyond that.

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 22

the read method or access the properties again.
AccessTime* MAY The timestamp for when this resource was last

accessed (relative to the hosting environment).
The last access time is defined as the last time
when any of the methods described in the
RandomByteIO specification were last called.

4.2 StreamableByteIO Properties

The following table indicates the properties that StreamableByteIO resources might have for each
Profile Rendering. The various ByteIO rendering documents MUST describe normatively how to
represent these properties. The Requirement Level entry in the table describes whether an
StreamableByteIO resource MUST have the property, SHOULD have the property, or MAY have
the property (as per [RFC2119]). This list is by no means exhaustive and implementers are free
to add their own properties as they see fit.

Property Requirement Level Description
Size MAY If available, this describes the current total length of

the stream.
Position SHOULD This property describes the current position of the

stream pointer.
Readable MUST A boolean value indicating whether or not reads are

allowed to this stream. This value is most likely
dependent on both the underlying resource as well
as possibly the flags used during creation (opening)
of the stream.

Writeable MUST A boolean value indicating whether or not writes
are allowed to this stream. This value is most likely
dependent on both the underlying resource as well
as possibly the flags used during creation (opening)
of the stream.

Seekable MUST A boolean value indicating whether or not non-zero
seek values are permitted for this stream.

TransferMechanism MUST A list of URI’s indicating the transfer mechanisms
supported by the ByteIO resource in question. If a
transfer mechanism is listed here, then the ByteIO
resource MUST support that transfer mechanism
as per the appropriate specification.

EndOfStream MUST A boolean property which MUST be set to true
when the end of the stream has been reached.
Once this property becomes true, all attempts to
read without first seeking back into the stream must
result in 0 bytes being returned to the caller. Note
that for writeable streams, this property does not
indicate that further writes would fail.

DataResource MAY This property, if available, is a WS-Addressing
EndpointReferenceType which indicates the data
source/sink from/to which the stream is connected.
Note that this is largely implementation specific and
not all streams will require or even permit a WS-
Addressing addressable resource to interact with.
On the other hand, some streams will and this
information could be very useful to clients when the
resource is available.

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 23

5. ByteIO Lifetime Management

Lifetime management is another important part of the ByteIO specifications. Unfortunately, for
reasons similar to those indicated in the properties section above (Section 3), it is not possible to
describe this functionality normatively in this document. Rather, normative descriptions of the
port types must be postponed until the appropriate Profile Rendering document. However, we
describe here the semantics of the lifetime operations as completely as possible.

5.1 Creation

Creation is out of scope for the ByteIO specifications. However, given the close relationship
between StreamableByteIO resources and their creation (or opening), the authors of this
document felt that it was worthwhile to say a few words about creation at a high level and to
suggest some possible interfaces and data types.

For creation of StreamableByteIO resources, we recommend that users be able to identify both
an open mode for the stream and an access mode for that stream. The open mode should
indicate whether a user wishes to create, append, truncate, create-new, open, or open-or-create
the data source/sink. This becomes particularly important in terms of the create-new operation.
This operation is used by large numbers of legacy applications to achieve atomicity with respect
to implementations for file locking and data grids have been rejected in the past for not correctly
supporting this functionality. In terms of file access modes the authors recommend that clients
have the ability to specify whether the stream is being opened for read, write, or read-and-write
access.

5.2 Destruction

Destruction is very much in scope for ByteIO. As was mentioned above, the normative
description of destruction is reserved for Profile Renderings, however semantic descriptions of
this operation is the same regardless of rendering.

The main difficulty of describing the end of life management functionality for ByteIO comes from
the schism between RandomByteIO and StreamableByteIO resources. In the former case, the
data source/sink itself is being referenced and manipulated whereas in the latter case, the
resource really represents an instantiated access abstraction. For this reason, the semantics of
destroy are different for these two resource types.

When an RandomByteIO resource receives the destroy request, subject to security, that resource
should be terminated and appropriate clean-up operations performed. What this means is
somewhat implementation dependent, but whether the actual data source/sink (a file on disk, an
entry in a database, etc.) is destroyed, or merely the web service resource representation of that
resource is up to implementers to decide. The only requirement is that destroy operations on
RandomByteIO resources should have the affect of ensuring that any further requests sent to that
resource’s WS-Addressing EndpointReferenceType should fail with an error (rendered using the
appropriate Profile Rendering) indicating that the resource no longer exists. For the purposes of
this specification, destruction capabilities on RandomByteIO implementations are not required but
MAY be included in various implementations with the semantics described above.

Similar to RandomByteIO, StreamableByteIO resources which receive a destroy request should
also cause future requests to the same WS-Addressing EndpointReferenceType to fail.
However, in this case it is clear that the destruction operation should never destroy the underlying
data source/sink (whether that data source/sink be a web service resource or not). This
operation should be considered semantically the “close” operation on the stream and nothing

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 24

more. An implementation of the StreamableByteIO port type MUST contain a destroy or close
mechanism appropriate to that implementation’s Profile Rendering.

6. Faults and Failures

As before with properties and lifetime management, it is not possible to normatively describe the
faulting and failure mechanisms for ByteIO in this document. Instead in this section we will non-
normatively describe the fault and failure conditions in terms of causes and information available
to calling clients and leave it up to the Profile Rendering documents to normatively describe the
exact syntax for conveying the appropriate information.

6.1 Available Faults and Failures

This section describes every possible fault and failure that is relevant to the various ByteIO port
types. Following this section we will indicate every message exchange possible between clients
and ByteIO resources and list for each the faults and failures that that message exchange might
generate.

Resource Unavailable Failure This failure indicates that a message tried to access a

resource which does not exist (at least, not at the address
given). No specific information is required of the Profile
Rendering. This failure may be generated by any ByteIO
message exchange and as such is not individually listed for
each operation.

Unsupported Transfer This failure may be generated by any message exchange
with a ByteIO resource that indicates a transfer mechanism
not supported by the target. Each Profile Rendering is
required to include a list of the supported transfer
mechanisms with the information for this failure. This failure
may be generated by any ByteIO message exchange and as
such is not individually listed for each operation.

Write Not Permitted Failure This failure is generated any time a client request to write
data to a ByteIO resource is denied due to restrictions on
that resource (i.e., because the resource is read-only). No
specific information is required of the Profile Rendering.

Read Not Permitted Failure This failure is generated any time a client request to read
data from a ByteIO resource is denied due to restrictions on
that resource (i.e., because the resource is write-only). No
specific information is required of the Profile Rendering.

Truncate Not Permitted Failure This failure indicates that for whatever reason, the truncate
operation can’t be permitted. If a truncate fails because
writing isn’t permitted, then the Write Not Permitted Failure
should be raised. However, if writes are allowed and the
truncate operation separately is not permitted, then this
failure might be raised. No specific information is required of
the Profile Rendering.

Seek Not Permitted Failure This failure indicates that a seek operation was attempted on
a stream that doesn’t support seeking. To avoid this failure,
clients that wish to use seekRead and seekWrite on a
resource that doesn’t support seeking should send in seek
values indicating an offset of 0 bytes, and with the
seekOrigin set to the current position value. No specific
information is required of the Profile Rendering.

Custom Failure It isn’t possible to identify every failure that might occur in a
ByteIO implementation. For example, for some

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 25

implementations, you may fail because the disk is full for a
backend file system; while in another you could fail because
the sensor from which you were retrieving your data
suddenly disappears. Because of this, rather then specify
an unknown failure type, we wish to indicate with this failure
type that implementers are encouraged to add their own
failures for special cases as they see fit. This failure may be
generated by any ByteIO message exchange and as such is
not individually listed for each operation.

6.2 Message Exchange Failures for RandomByteIO

The following describes what failures can be generated by each RandomByteIO message
exchange (in addition to those indicated as possible failures for ALL message exchanges).

6.2.1 read

• Read Not Permitted Failure

6.2.2 write

• Write Not Permitted Failure

6.2.3 append

• Write Not Permitted Failure

6.2.4 truncAppend

• Write Not Permitted Failure
• Truncate Not Permitted Failure

6.3 Message Exchange Failures for StreamableByteIO

The following describes what failures can be generated by each StreamableByteIO message
exchange (in addition to those indicated as possible failures for ALL message exchanges).

6.3.1 seekRead

• Seek Not Permitted Failure
• Read Not Permitted Failure

6.3.2 seekWrite

• Seek Not Permitted Failure
• Write Not Permitted Failure

7. Security Considerations

Security is of the utmost importance for ByteIO implementations. For many implementations,
access to sensitive information is being made available which must be protected. Data integrity
of both data sources and sinks as well as the data transferred on the wire must be maintained
(when desired by the clients and services) and authentication for the purposes of allowing or
denying access to various pieces of information is also relevant.

The ByteIO specification is intended to function using whatever security solutions become
available to the web services and OGSA communities. Further, transfer mechanisms should be
available which allow for both signing and encryption of data streams as requested.

Because Security is being separately addressed by other working groups within OGSA, the exact
details of security in terms of ByteIO are out of scope. However, it should be noted that prototype

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 26

implementations of the various ByteIO port types must by necessity be carefully written so as to
minimize exposure of sensitive data. Until a security solution becomes available to OGSA, these
prototype implementations will have large security holes in the testing environments.

Author Information

Editor:
Mark Morgan
University of Virginia, Department of Computer Science
151 Engineer’s Way
P.O. Box 400740
Charlottesville, VA. 22904-4740
Phone: +1 (434) 982-2047
E-mail: mmm2a@cs.virginia.edu

Thanks to Neil P. Chue Hong, Andrew Grimshaw, Allen Luniewski, Michel Drescher, Glenn
Wasson and to the SAGA team as a whole for their invaluable input.

Glossary

Conceptual Interface An interface which describes the conceptual behavior

of a service but which doesn’t necessarily reflect the
actual parameters and methods that are being
received and sent.

Profile Rendering As an OGSA Basic Profile referent specification,
ByteIO must by necessity be flexible enough to allow
multiple normative definitions (at least one each for
each OGSA Basic Profile) while at the same time be
described in as much detail and rigor as possible to
allow for the greatest chance of interoperability. To
satisfy these desires and constraints, the ByteIO
specification includes both a general description
document (this document) as well as additional
“rendering” documents that describe how ByteIO
should be realized in the various OGSA Basic Profiles.
A profile rendering is one of these normative
documents.

OGSA WSRF Basic Profile Rendering Because various aspects of a specification for a
concrete port type may require functionality covered in
various OGSA Basic Profiles, each specification will
have to be non-normatively described in an initial
document and then normatively refined or rendered in
a specific profile. This term refers to the rendering of
the ByteIO specification in the OGSA WSRF Basic
Profile.

Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other
rights that might be claimed to pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights might or might not be
available; neither does it represent that it has made any effort to identify any such rights. Copies

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 27

of claims of rights made available for publication and any assurances of licenses to be made
available, or the result of an attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification can be obtained from the
OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
practice this recommendation. Please address the information to the OGF Executive Director.

Full Copyright Notice

Copyright (C) Open Grid Forum (2006-2007). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by removing the copyright
notice or references to the OGF or other organizations, except as needed for the purpose of
developing Grid Recommendations in which case the procedures for copyrights defined in the
OGF Document process must be followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE
OEPN GRID FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE."

References

[WSRFProfileDoc] I. Foster, T. Maguire, D. Snelling, OGSA WSRF Basic Profile

1.0, https://forge.gridforum.org/projects/ogsa-wg/document/draft-
ggf-ogsa-wsrf-basic-profile/en/15, GWS-R (draft-ggf-ogsa-wsrf-
basic-profile-021), 6 July 2005.

[RFC2119] S.Bradner, Key words for use in RFCs to Indicate Requirement

Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March
1997.

[XML-Infoset] http://www.w3.org/TR/xml-infoset/

[XPATH] http://www.w3.org/TR/xpath

[WS-Addressing] M. Gudgin, M. Hadley, and T. Rogers (ed.) Web Services

Addressing 1.0 – Core (WS-Addressing), 9 May 2006,
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509

[DIME] http://www.gotdotnet.com/team/xml_wsspecs/dime/draft-nielsen-

dime-01.txt

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 28

[MTOM] http://www.w3.org/TR/soap12-mtom

[SOAP 1.1] http://www.w3.org/TR/soap11

[Base64] http://rfc.net/rfc3548.html

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 29

Appendix A: DIME Transfer Mechanism (http://schemas.ggf.org/byteio/2005/10/transfer-
mechanisms/dime)

As with “profiles” for any transfer mechanism, the information about the DIME transfer
mechanism is meant to profile ONLY the xsd:any element contained in the byteio:transfer-
information-type schema. All other defined content for this structure MUST remain intact and
unaltered. Note that for messages which do not carry a bulk data payload (the response from a
write, or the request to a read operation), this element will be empty.

Due to the nature of the DIME transfer protocol [DIME], use of this transfer mechanism does not
require any additional information to be included with the byteio:transfer-information-type
element. As such, the profile for http://schemas.ggf.org/byteio/2005/10/transfer-
mechanisms/dime is empty.

The following is the XML schema for the DIME transfer mechanism profile of the byteio:transfer-
information-type element:

<byteio:transfer-information-type
transfer-mechanism=”http://schemas.ggf.org/byteio/2005/10/transfer-

mechanisms/dime”>
</byteio:transfer-information-type>

The components of the transfer-information-type data type are unchanged in content from the un-
profiled version of this structure.

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 30

Appendix B: MTOM Transfer Mechanism (http://schemas.ggf.org/byteio/2005/10/transfer-
mechanisms/mtom)

As with “profiles” for any transfer mechanism, the information about the MTOM transfer
mechanism is meant to profile ONLY the xsd:any element contained in the byteio:transfer-
information-type schema. All other defined content for this structure MUST remain intact and
unaltered. Note that for messages which do not carry a bulk data payload (the response from a
write, or the request to a read operation), this element will be empty.

Due to the nature of the MTOM transfer protocol [MTOM], use of this transfer mechanism does
not require any additional information to be included with the byteio:transfer-information-type
element. As such, the profile for http://schemas.ggf.org/byteio/2005/10/transfer-
mechanisms/mtom is empty.

The following is the XML schema for the MTOM transfer mechanism profile of the byteio:transfer-
information-type element:

<byteio:transfer-information-type
transfer-mechanism=”http://schemas.ggf.org/byteio/2005/10/transfer-

mechanisms/mtom”>
</byteio:transfer-information-type>

The components of the transfer-information-type data type are unchanged in content from the un-
profiled version of this structure.

GFD-R-P.087 31 October 2006

byteio-wg@ggf.org 31

Appendix C: Simple Transfer Mechanism
(http://schemas.ggf.org/byteio/2005/10/transfer-mechanisms/simple)

As with “profiles” for any transfer mechanism, the information about the simple transfer
mechanism is meant to profile ONLY the xsd:any element contained in the byteio:transfer-
information-type schema. All other defined content for this structure MUST remain intact and
unaltered. Note that for messages which do not carry a bulk data payload (the response from a
write, or the request to a read operation), this element will be empty.

The following is the XML schema for the simple transfer mechanism profile of the byteio:transfer-
information-type element:

<byteio:transfer-information-type
transfer-mechanism=”http://schemas.ggf.org/byteio/2005/10/transfer-

mechanisms/simple”>
<byteio:data> xsd:base64Binary </byteio:data>*

</byteio:transfer-information-type>

The components of the transfer-information-type data type are unchanged in content from the un-
profiled version of this structure with the addition of the following component:

/byteio:transfer-information-type/byteio:data
 The Base64 [Base64] encoded block of data being transferred. This element is not

present when no actual bulk data is being transferred (for example, as the result
message from a write operation.

